Skip to main content
Article
Computation and Interpretation of Raman Scattering Intensities
Journal of Computational Methods in Sciences and Engineering
  • Kathleen M. Gough
  • Concetta Lupinetti
  • Richard Dawes, Missouri University of Science and Technology
Alternative Title
Computational Aspects of Electric Polarizability Calculations: Atoms, Molecules and Clusters. Part II
Abstract
The experimental measurement and the theoretical calculation of Raman scattering intensities present a number of challenges. We evaluate the currently available options with regard to our on-going studies of intensity in hydrocarbons and silanes. In the treatment of experimental data, anharmonic force fields permit the calculation of combination and overtone intensities as well as the resolution of anharmonic resonances. The structural dependence of the magnitude of the mean molecular polarizability derivative associated with the stretch of a single bond is confirmed at the B3LYP/aug-cc-pVTZ level of calculation. Although they do not exhibit nonlinear optical properties, derivatives for the straight chain alkanes show nonlinear trends in common with silanes, polyenes and polyaromatic hydrocarbons. The dynamic correction has been evaluated using time dependent DFT with the same basis set (TDDFT). The best calculations yield results that agree with the measured values to within experimental error.
Department(s)
Chemistry
Keywords and Phrases
  • Computation Theory,
  • Density Functional Theory,
  • Eigenvalues And Eigenfunctions,
  • Hydrocarbons,
  • Inverse Problems,
  • Nonlinear Optics,
  • Optical Properties,
  • Paraffins,
  • Polarization,
  • Silanes, Anharmonic Force Field,
  • DFT,
  • Eigenvalue Methods,
  • Polarizabilities,
  • Polyaromatic Hydrocarbons,
  • Raman Scattering Intensity,
  • TDDFT, Raman Scattering,
  • alkanes,
  • Anharmonic Force Field,
  • Density Functional Theory,
  • DFT,
  • Inverse Eigenvalue Method,
  • Polarizability Derivative,
  • Polyaromatic Hydrocarbons,
  • Raman Scattering Intensity,
  • TDDFT
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2004 IOS Press, All rights reserved.
Publication Date
1-1-2004
Disciplines
Citation Information
Kathleen M. Gough, Concetta Lupinetti and Richard Dawes. "Computation and Interpretation of Raman Scattering Intensities" Journal of Computational Methods in Sciences and Engineering Vol. 4 Iss. 4 (2004) p. 597 - 609 ISSN: 1472-7978
Available at: http://works.bepress.com/richard_dawes/96/