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An efficient fast-multipole algorithm based on an expansion
in the solid harmonics

H. Y. Wang and R. LeSar
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 12 September 1995; accepted 14 November 1995!

We present an efficient variant of the fast-multipole method for calculating long-range interactions
in three-dimensional Coulombic systems. Using a multipole expansion based on the solid harmonics
instead of the more common spherical harmonics leads to a greater increase in computational
efficiency than a recently-reported fast-Fourier transform method, with none of the overhead
associated with that approach. ©1996 American Institute of Physics.@S0021-9606~96!50408-7#

I. INTRODUCTION

The calculation of long-range interactions arises in a
number of fields, from simulations of galactic motion1–3 to
ionic materials4,5 to dislocation microstructures.6 The sim-
plest approach in the case of two-body interactions is to sim-
ply sum all interaction terms. That approach is limited to
small system sizes, as the computational burden is O(N2),
whereN is the number of particles. Simply cutting off the
interactions at some finite range leads to spurious results.5

Thus, a great deal of work has been done to develop other,
lest computationally costly but still accurate, approaches.
The goal in this paper is not to review those developments,
but rather to discuss an efficient way to implement one of
them, the O(N) fast-multipole method of Greengard and
Rokhlin.7

The fast-multipole method is one of a class of algorithms
called hierarchical-tree methods, all of which share two im-
portant characteristics; they all utilize a hierarchical-tree data
structure and they all compute the force on an individual
particle from nearby particles directly and that from remote
particles by an approximate, truncated, multipole expansion.
The fast-multipole method~FMM! by Greengard and
Rokhlin7 adopts an oct-tree structure, without any restriction
on the number of particles in the lowest cells. The major
difference between the FMM and other tree methods1,2,8 is in
the way far-field interactions are handled. With a careful
management of the interactions, the FMM method makes the
computational efficiency essentially O(N). In addition to its
computational efficiency, the error in the FMM can be re-
duced to close to machine accuracy by keeping enough terms
in the multipole expansions.

Much development has occurred in the fast-multipole
method since the first paper by Greengard and Rokhlin.7 The
method has been extended to three dimensions,9,10 imple-
mented on parallel computers,11–13and implemented for mo-
lecular dynamics simulations.14 Recently, fast-Fourier trans-
form methods have been introduced to increase the
computational speed of calculations in three dimensions.15,16

While increasing computational speed by up to a factor of
about 1.6 per energy calculation on serial computers, the use
of fast-Fourier transforms introduces a considerable amount
of computational and programming complexity.

Here we present an efficient algorithm for performing

the FMM in three dimensions that is an alternative to the use
of fast-Fourier transforms. By using a multipole expansion
based on the solid harmonics rather than the customary
spherical harmonics, we develop a much more compact and
computationally less costly algorithm with increases in
speeds greater than those reported with the fast-Fourier trans-
form approach~up to a factor of 2.4!. In Sec. II we outline
the FMM with the solid harmonics, in Sec. III we show how
the obvious symmetry of the solid harmonics can be used to
increase computational efficiency, and in Sec. IV we summa-
rize the results.

II. FAST-MULTIPOLE METHOD

Here we discuss the basic approach taken in the fast-
multipole method~FMM!. For more details, as well as math-
ematical justification and error analysis, see Greengard and
Rokhlin.7

When two sets of particles are ‘‘well-separated,’’ as
shown in Fig. 1, it is possible to determine the number of
terms needed in a multipole expansion of the field of one set
of particles to calculate the forces on the particles the other
within a given accuracy.7 This is not to say that being ‘‘well-
separated’’ is needed for the convergence of a multipole ex-
pansion. Convergence only requires that the sets be sepa-
rated. Note that a slightly different definition is used for
‘‘well-separated’’ cells in the multipole methods described
next.

The multipole methods work by creating a hierarchy of
cells; for clarity we show the two-dimensional case. A typi-
cal three-level two-dimensional hierarchy is shown in Fig. 2.
The highest level, 0, is the simulation cell itself. That cell is
then divided into 4ths to create level-1 cells. The level-1
cells are divided again into 4ths to create level-2, and that in
turn is divided again to create level-3. We say that a level-
(n11) cell derived by dividing a level-n cell into 4ths is the
child of the level-n cell, which in turn is the parent of the
four level-(n11) cells. For aM -level system, there are a
total of (n50

M 4n cells. In three dimensions, 8 children are
created from each parent and there are a total of(n50

M 8n

cells for anM -level system. In this type of hierarchy, the
next-nearest neighbor cells are the first that are considered
‘‘well-separated;’’ this holds at all levels.
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The FMM achieves its O(N) computational speed by an
efficient calculation of the multipole moments and the inter-
actions. As a concrete example, consider a system of charged
particles in a level-3 system~Fig. 2!. The interaction of par-
ticles in cella with other particles ina and with those in the
nearest-neighbor level-3 cells~markedn! are evaluated as a
direct summation of the electrostatic interactions. The next-
nearest-neighbor level-3 cells~marked nn! are well-
separated from cella and thus their interactions with par-
ticles in cella are approximated with a multipole expansion.
The level-2 cells markedB are well separated from the
level-2 parent of cella, thus the particles in cella interact
with the multipoles of the level-2B cells. The multipole
moments of the various cells are calculated as shown in Fig.
3. The moments of the level-3 cells are computed directly, as
discussed in detail below. The moments of the level-2 cells
~B in Fig. 3! are computed byshifting the multipole expan-
sion from the center of the level-3 cells to that of their parent
level-2 cells, yielding simple expressions for the level-2 mul-
tipoles that do not require summing over the particles. The
multipole moments of the level-1 cells~i.e., parents of the
level-2 cells! would be calculated in the same way. The in-
teractions of the level-3 particles~i.e., in a! with the multi-
poles of a level-2 cell (B) are calculated by shifting the
center of the multipole expansion of the potential of the
level-2 cell to the well-separated parent~level-2! of the cell
in which the particle sits, creating what is usually referred to
as a local expansion centered at the parent cell (A). This

local expansion is then shifted to be centered at the level-3
cell (a) and the net interaction determined by adding the
terms for each particle.

The total electrostatic potential due to a set of point
charges is

F~r !5(
i

qi
ur2r i u

, ~1!

whereqi is the charge of thei th particle andr i its position.
In previous implementations of the fast multipole method in
three dimensions,10 this potential was rewritten in a multi-
pole expansion based on the spherical harmonics~defined in
the Appendix!,

F~r !54p(
l50

`

(
m52 l

l
M lmYlm~u,w!

~2l11!r l11 , ~2!

where the multipole momentsMlm are given by

Mlm5(
i
qi r i

lYlm* ~u i ,w i !. ~3!

To evaluate the potential from a well-separated cell~e.g.,
B! in a cell at the same level (A), we rewrite the multipole
expansion fromB as an expansion in variableslocal to A,
which takes the form

F~r !54p(
l50

`

(
m52 l

l

L lmr
lYlm~u,w!, ~4!

wherer is a vector relative to the center ofA and theLlm are
the local moments, which can be written in terms of the
multipole moments ofB and geometrical factors. This trans-
formation from a multipole series to a local expansion is
referred to as a multipole-to-local transformation.

In the notation of Fig. 3, the three transformations for the
multipole moments and local moments are10

FIG. 1. Well-separated sets of dislocations. In this definition, two regions
are well-separated if dislocations in each region are closer to each other than
to dislocations in the other region.

FIG. 2. Schematic diagram for a interactions in a 3-level hierarchy. The
dislocations in cella interact with those in cella and in all nearest-neighbor
cells (n) by direct interactions and with the multipoles of those in the
next-nearest-neighbor shells (nn) and with the multipoles of those in the
next-nearest-neighbors (B) of the parent ofa.

FIG. 3. Example of the steps needed in calculating the interactions of par-
ticles in cella in Fig. 2 with the multipoles of the next-nearest neighbors
(B) of the parent ofa. The multipoles of the children ofB are calculated
directly. The multipoles ofB are then calculated by shifting up the multipole
expansions to be centered onB. The multipole expansions are then shifted to
the parent ofa and then shifted down to be centered ona.
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~1! multipole-to-multipole~children ofB→B!,

Mlm8 5(
l50

`

(
m52 l

l H 4p
~2r c!

l21Yl2 l ,m2m* ~uc ,wc!al2 l ,m2malm~2l21!

~2l11!@2~l2 l !11#alm
JMlm ; ~5!

~2! multipole-to-local (B→A),

Llm5(
l50

`

(
m52 l

l H 4p
~21! l1mYl1 l ,m2m* ~uAB ,wAB!almalm
r AB

l1 l11~2l11!@2~l1 l !11#al1 l ,m2m
JMlm ; ~6!

~3! local-to-local~A→children ofA!,

Llm8 5(
l50

`

(
m52 l

l H 4p
r c
l2lYl2l,m2m~uc ,wc!almal2l,m2m

~2l11!@2~ l2l!11#alm
J Llm ; ~7!

where

alm5~21! l1m
~2l11!1/2

@4p~ l1m!! ~ l2m!! #1/2
. ~8!

An alternative approach to the use of the spherical har-
monics is offered by the use of the solid harmonics, as de-
fined in the Appendix. These functions have the benefit of
being functions of the vectorsr . By taking advantage of
addition formulas given in the Appendix, the final expres-
sions are far more compact and require fewer computations.
Moreover, using the obvious symmetry of these functions
leads to a considerable reduction in the number of calcula-
tions needed.

With the definition ofRlm~r ! andIlm~r ! in Eqs.~A5! and
~A6!, the multipole expansion in Eq.~2! can be rewritten as

F~r !5(
l50

`

(
m52 l

l

M lmIlm~r !, ~9!

where the multipole moments are

Mlm5(
i
qiRlm* ~r i !. ~10!

The local expansion of Eq.~4! is then given by, withr al-
ways taken as the vector relative to the center of the cell in
which the expansion is to be evaluated,

F~r !5(
l50

`

(
m52 l

l

L lmRlm* ~2r !. ~11!

Using the addition formulas in Eqs.~A7! and~A8!, the three
types of transformations can be easily written as

~1! multipole-to-multipole~children ofB→B!,

Mlm8 5 (
~l,m!5~0,0!

l ,m

Ml2l,m2mRlm* ~r c!; ~12!

~2! multipole-to-local (B→A),

Llm5 (
l50

`

(
m52l

l

MlmIl1l,m1m~rAB!; ~13!

~3! local-to-local~A→children ofA!,

Llm8 5 (
l50

`

(
m52l

l

Ll1l,m1mRlm* ~r c!. ~14!

The summation in Eq.~12! is defined in Eq.~A9!. The form
of these expansions is much more compact and somewhat
less computer intensive than those based on an expansion in
the spherical harmonics@Eqs.~5!–~8!#. As we shall see next,
however, the real benefit of using the solid harmonics is that
their symmetry can be invoked to reduce the number of com-
putations and to significantly increase the efficiency of the
computations.

Note that while we have written the upper limit of all
sums overl as`, in practice only a finite number of terms
are actually used. Specifically, in an orderP expansion, all
sums take the form( l50

` ⇒( l50
P21.

III. OPTIMIZATION OF THE ALGORITHM

All of the transformations in Eqs.~5!–~8! or Eqs.~12!–
~14! require approximately the same amount of computation.
However, while there are at most 8 transformations per cell
for the ‘‘vertical’’ multipole-to-multipole and local-to-local
shifts, there are considerably more for the ‘‘horizontal’’
multipole-to-local shifts~B→A in Fig. 3!. From simple
counting arguments, we see that for each cell there are as
many as 189 next-nearest-neighbor cells~in three dimen-
sions! at the same level to which its multipoles must be
shifted. Thus, the multipole-to-local transformations domi-
nate the computational time to perform the transformations.

Irregular solid harmonics@Eq. ~A6!# with field vectorsr
and r0 that differ only byDw ~i.e., they lie in the samexy
plane! are related by

Ilm~r !5Ilm~r0!e
imDw. ~15!

We rewrite Eq.~13! for the multipole-to-local expansion mo-
ment as
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Llm~r0!5 (
m52~P21!

P21

Dlm
m ~r0!, ~16!

where

Dlm
m ~r0!5 (

l5umu

P21

MlmIl1l,m1m~r0!. ~17!

Using Eq.~15!, we then have for the local moment at a cell
at r ,

Llm~r !5 (
m52~P21!

~P21!

ei ~m1m!DwDlm
m ~r0!. ~18!

By tabulatingDlm
m ~r0! for one cell, we can easily evaluate the

moment at all other cells withr differing only byDw from
r0.

Besides the fourfold symmetry in thexy plane, the mir-
ror symmetry can be used to further reduce the computation.
In Eq. ~A6!, if r is related tor0 by changingu to p2u, we
have

Ilm~r !5~21! l1mIlm~r0!. ~19!

If we define

Elm~1!5 (
m52~P51!

P21

(
l5umu,umu12,...

P21

MlmIl1l,m1m~r0!

~20a!

and

Elm~2!5 (
m52~P21!

P21

(
l5umu11,umu13,...

P21

MlmIl1l,m1m~r0!,

~20b!

we have

Llm~r0!5Elm~1!1Elm~2! ~21!

and

Llm~r !5~21! l1m@Elm~1!2Elm~2!#. ~22!

In practice, we combine theDw and u to p2u transforma-
tions to minimize computations. Utilizing these symmetry
properties, the total number of independent cells is reduced
from 189 to 34. In addition to the 34 full evaluations of the
multipole-to-local transformation, we have 92Dw shifts and
63 u to p2u shifts for the most general case.

There areP2 terms in each evaluation ofLlm~r0!. For
each multipole-to-local transformation there areP2 values of
Llm~r0! to be calculated. Thus, invoking no symmetry, the
full multipole-to-local transformation would involve evaluat-
ing 189P4 terms for each of thec(n50

M 8n cells. Using the
symmetry of the solid harmonics reduces that burden to
34P4 terms. In addition, we need 92 evaluations of theDw
shift @Eq. ~18!# and 63u to p2u shifts @Eq. ~22!#, which
require far fewer operations. For example, the 92u to p2u
shifts require no multiplications and just 1 addition, i.e., they
contribute O(P2) to the total operations. We then expect that
the overall decrease in the number of operations~i.e., in-
crease in computational speed! should asymptotically ap-
proach 189/34~;5.6! at largeP. In Fig. 4 we show the

calculated increase in computational speed for the multipole-
to-local transformation as a function of the order of the mul-
tipole expansion. We see an increase from about 2.8 atP51
to about 5.6 atP516, as expected.

We can estimate how increases in computational effi-
ciency in calculating the multipole-to-local shifts affects the
computer time for a full potential calculation. Since there are
189 multipole-local shifts for each cell and only 8 multipole-
to-multipole and local-to-local shifts, we ignore the latter.
We then have the total time in evaluating shifts as approxi-
matelyc(n50

M 8n, wherec is the time for one shift. The other
term that dominates the computational time is the direct cal-
culation over the~at most! 27 nearest cells. If we assume that

FIG. 5. Optimization~i.e., speedup over the solid-harmonic expansion with
no symmetry! of a single total energy calculation as a function of the ex-
pansion orderP. The diamonds are an analytical approximation to the
speedup, as described in the text.

FIG. 4. Optimization~i.e., speedup over the solid-harmonic expansion with
no symmetry! of the multipole-to-local transformation as a function of the
expansion orderP.
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s is the time for each direct calculation, we can show that the
total computational time should scale asAsc. Thus, we ex-
pect that increases in computational speed for the multipole-
to-local transformation fromc to c8 would reduce the overall
computational speed by a factor ofAc8/c. This approximate
relation is seen to be verified in Fig. 5, where we compare
the total time per potential calculation with and without us-
ing symmetry to reduce the computations. We also show the
predicted increase in speed found by using the data in Fig. 4
for c8/c.

There have been many estimates in the literature of con-
vergence properties of the multipole expansions. In Fig. 6,
we show a number of these. Plotted are the relative errors of
the fast-multipole method relative to the exact, direct, sum-
mation as a function of the expansion orderP. The main
differences between the different measures of error are
whether they are relative to the mean total potential~j,d,h!
or are they sums of individual relative errors~m,l!. We
prefer the more standard definitions shown by the curvesj

andd. From those, it is clear that only a relatively low-order
multipole expansion is needed; a 0.01% error in total poten-
tial is obtained byP57. Note, however, that the total num-
ber of operations in the multipole expansions increases as
P4, so a heavy penalty is paid for increased accuracy.

We verify in Fig. 7 that the algorithm is O(N) by plot-

ting cpu time for a total potential calculation as a function of
the total number of particles. A critical parameter in deter-
mining optimized computational speeds for the FMM is the
number of particles in the smallest cell~P/C!, which is a
function of both the total number of particles and the level of
the heirarchy. We show in Fig. 6 results where we have op-
timized P/C for eachN. In Table I, we list the levels and
optimal P/C as a function of the number of particles. The
calculations were run on an SGI workstation with the 150
MHz RS 4400 processor. In these calculations, all particles
had the same magnitude charge (q51) and the sides of the
simulation cell were set toN1/3 ~i.e., the density is one!. All
calculations were performed with an order seven (P57)
multipole expansion.

FIG. 6. Error in potential as a function of expansion orderP calculated for
a system of 512 charges~the direct calculation is too time consuming to use
more than this!. Shown are five estimates of the error, where

Fdirect~r i !5 (
jÞ i51

N qj
ur j2r i u

:

~j ! (
i51

N

uF~r i !2Fdirect~r i !u Y (
i51

N

uFdirect~r i !u,

~d ! A (
i51

N

uF~r i !2Fdirect~r i !u2 Y (
i51

N

uFdirect~r i !u2,

~m !
1

N
(
i51

N

$uF~r i !2Fdirect~r i !u/uFdirect~r i !u%,

~l ! A1

N
(
i51

N

$uF~r i !2Fdirect~r i !u2/uFdirect~r i !u2%,

~h ! UH (
i51

N

@F~r i !2Fdirect~r i !#J Y (
i51

N

Fdirect~r i !U.

TABLE I. N is the number of particles, the level refers to the number of
divisions made in the heirarchy, P/C is the average number of particles in
the smallest cell, and the cpu time is the time~in s! per one force calculation
on an SGI workstation with the 150 MHz RS 4400 processor. All calcula-
tions were done with a seventh-order multipole expansion.

N Level P/C cpu time~s!

4 000 2 40 0.12
20 480 3 40 0.90
30 720 3 60 1.47
147 456 4 36 8.02
250 000 4 61 14.40

FIG. 7. Total cpu time per potential calculation as a function of the total
number of particles. Shown are results where we have optimized the number
of particles in the smallest cell. The calculations were run on an SGI work-
station with the 150 MHz RS 4400 processor.
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Because of the convolutionlike form of the multipole-to-
local expansion, a fast Fourier transform~FFT! has been uti-
lized to improve the speed,16 which converts the computation
from O(P4) to O@P2 log2(P)#. In Fig. 8, we compare the
FFT ~Ref. 16! with the present results and see that the current
approach offers a greater increase in computational speed
than the FFT. For an expansion order of 4~0.1% error!, the
current approach offers almost four times the speed up than
the FFT for the multipole-to-local transformation. Note that
they16 compare the speedup relative to the base spherical-
harmonic expansion while we present increases in computa-
tional speed relative to an expansion with the solid harmon-
ics with no symmetry. The computational time for the base
calculations~spherical harmonics and solid harmonics with
no symmetry! should be similar, so the comparison of the
two results is justified.

IV. SUMMARY AND CONCLUSIONS

We have presented an alternative expansion for the fast-
multipole method using the solid harmonics. Not only does

use of these functions lead to more compact expressions, we
can take advantage of the obvious symmetry properties of
these functions to greatly reduce the computational burden.
Comparison with a recently-reported16 fast Fourier transform
method shows that use of the present approach offers a much
greater increase in computational speed.
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APPENDIX

The properties of the spherical harmonicsYlm(u,w) are
well known, though phase and normalization factors can dif-
fer between authors. Here we use the definitions

FIG. 8. Comparison of current method with the fast-Fourier transform
method~Ref. 16! ~d!. ~a! Speedup of multipole-to-local transformations;
~b! overall speedup per force call;~c! relative error.
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with the associated Legendre functions
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ThePl
m(x) satisfy the following relations:
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~ l2m!!

~ l1m!!
Pl
m~x! ~A3!

and
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m~2x!5~21! l1mPl
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Following Steinborn and Ruedenberg,17 we define the
regular and irregular solid harmonics as follows:

Rlm~r !5
1

~ l1m!!
r lPl

m~cosu!eimw, ~A5!

Ilm~r !5
~ l1m!!

r l11 Pl
m~cosu!eimw. ~A6!

Note thatRlm~r ! corresponds toŶ lm~r ! andIlm~r ! to L̂ lm~r !
in the notation used by Steinborn and Ruedenberg. These
functions satisfy the following addition formulas:

Rlm~r11r2!5 (
~l,m!5~0,0!

l ,m

Rl2l,m2m~r1!Rlm~r2!, ~A7!
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l50

l

(
m52l

l
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where
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[ (
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l

(
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