Reconditioning Post Injury: Part 1
Musculoskeletal Injuries: Mechanisms and Causes

Rob Marc Orr, Bond University

Available at: https://works.bepress.com/rob_orr/31/
Reconditioning post injury: PT 1
MSI: Mechanisms and Causes

Why?

• Understand how IOT optimise reconditioning and prevention
 • How force is transferred
 • Look at tissue properties
 • Panjabi’s stability and control principle
 • Causes of MSI
Reconditioning post injury: PT 1
MSI: Mechanisms and Causes

Force Transfer

- From muscle to bone
Properties of tissues

Structural Properties of Ligaments

Load-Deformation Curve

- Toe-in
- Linear region
- Zone of progressive microfailure
- Energy absorbed to failure
- Rupture
Properties of tissues

Load-deformation curve for Bone-Ligament-Bone Complex

Nordin, M., & Frankel, V. H. (2001). *Basic biomechanics of the musculoskeletal system.* Lippincott Williams & Wilkins.
Stability

Control System

Passive System

Active System

Reconditioning post injury: PT 1
MSI: Mechanisms and Causes

Stability in action

Control System

Passive System Active System

NSW Police, PTI Conference, 2012
Scenario 1: Faulty Control

- **Delayed / Slow Commands**
 - Neurological injury?
 - Faulty Joint Position Sense?
 - Fatigue?

Control System

Passive System
- **Excessive Load**
 - Ligamentous damage
 - Skeletal damage

Active System
- **Excessive Load**
 - Muscle damage
 - Tendon damage

Reconditioning post injury: PT 1

MSI: Mechanisms and Causes
Scenario 1: Faulty Control

- Faulty Commands
 - Poor motor patterns (Global vs local / technique)
Scenrio 1: Faulty Control

- Faulty Commands
 - Poor motor patterns (Global vs local)

- Excessive Load
 - Ligamentous damage
 - Skeletal damage

- Excessive Load
 - Muscle damage
 - Tendon damage
Reconditioning post injury: PT 1
MSI: Mechanisms and Causes

Scenario 2: Weak muscles

- Excessive Load
 - Ligamentous damage
 - Skeletal damage

Muscles too weak to overcome force
- General weakness
- Weakness through specific ROM (inner/outer ROM
- Strong muscle but external force too great
- Previous injury

Excessive Load
- Muscle damage
- Tendon damage

Control System

Passive System

Active System

NSW Police, PTI Conference, 2012
Scenario 2: Weak muscles

- Muscles too weak to overcome force
 - FATIGUE

Control System

Excessive Load
- Muscle damage
- Tendon damage

Passive System

- Ligamentous damage
- Skeletal damage

Active System

NSW Police, PTI Conference, 2012
Scenario 3: Osseoligamentous System Dysfunction

- Excessive Load
 - Ligamentous damage
 - Skeletal damage

- Pain
 - Muscle spasm increases load to muscle and bone
 - Alters movement mechanics (up/down Kinetic chain)

- Control System

- Excessive Load
 - Muscle damage
 - Tendon damage

- Passive System

- Active System
Scenario 3: Osseoligamentous System Dysfunction

- Excessive Load
 - Ligamentous damage
 - Skeletal damage

- Dysfunction in movement
 - Joints don’t work properly increasing muscle work or loading other joints

- Control System

- Passive System

- Active System

- Excessive Load
 - Muscle damage
 - Tendon damage
Known Causes of MSI

Intrinsic Factors
- Previous Injury
- Muscle weakness
- Poor biomechanics
- Poor fitness

Extrinsic Factors
- Clothing
- Equipment
- Work Environment
Known Causes of MSI

1. Forceful exertions
 - Acceleration
 - Force (F=MxA)
Known Causes of MSI

1. Forceful exertions
 - Acceleration
 - Force (F=MxA)
 - Awkward movement / positions

NSW Police, PTI Conference, 2012
Known Causes of MSI

2. Work posture
 • Passive
 • Kinetic
Known Causes of MSI

3. Repetitions and Duration

• Volume
• Intensity
Known Causes of MSI

4. Vibration
 • Low frequency continuous vibration
Known Causes of MSI

5. Work area
 • Physical space
Known Causes of MSI

5. Work area

- Physical space
- Occupational demands
Known Causes of MSI

5. Work area

- Physical space
- Occupational demands
- Environmental
Known Causes of MSI

6. Tools
 • Passive
 • Active
Known Causes of MSI

7. Position and Nature of Load
 - Position (COG)
Known Causes of MSI

7. Position and Nature of Load

- Position (COG)
- Nature (‘Live’ vs ‘Dead’/ Size)
Known Causes of MSI

8. Load handling

- No Lift policies
Reconditioning Post Injury: Part 2
Musculoskeletal Injuries: Types & reconditioning programs

Rob Orr (Bond University)
Why?

- Need to know what the injury is
- Pathological factors will influence rate of tissue healing
- Lack of pain and normal functional movement is not an indication that the injury and its cause have been resolved.
Injury Classifications by Mechanism

- **Traumatic**
 - EG: Ankle sprain / Muscle strain / Fracture
 - Causes: Extrinsic / Intrinsic

- **Overuse**
 - EG: PFPS, RC Impingement, Compartment Syndromes
 - Causes: Extrinsic / Intrinsic

- **Recurrent**
 - Recurrent injuries are those that continue to re-occur
 - Causes: Faulty Mechanics / Insufficient healing – recovery / Lack of re-strengthening / Faulty sensory information - Joint position sense / Loss of ROM
Types of Injury

- **Hard Tissue / Bony (Osseous)**
 - Fractures / Joint Displacement
 - Arthritis / Joint Degeneration

- **Soft Tissue**
 - Muscle Strains / Ligament Sprains
 - Tendonitis / Tendo-alegias (Lateral Epicondylitis / Lateral Epicondylealgia)
 - Contusions / Hematomas
 - Bursitis

- **Neural Tissue**
 - Neuropraxias / Direct injury to the CNS / PNS
Reconditioning post injury: PT 2
MSI: types & reconditioning programs

Fractures
Fractures

• MOI include:
 – Direct impact
 – Indirect impact (FOOSH)
 – Overuse (Stress Fracture)
Reconditioning post injury: PT 2
MSI: types & reconditioning programs

Fractures

- Oblique
- Comminuted
- Spiral
- Compound
Fractures

• Healing may be impaired by:
 – **Local Factors**
 • Movement
 • Interposition of soft tissue in fracture gap
 • **Infection**
 • Poor blood supply
 • **Poor nutrition**
 • Age
 • Poor general health
 • Poly-pharamcy (steroids)
Fractures

• **Predictors of Fracture Healing**
 – Spiral fracture in UL (children) - 3/52
 – Spiral fracture UL (adult) – 6/52
 – Spiral fracture LL 2x as long to unite – 12/52
 – Transverse fracture takes twice as long again
 – Fractured femur add 25%
Reconditioning post injury: PT 2
MSI: types & reconditioning programs

Joint Displacement

NSW Police, PTI Conference, 2012
Joint Displacement

- **Types**
 - *Subluxation* – *displacement of part of a joint*
 - *Dislocation* – *complete displacement of the joint*

- **MOI includes:**
 - A direct force (*Eg Knee in the shoulder*)
 - An indirect force (*FOOSH or ABD& ER*)
 - Overuse (Supraspinatus weakness/Instability)

- **Common Sites**
 - *Glenohumeral Joint*
 - *Acromioclavicular*
 - *Patella*
 - *Fingers*
Muscle Strains

Reconditioning post injury: PT 2
MSI: types & reconditioning programs
Muscle Strains

- MOI - Indirect injury caused to muscle by excessive stretch
 - Occurs where highest proportion of FT II fibres, examples include:
 - Rectus Femoris
 - Biceps Femoris
 - Medial Gastrocnemius
 - Muscle moved in eccentric manner
Muscle Strains

Grades

• **Mild / First Degree Strain**
 – Weakness mild or absent

• **Moderate / Second Degree Strain**
 – Notable loss of muscle fibers
 – Weakness

• **Severe / Third Degree Strain**
 – Reduced muscle function
 – Complete rupture - Myofascial separation complete
• **Long Term Sequelae**
 - Partial tear predisposes to complete tear
 - Fibrosis
 - Fatty replacement
 - Very rarely ossification
Reconditioning post injury: PT 2
MSI: types & reconditioning programs

Ligament sprains
Ligament sprains

• MOI = explosive movement with forces that cause a joint to move beyond its normal ROM and design
 – Tackled to the side of the knee
 – Slip and Fall
Grades

- **Mild / First Degree Sprain**
 - Pain reproduced by stretching the ligament
 - Local tenderness
 - Minor swelling / bleeding
 - Strapping may help
Grades

• **Moderate / Second Degree Sprain**
 - Major swelling with some bleeding
 - Increased dysfunction and instability
Reconditioning post injury: PT 1
MSI: types & mechanisms

Type II Sprain
- ligaments torn slightly
Grades

• **Severe / Third Degree Sprain**
 - Complete rupture
 - Immediate pain and loss of function
 - Joint unstable
 - Conservative approach (splint for 6 weeks) or Surgery
Reconditioning post injury: PT 1
MSI: types & mechanisms

Type III Sprain
- ligaments torn completely
Reconditioning post injury: PT 2
MSI: types & reconditioning programs

Ligament sprains

• Common Sites
 – Ankle
 • ATFL, CFL
 – Knee
 • MCL, LCL, ACL, PCL
Reconditioning post injury: PT 2
MSI: types & reconditioning programs

Tendonitis
Tendonitis

• MOI (Overuse)
 – Acute or Chronic
Tendonitis

Grade

• 1
 – Pain after activity only

• 2
 – Pain at the start of the activity that disappears
 – Pain Returns after the activity
 – Does not restrict activity
Tendinitis

Grade

• 3
 – Pain at the start of the activity that continues during and after the activity
 – Restriction of activity

• 4
 – Pain during everyday activities
 – Progressing and getting worse
Tendonitis

Common Sites

– Shoulder
 • Rotator Cuff (supraspinatus)
 • Long Head of Biceps

– Elbow
 • Lateral Epicondyle – Tennis Elbow (Although may be more than just a tendonitis)
 • Medial Epicondyle – Golfers elbow
 • Brachilias – Rope Climbing, Chin Ups
Tendonitis

Common Sites

— Knee
 • Quads tendon
 • Hamstring tendon
 • Adductor tendon

— Ankle
 • Achilles Tendon
The Repair Stage

General Tissue Healing Rates

- Muscle: 6 Weeks
- Tendons: 3 – 6 Weeks
- Ligaments: 12 Weeks
- Bones/Joints: 6 – 12 Weeks
Reconditioning post injury: PT 2
MSI: types & reconditioning programs

Considerations when developing a recon / rehab program

• Input versus Output
Reconditioning post injury: PT 2
MSI: types & reconditioning programs

Skinny running was way easier than fat running.
Reconditioning post injury: PT 2
MSI: types & reconditioning programs

Considerations when developing a recon / rehab program

• Quality of intake
Considerations when developing a recon / rehab program

- Cardio Vascular

What is the amount of moderate physical activity recommended by ACSM to maintain body weight?
Reconditioning post injury: PT 2
MSI: types & reconditioning programs

Considerations when developing a recon / rehab program

• Logistics
Considerations when developing a recon / rehab program

• Medication
Reconditioning post injury: PT 2
MSI: types & reconditioning programs

Considerations when developing a recon / rehab program

- The training high
Reconditioning post injury: PT 2
MSI: types & reconditioning programs

Considerations when developing a recon / rehab program

• What am I going to do today?
Considerations when developing a recon / rehab program

- What caused the injury?
• Patient Mobility
The Programming Approach

- Rehabilitation specific considerations:
 - MOI and other injuries
 - Chronic or Acute injury
 - Conservative vs Surgical treatment
 - Surgery
 - PWB, NWB, FWB
 - Constraints (Braces, slings, crutches)
 - Employment and Role
 - Stage of Rehabilitation (post Sx, RTW)
Indirect Programming Considerations

- Other areas under load
 - **Indirect loading** (Pushing through the heels of the feet during a Seated Shoulder Press)
 - **Available ROM** (Knee ROM available and the Lat Pulldown)
 - **Limb Position and Swelling** (Limb in a lowered position)
The Rehabilitation Exercise Programming Process

- Review the Referral
 - Review limitations
 - Aim of program

- Assess the Patient
 - Subjective (Painful activities, Latency of exercise effects?)
 - Objective (Girths, Strength, CV)

- Patient Goals
 - From referring practitioner
 - From patient
The Rehabilitation Exercise Programming Process...2

- Develop the Program
 - Exercises
 - Loading parameters (Sets, Reps, Rest etc)

- Implement Program
 - D.E.P. Process
 - Supervision

- Reassess after 1st session
 - Latency / Swelling
 - Heat / Stiffness
 - Pain
The Rehabilitation Exercise Programming Process...3

- Adjust program as required
 - Additional liaison with practitioner as required
 - Adjustments will need to be reassessed

- Reassess
 - Reports
 - Progression
 - Completion of Rx??
When training a WII police officer

- Consider the mechanism of injury
- Consider the potential causes (rehab/prehab)
- Consider the tissue (load deformation and recovery)
- Consider the nature of the injury
- Consider the wider impacts
- Develop and continually reassess and monitor the program
Reconditioning Post Injury

Rob Orr (Bond University)