Skip to main content
Article
On retaining classical truths and classical deducibility in many-valued and fuzzy logics
Journal of Philosophical Logic
  • Richard DeWitt, Fairfield University
Document Type
Article
Article Version
Post-print
Publication Date
1-1-2005
Abstract
In this paper, I identify the source of the differences between classical logic and many-valued logics (including fuzzy logics) with respect to the set of valid formulas and the set of inferences sanctioned. In the course of doing so, we find the conditions that are individually necessary and jointly sufficient for any many-valued semantics (again including fuzzy logics) to validate exactly the classically valid formulas, while sanctioning exactly the same set of inferences as classical logic. This in turn shows, contrary to what has sometimes been claimed, that at least one class of infinite-valued semantics is axiomatizable.
Comments

This is a post-print of an article published in Journal of Philosophical Logic. The original publication is available at http://www.springerlink.com

Published Citation
DeWitt, Richard. 2005. On retaining classical truths and classical deducibility in many-valued and fuzzy logics. Journal of Philosophical Logic 34 (5-6), 545-560.
DOI
10.1007/s10992-005-1520-0
None
Peer Reviewed
Citation Information
Richard DeWitt. "On retaining classical truths and classical deducibility in many-valued and fuzzy logics" Journal of Philosophical Logic Vol. 34 Iss. 5-6 (2005)
Available at: http://works.bepress.com/richard_dewitt/2/