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An efficient fast-multipole algorithm based on an expansion
in the solid harmonics

H. Y. Wang and R. LeSar
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 12 September 1995; accepted 14 November) 1995

We present an efficient variant of the fast-multipole method for calculating long-range interactions
in three-dimensional Coulombic systems. Using a multipole expansion based on the solid harmonics
instead of the more common spherical harmonics leads to a greater increase in computational
efficiency than a recently-reported fast-Fourier transform method, with none of the overhead
associated with that approach. 96 American Institute of Physid50021-96086)50408-7

I. INTRODUCTION the FMM in three dimensions that is an alternative to the use
of fast-Fourier transforms. By using a multipole expansion
The calculation of long-range interactions arises in apased on the solid harmonics rather than the customary
number of fields, from simulations of galactic mottohto spherical harmonics, we develop a much more compact and
ionic material§® to dislocation microstructurésThe sim- computationally less costly algorithm with increases in
plest approach in the case of two-body interactions is to Simspeeds greater than those reported with the fast-Fourier trans-
ply sum all interaction terms. That approach is limited tofgm approach(up to a factor of 2.3 In Sec. Il we outline
small system sizes, as the computational burden N*D(  the FMM with the solid harmonics, in Sec. Il we show how
whereN is the number of particles. Simply cutting off the the ohvious symmetry of the solid harmonics can be used to

interactions at some finite range leads to spurious redultsincrease computational efficiency, and in Sec. IV we summa-
Thus, a great deal of work has been done to develop othefize the results.

lest computationally costly but still accurate, approaches.
The goal in this paper is not to review those developments,
but rather to discuss an _efficient way to implement one O EAST-MULTIPOLE METHOD
them, the ON) fast-multipole method of Greengard and
Rokhlin. Here we discuss the basic approach taken in the fast-
The fast-multipole method is one of a class of algorithmsmultipole method FMM). For more details, as well as math-
called hierarchical-tree methods, all of which share two im-ematical justification and error analysis, see Greengard and
portant characteristics; they all utilize a hierarchical-tree datd&Rokhlin.’
structure and they all compute the force on an individual When two sets of particles are “well-separated,” as
particle from nearby particles directly and that from remoteshown in Fig. 1, it is possible to determine the number of
particles by an approximate, truncated, multipole expansiorterms needed in a multipole expansion of the field of one set
The fast-multipole method(FMM) by Greengard and of particles to calculate the forces on the particles the other
Rokhlin” adopts an oct-tree structure, without any restrictionwithin a given accuracyThis is not to say that being “well-
on the number of particles in the lowest cells. The majorseparated” is needed for the convergence of a multipole ex-
difference between the FMM and other tree methddés in ~ pansion. Convergence only requires that the sets be sepa-
the way far-field interactions are handled. With a carefulrated. Note that a slightly different definition is used for
management of the interactions, the FMM method makes thawell-separated” cells in the multipole methods described
computational efficiency essentially B). In addition to its  next.
computational efficiency, the error in the FMM can be re-  The multipole methods work by creating a hierarchy of
duced to close to machine accuracy by keeping enough ternt=lls; for clarity we show the two-dimensional case. A typi-
in the multipole expansions. cal three-level two-dimensional hierarchy is shown in Fig. 2.
Much development has occurred in the fast-multipoleThe highest level, 0, is the simulation cell itself. That cell is
method since the first paper by Greengard and RoKhline  then divided into 4ths to create level-1 cells. The level-1
method has been extended to three dimensiohémple-  cells are divided again into 4ths to create level-2, and that in
mented on parallel computets;*and implemented for mo- turn is divided again to create level-3. We say that a level-
lecular dynamics simulatiorté.Recently, fast-Fourier trans- (n-+1) cell derived by dividing a levet cell into 4ths is the
form methods have been introduced to increase thehild of the leveln cell, which in turn is the parent of the
computational speed of calculations in three dimenstof$. four level-(n+1) cells. For aM-level system, there are a
While increasing computational speed by up to a factor ototal of =M 4" cells. In three dimensions, 8 children are
about 1.6 per energy calculation on serial computers, the usgeated from each parent and there are a totak f,8"
of fast-Fourier transforms introduces a considerable amourdells for anM-level system. In this type of hierarchy, the
of computational and programming complexity. next-nearest neighbor cells are the first that are considered
Here we present an efficient algorithm for performing “well-separated;” this holds at all levels.
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Set A SetB
Multipole expansion
of B shifted to a local
expansion at A /
R Parent cell B
e faB
Shift of multipole
Parent cell A well expansion from
separated from B children of B to B
) . ) o ) Shift of Jocal
FIG. 1. Well-separated sets of dislocations. In this definition, two regions ;aXPﬁg;ds'on fr?QA
are well-separated if dislocations in each region are closer to each other than © cnidren o
to dislocations in the other region.

Children of B
The FMM achieves its Q) computational speed by an

efficient calculation of the multipole moments and the inter-
actions. As a concrete example, consider a system of charged
particles in a level-3 systertFig. 2). The interaction of par-  Fig. 3. Example of the steps needed in calculating the interactions of par-
ticles in cella with other particles ira and with those in the ticles in cella in Fig. 2 with the multipoles of the next-nearest neighbors
nearest-neighbor level-3 cellmarkedn) are evaluated as a (I_3) of the parent_ ofa. The multipoles of the children cB are calculat‘ed
diect summation of the electrostatic nteracions. The nexrect, e TUlPoles o e en caues ty g up e oo
nearest-neighbor level-3 celldmarked nn) are well-  the parent ofa and then shifted down to be centeredan

separated from celh and thus their interactions with par-

ticles in cella are approximated with a multipole expansion.

The level-2 cells marked are well separated from the local expansion is then shifted to be centered at the level-3
level-2 parent of cell, thus the particles in cel interact  Cell (2) and the net interaction determined by adding the
with the multipoles of the level-B cells. The multipole terms for each particle. . .
moments of the various cells are calculated as shown in Fig. The total electrostatic potential due to a set of point
3. The moments of the level-3 cells are computed directly, a§harges is

discussed in detail below. The moments of the level-2 cells a;

(B in Fig. 3 are computed bghifting the multipole expan- d(r)=2, =
sion from the center of the level-3 cells to that of their parent ! :
level-2 cells, yielding simple expressions for the level-2 mul-whereq; is the charge of théth particle and; its position.
tipoles that do not require summing over the particles. Thdn previous implementations of the fast multipole method in
multipole moments of the level-1 cellée., parents of the three dimensiond) this potential was rewritten in a multi-
level-2 cells would be calculated in the same way. The in- pole expansion based on the spherical harmofefined in
teractions of the level-3 particldge., in a) with the multi-  the Appendiy,

Children of A

@

poles of a level-2 cell B) are calculated by shifting the =MLY (6,0)
center of the multipole expansion of the potential of the ¢ (=4, Im Timt % ¢ 2
level-2 cell to the well-separated pardiavel-2) of the cell ") ;o m:z—l (21+1)r'+t @

in which the particle sits, creating what is usually referred t

(o) . .
, ) where the multipole momentd ,, are given b
as alocal expansion centered at the parent cél))( This P m : y

M|m=§i) ariYin(6;,¢:). ©)

To evaluate the potential from a well-separated .,
B) in a cell at the same level), we rewrite the multipole
expansion fromB as an expansion in variabléscal to A,
which takes the form

%o |

d(r)=4m, 2| Limt'Yim(6,9), (4)

=0 m=—

wherer is a vector relative to the center Afand thel,, are
the local moments, which can be written in terms of the
multipole moments oB and geometrical factors. This trans-
FIG. 2. Schematic diagram for a interactions in a 3-level hierarchy. Theformation from a mu]tipo|e series to a local expansion is
dislocations |n_celh |_nteract_W|th those in ceth and in all nearest—nelghbor referred to as a multipole-to-local transformation.

cells (n) by direct interactions and with the multipoles of those in the . . .
next-nearest-neighbor shellsarf) and with the multipoles of those in the |.n the notation of Fig. 3, the three transformations for the
next-nearest-neighbors) of the parent ofa. multipole moments and local moments &re

J. Chem. Phys., Vol. 104, No. 11, 15 March 1996
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(1) multipole-to-multipole(children ofB— B),

o I A—1y*
, (—re) Y)\—I,,u—m(ac’(Pc)a)\—l,y,—malm(Z)\_1) .
ML=2 2 [4” @+ D201 +1]ay, i ®
(2) multipole-to-local 8—A),
o I I+ my*
(=1 " "YX 41 u—m(OaB. ©aB) AN u8IMm _
b= 2, [4” T N2+ D20A D+ Lan e ) ©
(3) local-to-local(A—children ofA),
o I [N
ro_ le YI—)\,m—M(Gcv‘Pc)a)\Mal—A,m—,u .
L=y 2, {4” @ D0 N F e, | 0
|
where ® A
Lym= M, ,J ; 13
—(—1)+m (21+1)12 ®) =2 M;x pudionmeulTae) 13
am= (=D e T —m) 7 (3) local-to-local (A— children ofA),
0 A

An alternative approach to the use of the spherical har- , .
monics is offered by the use of the solid harmonics, as de- le:gzo u;x Livams wIu(Te)- (14
fined in the Appendix. These functions have the benefit of
being functions of the vectors. By taking advantage of The summation in Eq(12) is defined in Eq(A9). The form
addition formulas given in the Appendix, the final expres-Of these expansions is much more compact and somewhat
sions are far more compact and require fewer computationd€ss computer intensive than those based on an expansion in
Moreover, using the obvious symmetry of these functionghe spherical harmonid€£qs.(5)—(8)]. As we shall see next,
leads to a considerable reduction in the number of calculalowever, the real benefit of using the solid harmonics is that
tions needed. their symmetry can be invoked to reduce the number of com-
With the definition ofR,,,(r) and3J,,,(r) in Egs.(A5) and  Putations and to significantly increase the efficiency of the

(A6), the multipole expansion in E42) can be rewritten as computations. _ o
Note that while we have written the upper limit of all

N sums ovell aso, in practice only a finite number of terms
‘D(r)zlzo m;I MimJim(r), (9 are actually used. Specifically, in an orderexpansion, all
sums take the fornz |~ ;==/_¢"

o |

where the multipole moments are
lll. OPTIMIZATION OF THE ALGORITHM

Mlmzz aiRE (o). (10) All of. the transfprmations in Eq¢5)—(8) or Egs.(12)— .
[ (14) require approximately the same amount of computation.

The local expansion of Eq4) is then given b it al- However, while there are at most 8 transformations per cell
xpansi o1 gV Y, Wi for the “vertical” multipole-to-multipole and local-to-local

ways taken as the vector relative to the center of the cell i%hifts there are considerably more for the “horizontal’

which the expansion is to be evaluated, multipole-to-local shifts(B—A in Fig. 3. From simple
w counting arguments, we see that for each cell there are as
D(r)=>, > LimRE,(—r). (1) many as 189 next-nearest-neighbor cells three dimen-
=0 m=—1 siong at the same level to which its multipoles must be
shifted. Thus, the multipole-to-local transformations domi-
nate the computational time to perform the transformations.
Irregular solid harmonicEEq. (A6)] with field vectorsr

Using the addition formulas in Eq6A7) and(A8), the three
types of transformations can be easily written as

(1) multipole-to-multipole(children ofB— B), andr that differ only byAg (i.e., they lie in the samay
| plane are related by
,m .
Min= 2 Miym R0 (12) Tim(1)=Tim(ro)e'mAe. (15)
(p)=(00 We rewrite Eq(13) for the multipole-to-local expansion mo-
(2) multipole-to-local B—A), ment as

J. Chem. Phys., Vol. 104, No. 11, 15 March 1996
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P-1
Lim(ro)= > D(ro), (16)
n==(P-1)
where
P-1
Dfn(ro)= 2 MauJinme u(T0)- (7

Using Eq.(15), we then have for the local moment at a cell
atr,

(P-1)

>

p==(P-1)
By tabulatingD(;,(r o) for one cell, we can easily evaluate the
moment at all other cells with differing only by Ag from

ro-
Besides the fourfold symmetry in they plane, the mir-

Lim(r)= gllwtmaepp (ro). (18)

ror symmetry can be used to further reduce the computation.

In Eq. (A6), if r is related tory by changingé to 7= 6, we
have

Timl(1)= (= 1) ™ (ro). (19
If we define
P-1 P-1
Em(D= 2 2, Mudimeu(ro)
(20a
and
P-1 P-1
Em(2)= 2 2o Mudiamea(ro),
(20b)
we have
Lim(ro) =Eim(1) +Ejn(2) (21
and
Lim(1)=(=1)"" " Ejm(1) — Ejm(2)]. (22

In practice, we combine thA¢ and 6 to =— 6 transforma-
tions to minimize computations. Utilizing these symmetry

properties, the total number of independent cells is reduced

from 189 to 34. In addition to the 34 full evaluations of the
multipole-to-local transformation, we have 92 shifts and
63 0 to 7— 6 shifts for the most general case.

There areP? terms in each evaluation df;,(r,). For
each multipole-to-local transformation there &®evalues of
Lim(re) to be calculated. Thus, invoking no symmetry, the
full multipole-to-local transformation would involve evaluat-
ing 18%* terms for each of the=M ;8" cells. Using the

symmetry of the solid harmonics reduces that burden to

34P* terms. In addition, we need 92 evaluations of the
shift [Eq. (18)] and 636 to 7— 6 shifts [Eq. (22)], which
require far fewer operations. For example, the®® =— 6

shifts require no multiplications and just 1 addition, i.e., they

contribute OP?) to the total operations. We then expect that
the overall decrease in the number of operatidies, in-
crease in computational spegeshould asymptotically ap-
proach 189/34(~5.6) at largeP. In Fig. 4 we show the

LeSar: An efficient fast-multipole algorithm

Optimization per M2L call

2'|..I.;.I...I...I...IH.I.HI...
4 6 8 10 12 14
Expansion Order P

16

FIG. 4. Optimization(i.e., speedup over the solid-harmonic expansion with
no symmetry of the multipole-to-local transformation as a function of the
expansion ordeP.

calculated increase in computational speed for the multipole-
to-local transformation as a function of the order of the mul-
tipole expansion. We see an increase from about 2MB8=at

to about 5.6 aP=16, as expected.

We can estimate how increases in computational effi-
ciency in calculating the multipole-to-local shifts affects the
computer time for a full potential calculation. Since there are
189 multipole-local shifts for each cell and only 8 multipole-
to-multipole and local-to-local shifts, we ignore the latter.
We then have the total time in evaluating shifts as approxi-
matelyc=M 8", wherec is the time for one shift. The other
term that dominates the computational time is the direct cal-
culation over thdat mos} 27 nearest cells. If we assume that

25

2.3

21

1.9

1.7

Total speedup of force calculation

15 ’I 1 1 L 1 1 1
4 6 8 10 12 14

Expansion Order P

16

FIG. 5. Optimization(i.e., speedup over the solid-harmonic expansion with
no symmetry of a single total energy calculation as a function of the ex-
pansion orderP. The diamonds are an analytical approximation to the

speedup, as described in the text.
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TABLE I. N is the number of particles, the level refers to the number of

1 g
divisions made in the heirarchy, P/C is the average number of particles in
01 L the smallest cell, and the cpu time is the tifires) per one force calculation
T on an SGI workstation with the 150 MHz RS 4400 processor. All calcula-
0.01 L tions were done with a seventh-order multipole expansion.
g 0.001 N Level P/C cpu timg)s)
w F
- 4000 2 40 0.12
®
-% 0.0001 20480 3 40 0.90
E 0.00001 L 30720 3 60 1.47
F 147 456 4 36 8.02
0.000001 L 250 000 4 61 14.40
0.0000001 L
0.00000001 Lor1. - e
0 2 4 6 8 10 12 14 16
Expansion Order P ting cpu time for a total potential calculation as a function of

the total number of particles. A critical parameter in deter-

FIG. 6. Error in potential as a function of expansion orBecalculated for
a system of 512 chargéthe direct calculation is too time consuming to use

mining optimized computational speeds for the FMM is the

more than this Shown are five estimates of the error, where number of particles in the smallest céP/C), which is a
N q | function of both the total number of particles and the level of
q)direcl(ri)_ ) ‘ _ | . . .
jri=1 T~ the heirarchy. We show in Fig. 6 results where we have op-

N N
(m) _Zl\q’("i)—‘pdirec(riﬂ _%l‘Qdirec(ri)|v

N N
(®) \/E |D(r;) = D girec( 1) |? / S | P recf 1)1
i=1 i=1

1 N
(A) N _§1{|q>(ri)_cbdirecl(ri)Mq)direcl(ri)‘}v

13 2 2
(®) N_i{\q’(fi)*q’direcﬂiﬂ 1P girec 1)1},

N N
(D) H 2 [®(ri)7¢direc£ri)]J / 2 cIDdirect(ri)
i=1 i=1

s is the time for each direct calculation, we can show that the
total computational time should scale a{s_c Thus, we ex-
pect that increases in computational speed for the multipole-
to-local transformation frons to ¢’ would reduce the overall
computational speed by a factor @t’/c. This approximate
relation is seen to be verified in Fig. 5, where we compare
the total time per potential calculation with and without us-
ing symmetry to reduce the computations. We also show the
predicted increase in speed found by using the data in Fig. 4
for c’/c.

There have been many estimates in the literature of con-
vergence properties of the multipole expansions. In Fig. 6,
we show a number of these. Plotted are the relative errors of
the fast-multipole method relative to the exact, direct, sum-
mation as a function of the expansion order The main
differences between the different measures of error are
whether they are relative to the mean total poteriilhi®,1)
or are they sums of individual relative errofta, ). We
prefer the more standard definitions shown by the cultes
and@®. From those, it is clear that only a relatively low-order
multipole expansion is needed; a 0.01% error in total poten-
tial is obtained byP=7. Note, however, that the total num-
ber of operations in the multipole expansions increases s

CPU time (s)

—
@® o

[y
F S o]

=y
N

A L L L B L L B

(o]

timized P/C for eachN. In Table I, we list the levels and
optimal P/C as a function of the number of particles. The
calculations were run on an SGI workstation with the 150
MHz RS 4400 processor. In these calculations, all particles
had the same magnitude chargg=1) and the sides of the
simulation cell were set tol*® (i.e., the density is oneAll
calculations were performed with an order sevéh=(7)
multipole expansion.

PRI [T ST MU S MU NS S SN NS T

0 50000 100000 150000 200000 250000
N

§G. 7. Total cpu time per potential calculation as a function of the total
number of particles. Shown are results where we have optimized the number

4 . . .
P* so a he_aV}’ pe_nalty is paid for |n(_:reas_ed accuracy. of particles in the smallest cell. The calculations were run on an SGI work-
We verify in Fig. 7 that the algorithm is @) by plot-  station with the 150 MHz RS 4400 processor.

J. Chem. Phys., Vol. 104, No. 11, 15 March 1996



4178 H. Y. Wang and R. LeSar: An efficient fast-multipole algorithm

6
| 13
55 | ]
=5 | 0.1}
g E
E : 0.01 :
o - O 4~
24t .
g i g 0.001 q
43 [ w 1
g i _g 0.0001 4-
“ T 1
oo [ 2 0.00001 +
= g 3
3 0.000001
[ 1k E
o ]
n 0.0000001 §
oLt b b 0.00000001:|..|...I...l...l...l.,.l...l...
0O 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
(a) Expansion Order P (c) Expansion Order P
25
2.3 F
r
219 F
=4 ¥
¢ 17 |
L [
° 1.5 F FIG. 8. Comparison of current method with the fast-Fourier transform
i~ 1.3 - method (Ref. 16 (®). () Speedup of multipole-to-local transformations;
% B (b) overall speedup per force calk) relative error.
@14 |
q) -
Q [
wo9 kE
07 |
0.5 S T S IR IR TN SR
0 2 4 6 8 10 12 14 16
(b) Expansion Order P

Because of the convolutionlike form of the multipole-to- use of these functions lead to more compact expressions, we
local expansion, a fast Fourier transfo(RFT) has been uti- can take advantage of the obvious symmetry properties of
lized to improve the speedwhich converts the computation these functions to greatly reduce the computational burden.
from O(P%) to O[P?log,(P)]. In Fig. 8, we compare the Comparison with a recently-reportédast Fourier transform
FFT (Ref. 16 with the present results and see that the currentnethod shows that use of the present approach offers a much
approach offers a greater increase in computational speagteater increase in computational speed.
than the FFT. For an expansion order of01% erroy, the
current approach offers almost four times the speed up than
the FFT for the multipole-to-local transformation. Note that ACKNOWLEDGMENTS
they'® compare the speedup relative to the base spherical- ) )
harmonic expansion while we present increases in computa- 111 Work was performed under the auspices of the

tional speed relative to an expansion with the solid harmontnited States Department of Energy.S. DOB and was

ics with no symmetry. The computational time for the basesupported in part by the D?vision of Materials Science of the
calculations(spherical harmonics and solid harmonics with Office of Basic Energy Sciences of the U.S. DOE.
no symmetry should be similar, so the comparison of the

two results is justified.
APPENDIX

IV. SUMMARY AND CONCLUSIONS The properties of the spherical harmoni¢g, (6, ¢) are
We have presented an alternative expansion for the fastwell known, though phase and normalization factors can dif-
multipole method using the solid harmonics. Not only doesfer between authors. Here we use the definitions

J. Chem. Phys., Vol. 104, No. 11, 15 March 1996
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[+ (=t ime
Yim(0,¢)= Am (Fmyl Pi(cos f)e (A1)
with the associated Legendre functions
(_1)m I+m
P"O) =~ (1-x3)m2 FE (x2-1)". (A2)
The P{"(x) satisfy the following relations:
N (I=m)!
m _/_1\m m
and
PI(—x)=(—1)"""PP(x). (A4)

Following Steinborn and Ruedenbérgwe define the
regular and irregular solid harmonics as follows:

Rym(r)= Tmr r'PM(cos §)e'™¢, (A5)
(I+m)! )
TJ|m(r)= _r'T P[n(COS ﬂ)e'm‘P. (AG)

Note thatR,,,(r) corresponds té%m(r) and3J,,(r) to f/;im(r)

4179
XTinmepw(r=) Ir|<|r-, (A8)
where
I,m I p=min(\,—N+I+m)
> = : (A9)
(\,u)=(0,0 N=0 g=max —\,\—1+m)
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