the dividends of good governance

riccardo pelizzo
rick stapenhurst
The Dividends of Good Governance

Riccardo Pelizzo\(^1\) and Frederick Stapenhurst\(^2\)

\(^1\)World Bank Institute, Washington, DC, USA
\(^2\)McGill University, Montreal, Quebec, Canada

Building on an extensive literature on corruption, growth, and development, the article shows that corruption is not simply associated with lower levels of socioeconomic development, but that it also has a significant causal effect on a country’s level of socioeconomic development. The basic implication of the findings presented in the article is that the reduction in the level of corruption in a given country leads to greater wealth, higher levels of education, longer life expectancy, and lower infant mortality—this is why we speak of the dividends of good governance.

KEY WORDS: development, good governance, corruption

Introduction

For many years, scholars and practitioners have not paid sufficient attention to corruption. Corruption was nothing more than an afterthought. It was considered as a by-product of pre-modern forms of economic organization, as the result of inadequate political development, and as something that could possibly favor development since it could grease the wheels of rigid, incompetent, and excessively bureaucratic public administrations. Scholars pay little attention to the empirical characteristics of corruption, its causes, and its consequences. Development practitioners avoided the issue because they considered it as a matter of a country’s internal politics, and as such, with no impact whatsoever on development.

The empirical research carried out from the mid-1990s onward has made it clear not only that corruption is detrimental for the quality of democracy, that is, a political problem, but also that it has a devastating impact on economic growth and development, that the reduction of corruption may provide a major stimulus to economic growth, and that anti-corruption activities are an essential component of any successful development strategy.

The purpose of the present article is to show, on empirical grounds, how detrimental corruption is for socioeconomic development. In the course of this article, we will show that while there are several ways in which development can be measured, corruption is harmful to development regardless of how it is measured.
This article is organized in the following way. In the first section, we discuss the conditions under which corruption is believed to flourish. In doing so, we will point out that there are three factors that seem to play a particularly significant role in facilitating corruption: poverty, lack of institutionalization, and the nature of the economy. Specifically, we will argue that in countries plagued by extreme poverty, where political institutions are inadequately developed, where the state is not adequately insulated from social pressures, and where the economy is not sufficiently competitive, corruption is expected to thrive.

In the second section, we will show that corruption is detrimental for development. After discussing what development is and how it can be measured, we show that countries with higher levels of corruption are poorer and have lower rates of literacy, higher rates of infant mortality, shorter life expectancy, fewer motor vehicles, and a more backward agriculture-based economy, whereas the opposite is true in countries with less corruption.

Building on the correlation analyses presented in the second section, in the third section we present the results of some regression analyses. By doing so, we are able to show how much a country can improve in terms of education, wealth, industrialization, motorization, and quality of life with, or rather thanks to, little improvements in the level of good governance and transparency. In the fourth and final section, we draw some conclusions.

Corruption: Causes and Consequences

The literature has identified several conditions that facilitate the emergence of corruption and corrupt practices. In this section, we will focus on three conditions that we believe are of particular importance: poverty, the level of institutionalization, and the nature of the economy.

While in the next section we will show that corruption represents an obstacle for economic growth, development, and poverty reduction, the literature has made it quite clear that in countries that are confronted with extreme poverty, the population does not have the time or the inclination to be concerned with the state of the democracy (Huntington, 1991) and the level of corruption.

Second, in extremely poor countries, citizens have greater incentives to tolerate corruption and bribes: bribes represent a way to gain access to resources that are scarce and otherwise unreachable, such as health care, or a way to increase an income that otherwise would not enable the corrupt individuals to sustain themselves.

Third, poverty favors corruption because in very poor countries, there are fairly low rates of literacy and, therefore, the population does not have the means to be properly informed and to play an active role in monitoring and curbing corruption.

The level of institutionalization, or rather the lack thereof, is strongly connected with corruption. There is a long literature, from Huntington (1968) to Evans (1989, 1995), that has underlined how inadequate institutionalization, that is, inadequate political development, prevents the state, its organs, and its bureaucracy from enjoying a certain level of autonomy from society and social pressures. In
A poorly institutionalized context, the state and its organs are not able and are not equipped to resist social pressures and requests, and this inability to resist social pressures is believed to facilitate the proliferation of nepotism, clientelism, and corruption. Not surprisingly, as Evans pointed out, it is precisely where the state is poorly institutionalized, that the state is inadequately insulated from social pressure, and becomes what Evans calls a predatory state.

In addition to these factors, which may be conducive to higher levels of corruption, there are also two institutional conditions that may favor corruption: one such condition is the absence of adequate mechanisms of inter-institutional control, such as the tools for parliamentary oversight, and the unpredictability of the judiciary (Pelizzo & Stapenhurst, 2012).

The nature of the economy plays a key role in favoring and/or contrasting corruption. The literature has underlined the importance of two aspects in this regard: one is the role of the state in the economy, the other is the nature of economic competition in a country. With regard to the role of the state in the economy, the World Development Report (1997) showed that where the state creates an artificial gap between supply and demand or where it creates wide margins of discretionality, it creates the conditions for the flourishing of corruption. If there is too much state intervention in the economy, if there is an excessive supply of state services, if there are too many regulations for business, if there are too many taxes, if the taxation rate is too high, or if rules are arbitrarily implemented, the state facilitates the emergence and the success of corrupt practices.

 Similarly, if the economy is not adequately competitive, it favors corruption. In those countries in which the market is not competitive, either because the market is a monopoly or an oligopoly, there is a small number of economic actors who are able to solve their collective action problems, reach agreements, get organized, and put pressure on the government and the state in order to obtain (private) benefits and gains.

While poverty, inadequate institutionalization, and the nature of the economy may be regarded as the causes of corruption, the literature has also paid considerable attention to the fact that corruption may have far-reaching consequences.

For instance, the work by Mauro (1997) affirmed the significant negative impact of corruption on economic growth. Mauro’s examination of more than 100 countries offered a quantitative estimate of this effect. He found that if a given country were to improve its corruption score by 2.38 points on a 10-point scale, its annual per capita GDP growth would rise by over half a percentage point (Mauro, 1997).

Corruption can weaken economic growth through many channels. Unsound policies, unpredictable processes, and distorted public expenditures resulting from vested interests lead to macroeconomic instability, weakened property rights, reduced competition, inefficient allocation of resources, deteriorated physical infrastructure, and smaller expenditures on education (Hellman, Jones, & Kaufman, 2000; Mauro, 1997; Tanzi & Davoodi, 1997).

For business, corruption increases risks and uncertainty, entails payments that represent a kind of tax, and requires more management time spent
negotiating with public officials. As a result, it dampens investment (Mauro, 1997) and pushes firms into the unofficial economy (Friedman, Johnson, Kaufmann, & Zoido-Lobatón, 2000). Where corruption provides more lucrative opportunities than productive work, the allocation of talent also deteriorates (Murphy, Shleifer, & Vishny, 1991).

Corruption by misallocating resources, by increasing the transaction costs, and by placing a tax on investments provides international investors with an incentive to invest their capital elsewhere, slows down economic growth, and prevents countries from experiencing proper development. The purpose of the next section is to present some evidence of the costs of corruption.

Some Empirical Evidence

While individuals engaged in corrupt activities or individuals who indirectly benefit from corrupt practices may not be able to appreciate it, one thing is clear: the cost of corruption is massive and, as a result, corruption represents one of the major obstacles for socioeconomic development.

The development literature has extensively discussed what development is, what is responsible for socioeconomic development, and how development can be measured.

With regard to development, scholars have generally agreed on the fact that development is an evolutionary process through which traditional forms of social organization (the clan, the tribe, etc.) are replaced by modern forms of social organization, such as the state.¹

Most social theorists believe that social development, political development, and economic development are interconnected or interrelated, which means that social structure, culture, economy, and politics must all undergo some transformation and that a society that fails to develop on each of the above mentioned respects (social, economic, political) cannot properly be regarded as developed.²

While the literature acknowledges that the process of development is a multifaceted one, it generally agrees on the fact that economic development represents the core of the developmental process—a process that can be stimulated by social capital, proper institutional design, and proper policy intervention—and that it can be hindered by the predatory behavior of the state, misallocation of resources, and, as Daniel Kaufmann (2000, 2006) has explained in several of his works, by corruption.

For example, economists such as Mises (1920), Dietze (1963), and Hayek (1944, 1973) agree on the fact that any effort of the state to intervene in the economy will inevitably lead to economic inefficiency—the achievement of suboptimal outcomes—and, in the end, to economic failure. The new institutional economists, such as North (1990; see also North & Thomas, 1973), think that economic development is a consequence of efficient economic organization, and they think that the only task a state has to perform, in order to establish such an efficient economic organization, is to create the proper incentives for the economic actors.
In other words, they think that the only thing that a state has to do to create the conditions for development is to secure the property rights. Other scholars have shown that government/state intervention in the economy can have a positive effect on the process of development. In the Russian case, as Gerschenkron (1962) has clearly shown, the state assumed the role of the primary agent propelling the economic progress in the country. In East Asia, as Wade (1990) has extensively discussed, the economic success of Japan and of the so-called “Asian Tigers” was—to a large extent—made possible by state intervention in the economy. And the successful economic adaptation of the small European states to the changes in the global economy, as Katzenstein (1985) has shown, was certainly favored by the cooperation between state and economic actors—the so-called democratic corporatism.

Other scholars, such as Max Weber and more recently Evans (1989, 1995), have argued that the important thing is not whether the state intervenes in the economy but whether the state is autonomous from social pressures and influences, that is, whether the state is predatory or developmental. According to Evans, the predatory state is characterized by the fact that it extracts resources from society and also by the fact that it lacks the ability to prevent individuals from pursuing their own goals. In this kind of state, individual maximization of profits takes precedence over the pursuit of the collective goals. Moreover, in this type of state, ties to society are mostly ties to individual incumbents. This kind of state is not autonomous from society; it is not insulated from the demands of the surrounding society. The lack of state autonomy from societal pressures and demands is the reason why state intervention in the economy in the so-called predatory states does not foster development. The developmental states, which preside over the process of development and can, to a significant extent, promote development itself, are states characterized by what Evans calls “embedded autonomy.” Developmental states are internally organized on the basis of highly selective meritocratic criteria and by the presence of long-term career rewards. These organizational features create the commitment and a sort of corporate coherence within the state bureaucracies.

While it is beyond the purposes of the present article to discuss which of these analytical frameworks provides the best analytical tools for understanding socioeconomic development, this brief overview of the literature on the role of the state in the economy reveals that while scholars agree on the importance of economic development, they disagree on how it can be achieved.

With regard to the measurement of development, the development literature has devised and employed several indicators of socioeconomic development (Lipset, 1959). The reason why various indicators were adopted is that scholars generally acknowledged that development is a complex, multifaceted phenomenon, and that in order to capture each and every aspect of development, it was necessary to have very specific metrics.

In the course of the present analysis, we rely on six indicators of development: the literacy rate, the percentage of the employed population working in the agricultural sector, the country’s wealth as indicated by the gross
national income (GNI) per capita, the life expectancy at birth, the infant mortality rate, and the number of motor vehicles in the country.

Literacy rate provides an indication of a country’s level of education, the percentage of people working in the agricultural sector provides an indication of the industrialization of the country, the country’s wealth is the preeminent indicator of development, the infant mortality and the life expectancy variables provide an indication of the state capacity and of the quality of the health care system, and the number of motor vehicles reflects not just the level of motorization of transports but also the level of wealth—for people have more cars in richer countries than in poorer ones.

We collected information on each of these six variables from the World Bank development data dataset. Data were collected for the following countries: Algeria, Andorra, Antigua and Barbuda, Argentina, Armenia, Austria, Bahrain, Bangladesh, Benin, Bhutan, Bulgaria, Burkina Faso, Burundi, Cambodia, Cameroon, Canada, Central African Republic, Chile, Congo (Democratic Republic), Costa Rica, Cote d’Ivoire, Croatia, Cyprus, Czech Republic, Djibouti, Estonia, Finland, France, Gabon, Georgia, Germany, Ghana, Greece, Grenada, Haiti, Hungary, Iceland, Indonesia, Ireland, Iran, Israel, Jamaica, Japan, Jordan, Kenya, Korea (Democratic Republic), Latvia, Lebanon, Lesotho, Liberia, Liechtenstein, Lithuania, Luxembourg, Malaysia, Marshall Islands, Mauritius, Moldova, Monaco, Morocco, Namibia, Netherlands, New Zealand, Nicaragua, Norway, Palau, Paraguay, Philippines, Poland, Qatar, San Marino, Senegal, Serbia, Seychelles, Singapore, Slovak Republic, Slovenia, Spain, Sri Lanka, Switzerland, Tajikistan, Tanzania, Thailand, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Uganda, Ukraine, United Kingdom, Uruguay, Vietnam, Yemen, and Zimbabwe.

The choice of this sample can easily be explained. The Inter-Parliamentary Union in collaboration with the World Bank Institute sent a survey questionnaire to all parliaments in the world to gather information as to how well they are equipped to oversee the executive branch of the government. Responses were provided by 94 lower chambers. Pelizzo and Stapenhurst (2012) used this sample to test the relationship between availability of oversight tools, the effectiveness of legislative oversight, quality of democracy, and level of corruption and found that when oversight is performed effectively, the quality of democracy is higher and the level of corruption is lower. While that work focused on how corruption can be curbed, here we focus on why it should be curbed. And for consistency, we decided to use the same sample.

A simple statistical analysis provides a very clear indication of values taken by each of the six variables in our sample. Details are presented in Table 1.

The data presented in Table 1 reveal that there is considerable variation in the number of missing data across the various variables. In fact, while we have a response rate of 100 percent with regard to infant mortality (94 out of 94), the response rate for the other variables is somewhat lower: for life expectancy, it is 93.6 percent, it is 73.4 percent for GNI per capita, it is 59.5 percent for the number of motor vehicles, and it is, respectively, 46.8 and 47.8 for employment in agriculture and literacy rate.
The second observation is that while most of the minimum values reported in the third column are an indication of underdevelopment, in the case of infant mortality and employment in the agricultural sector the low value recorded in this column provides an indication of development. This is so because development is believed to be associated with high level of literacy, industrialization (as indicated by a small percentage of workers employed in agriculture), wealth, life expectancy, and motorization and with a low infant mortality rate.

The data presented in Table 1 make it clear that there is considerable variation in each of the variables under consideration. The number of cars per thousand people varies from a minimum of 3 to a maximum of 908 per thousand, infant mortality varies from a minimum of 1.8 per thousand to 112.8 per thousand, life expectancy varies from a minimum of about 47 years to a maximum of 83 years, the wealth per capita varies from about $93 to nearly $40,400, employment in agriculture varies from a minimum of 1.1 percent of the total labor force to a maximum of about 66 percent, while the literacy rate varies from about 41 percent to nearly 100 percent. The standard deviation captures the great variation we have just described in the variables.

We have computed a final descriptive statistic for the variables in our sample, the mean. The data presented in the fifth column from the left show that in our sample the average literacy rate is 85.7 percent, that employment in agriculture averages 12.5 percent, that the GNI per capita is about $9,276, that life expectancy is on average 70 years, that the average rate of infant mortality is 24.3 per 1,000, and, finally, that there are on average 346.5 motor vehicles per thousand people.

The level of corruption for each of the countries included in our sample was measured on the basis of Transparency International’s (TI) Corruption Perception Index (CPI). We decided to use this measure of corruption for three reasons: (1) It is strongly, positively, and significantly related to other measures of corruption. In this regard, Urra (2007, p. 10) noted that Donchev and Ujhely (2007) reported that the correlation between CPI and the World Bank measure of corruption yielded a Pearson r coefficient of .98. (2) Since previous studies had already proved the relationship between corruption, as measured on the basis of the World Bank’s governance indicators and various measures of development, we wanted to test whether we would find a strong association/relationship between corruption (measured in a different way) and development. (3) The number of countries for which TI computed the CPI was much larger than the number of

<table>
<thead>
<tr>
<th>Table 1. Descriptive Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>Literacy rate</td>
</tr>
<tr>
<td>Employment in agriculture</td>
</tr>
<tr>
<td>GNI per capita</td>
</tr>
<tr>
<td>Life expectancy</td>
</tr>
<tr>
<td>Infant mortality</td>
</tr>
<tr>
<td>Motor vehicles per 1,000 people</td>
</tr>
</tbody>
</table>
countries for which other measures of corruption, such as the one devised by Global Integrity, had been computed.

The CPI is a 10-point scale that takes the value 10 when a country is totally free of corruption and takes the value 0 when it has the maximum level of corruption. We have data for 86 of the 94 countries included in our sample. The CPI varies from a minimum of 1.8 to a maximum of 9.4, with an average value of 4.5.

Once we correlate the CPI with the six measures of development that we discussed above, we find that corruption is strongly and significantly related to each of the measures of development. Details are presented in Table 2.

These correlation coefficients tell a fairly simple and straightforward story. They consistently say that countries that have less corruption/more transparency have a higher literacy rate, are more industrialized, are richer, have a longer life expectancy, have a lower infant mortality, and have more cars—these are the dividends of good governance. By contrast, countries with a higher level of corruption have fewer cars, higher infant mortality, shorter life expectancy, more poverty, less industrialization, and lower literacy. These are the costs of corruption.

The scatterplots presented in Figures 1–6 show graphically that development, however measured, is affected by good governance and corruption.

<table>
<thead>
<tr>
<th>Literacy Rate</th>
<th>Employment in Agriculture</th>
<th>GNI per Capita</th>
<th>Life Expectancy</th>
<th>Infant Mortality Rate</th>
<th>Motor Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI</td>
<td>.486 (.001)</td>
<td>−.585 (.000)</td>
<td>.866 (.000)</td>
<td>.710 (.000)</td>
<td>−.631 (.000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Corruption and Literacy Rate.
From Association to Causation: The Cost of Corruption

The data presented so far show that good governance is strongly associated with development, but while corruption is strongly associated with underdevelopment, neither the scatterplots nor correlations analyses can provide any evidence as to whether development is associated with but also affected (caused,
determined) by the level of corruption. This is precisely what we plan to show in this section.

We noted earlier on that the CPI, for our sample, has an average value of 4.5 and varies from a minimum of 1.8 to a maximum of 9.4. In other words, one of the countries in our sample is perceived to be nearly free of corruption, while another one is perceived to be plagued by a phenomenally high level of corruption.

Figure 4. Corruption and Life Expectancy.

Figure 5. Corruption and Infant Mortality.
What is the price of corruption for the very corrupt country? And what would be the price that the virtually non-corrupt one would have to pay if the level of corruption in the country increased? In order to answer these questions, we need to perform some regression analyses. Regression analyses are statistical analyses that tell how much change is induced (caused) in the response variable by a unit change in the independent variable (cause), whether the induced change is significant both in substantive and statistical terms, and how much change in the response variable is explained or can be explained by changes in the independent variable.

In the course of this analysis, corruption, measured on the basis of the CPI, is the independent variable while the six measures of development discussed above are the response variables.

A regression analysis takes the form

$$Y = a + bX + e$$

where Y is the response variable, a is the intercept (the point where the regression line intercepts the y axis when $X = 0$), and e is the error. Hence, if we substitute Y with one of the six measures of development and we substitute CPI for X, we can assess how much change in literacy rate, employment in agriculture, GNI per capita, life expectancy, infant mortality rate, and number of motor vehicles is caused by a unit increase (or decrease) in CPI.

If we regress CPI against these six indicators of development, we find that corruption has a major impact on development no matter how we measure it and
that some aspects of development are more deeply affected than others by the level of corruption or by changes in the level of corruption. Further details are presented in Table 3.

Some quantitative analysts and some methodologists believe that the R^2 only provides an indication of linearity, that is, of how linearly related are two variables. The majority of scholars, however, following the work of eminent methodologists like Lewis-Beck, argue that the R^2 provides a clear indication of how much variance in the response variable is explained by the independent variable.

If we take this second approach, we can see from the fifth column in Table 3 that by regressing each of the measures of development against CPI, we explain a sizable portion of the variance in the response variable. Specifically, we explain a minimum of 23.6 percent of the variance in the literacy rate to a maximum of 75.1 percent in the variance in the GNI per capita. CPI explains 23.6 percent of the variance in literacy rate, 34.3 percent of the variance in the level of employment in the agricultural sector, 39.8 percent of the variance in infant mortality rate, 50.4 percent of the variance in life expectancy, 53.8 percent in the variance of the number of motor vehicles, and 75.1 percent in the variance of GNI per capita.

But how much change does a unit change, a unit increase in CPI, induce in each of the response variables? The answer is provided in the third column of Table 3, where we can see that a unit increase in CPI, that is, a slight improvement in the level of transparency or a slight decline in the level of corruption, is responsible for a 3.14-year increase in life expectancy, for a $4,215.29 increase in GNI per capita, a 4.358 percent decline in the level of employment in agriculture, a 4.95 percent increase in the literacy rate, a 7.832 per thousand decline in infant mortality rate, and a 78.62 per thousand (or a 7.862 percent) increase in the number of vehicles.

In other words, a single-unit increase in transparency, a single-unit decline in the level of perceived corruption, is responsible for longer life, more wealth, more literacy, more cars, and more jobs outside the agricultural sector.

Conversely, a single-unit decrease in the perceived transparency or a single-unit increase in the perceived corruption would induce a significant decline in the level of development regardless of how we measure it. This decline, simply put,
is the cost of corruption, and it is the reason why it is essential to curb corruption in order to enable developing countries to enjoy sustainable growth and socio-economic development.

Conclusions

The purpose of this article was to show the costs of corruption and the dividends of good governance. After providing a brief overview of the literature on corruption and after defining what corruption is and what contextual conditions favor the emergence of corruption, we paid attention to the impact that corruption has on development.

We did so by performing two sets of analyses. The first set of analyses showed that regardless of whether we measure development on the basis of literacy rate, GNI per capita, life expectancy, infant mortality, employment in agriculture, or number of motor vehicles, more developed countries are less corrupt, and vice versa less corrupt countries are more developed. In fact, the first set of data analyses made it clear that in less corrupt countries there is a higher literacy rate, a higher GNI per capita, longer life expectancy, lower infant mortality, more industrialization, and more motorization. By contrast, more corrupt countries are poorer, less industrialized, less educated, and less motorized, with a higher infant mortality rate and lower life expectancy. Both correlation analyses and scatterplots made it clear that good governance is associated with development and that corruption is associated with underdevelopment.

The second set of analyses showed the actual costs of corruption and, conversely, the actual dividends of good governance. Our regression analyses made it clear that a unit improvement in transparency or good governance leads to higher income, more education, more industrialization, etc., while a unit increase in corruption leads to lower income, less education, less industrialization, etc. Our analyses did not simply reveal that more good governance leads to more development and that more corruption leads to more underdevelopment; our analyses provided very specific indications of the costs of corruption and of the benefits of good governance.

Our findings are very much consistent with the findings generated by Mauro (1997), Kaufmann (2000, 2006), Friedman et al. (2000), Hellman et al. (2000), and Johnson, Kaufmann, McMillan, and Woodruff (2003), and they teach a simple lesson: corruption is not simply bad in itself, it is not just bad for democracy, but it is also and more importantly bad for development.

Notes

1. A particularly interesting line of research has investigated the relationship between democracy and development. This line of research was sparked by the publication of Lipset’s seminal article (1959), in which the American political scientist reported that developed countries that were also democratic greatly outnumbered countries that were developed and undemocratic. Lipset explained this finding by saying that socioeconomic development is a necessary social requisite for the consolidation of
democracy because “the more well-to-do a nation, the greater the chances that it will sustain democracy” (1959, p. 75). While Lipset’s claim was fairly straightforward in positing a relationship between development and democratic consolidation/survival, the literature went on to derive three different propositions from Lipset’s main finding (democracy is more likely to be found in richer countries), namely, that (a) developed countries are more likely to experience a transition to democracy than less developed countries; (b) countries may undergo a democratic transition for a wide range of reasons, but democracy will survive only in richer countries; and (c) democracy stimulates economic growth and development. Przeworski, Alvarez, Cheibub, and Limongi (2000) were quick to note that while development has little impact on the probability that a country becomes democratic, it has a major impact on whether a country is able to remain democratic. In fact, they noted that while a democratic regime has a 12 percent probability of collapsing in a given year in a country where the income per capita is less than $1,000, the probability is just 5.5 percent in a country with an income per capita in the $1,000–2,000 range, and in countries with a per capita income of more than $5,000, it is virtually impossible for democracy to break down. Przeworski et al. (2000) also performed some statistical analyses to test whether democracy is a major determinant of growth and development. By performing these analyses, they found that whether a regime is democratic or not has virtually no impact on the economic growth rate. This finding means that democracy cannot be regarded as a major determinant of development.

2. While it is generally understood that “development” is a multifaceted phenomenon or process and that the process of development entails a social, an economic, and a political dimension, it has been acknowledged that social development, political development, and economic development do not occur at the same pace or speed. See Huntington (1968).

3. Other authors performed similar analyses with older data and with a smaller sample and found that socioeconomic inequality, measured on the basis of the Gini coefficient, is strongly related to corruption. Specifically, they found that corrupt societies are not just poorer but are also more unequal; on this, see Pelizzo (2012). For instance, Pelizzo and Stapenhurst (2007), in their analysis of the impact of good governance and corruption on various measures of development in Africa, also found that corruption is detrimental to development.

References

