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of cGas "~ mice are strikingly similar to those of
Stz'ng_/ ~ mice [this study and (/8)]. These results,
together with our biochemical data showing that
cGAS is a cytosolic enzyme activated by its binding
to generic DNA (2, 3), formally demonstrate that
c¢GAS is a nonredundant and general cytosolic
DNA sensor that activates STING.

We present evidence that 2'3'cGAMP is an
effective adjuvant that boosts the production of
antigen-specific antibodies and T cell responses
in mice. Although the bacterial second messen-
gers cyclic di-GMP and cyclic di-AMP are being
developed as potential vaccine adjuvants (22),
2'3'cGAMP is a much more potent ligand of
STING than any of the bacterial cyclic dinucleo-
tides (7). Thus, 2'3'cGAMP may be developed as
an adjuvant for next-generation vaccines to pre-
vent or treat human diseases, including infectious
diseases and cancer.
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Opioid receptor antagonists increase hyperalgesia in humans and animals, which indicates that
endogenous activation of opioid receptors provides relief from acute pain; however, the mechanisms of
long-term opioid inhibition of pathological pain have remained elusive. We found that tissue injury
produced p-opioid receptor (MOR) constitutive activity (MORc,) that repressed spinal nociceptive
signaling for months. Pharmacological blockade during the posthyperalgesia state with MOR inverse
agonists reinstated central pain sensitization and precipitated hallmarks of opioid withdrawal (including
adenosine 3',5'-monophosphate overshoot and hyperalgesia) that required N-methyl-p-aspartate
receptor activation of adenylyl cyclase type 1. Thus, MORc, initiates both analgesic signaling and a
compensatory opponent process that generates endogenous opioid dependence. Tonic MORca
suppression of withdrawal hyperalgesia may prevent the transition from acute to chronic pain.

hronic pain is determined by facilitatory
‘ mechanisms such as long-term potentia-

tion (LTP) of synaptic strength in dorsal
horn neurons (/-3). Whereas exogenously applied
opiates prevent (4, 5) and/or erase (6) spinal LTP,
and spinal enkephalin release exerts inhibitory
control of acute pain intensity soon after tissue
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injury (7, 8), it remains unclear how the endog-
enous opioid system might persistently repress
pathological pain. Opiates provide powerful pain
relief, but repeated administration leads to the
development of compensatory neuroadaptations
underlying opiate tolerance and dependence (9),
including the selective up-regulation of calcium-
sensitive adenylyl cyclase (AC) isoforms (10, 11).
Cessation of opiates leads to cellular and behav-
ioral symptoms of withdrawal (/2—16). An in-
triguing hypothesis of drug addiction suggests that
chronic opiates increase p1-opioid receptor (MOR)
constitutive activity (MORc,) to preserve physi-
cal and psychological dependence (/ 7-21), which
is enhanced by enkephalins (22). Whether MORs
adopt constitutive signaling states in other disease
syndromes, such as chronic pain, is unknown. We
tested the hypothesis that tissue injury increases
MOR(4 in the spinal cord. With sufficient time af-

ter injury, enhanced basal MOR signaling should
produce endogenous cellular and physical depen-
dence in the CNS.

We first discovered that spinal opioid signaling
promotes the intrinsic recovery of acute inflam-
matory pain and orchestrates long-lasting anti-
nociception. In mice, a unilateral intraplantar
injection of complete Freund’s adjuvant (CFA)
produced mechanical hyperalgesia that resolved
within 10 days (Fig. 1A). Subcutaneous chronic
minipump infusion of naltrexone hydrochloride
(NTX), a nonselective opioid receptor antagonist,
prolonged hyperalgesia throughout the 14-day
infusion period in CFA-injured mice (/5 17 =25.4,
P <0.0001) (Fig. 1B), although it had no effect in
sham-injured mice. When the NTX pump was re-
moved, hyperalgesia rapidly declined. NTX did
not alter the induction phase of CFA-induced hy-
peralgesia (fig. S1, A and B, and supplementary
text S1); however, when delivered 21 days after
CFA injection (CFA-21d mice) in the complete
absence of pain, systemic NTX reinstated hyper-
algesia (F 5, = 41, P < 0.0001) (Fig. 1C) in a
dose-dependent manner with no effect in sham-
injured mice (Fig. 1D). By contrast, systemic in-
jection of naltrexone methobromide (NMB), an
opioid receptor antagonist that does not cross
the blood-brain barrier, failed to alter mechanical
thresholds at either the ipsilateral or contralateral
paws (both P > 0.05) (Fig. 1E). Intrathecal ad-
ministration of either NTX or NMB precipitated
robust hyperalgesia in CFA-treated mice after
21 days at both the injured ipsilateral paw (P <
0.05) (Fig. 1F) and uninjured contralateral paw
(P < 0.05) (Fig. 1F), with no effect in sham-
injured mice (Fig. 1G). NTX also induced heat
hyperalgesia (P < 0.05) (Fig. 1H), as well as spon-
taneous pain in males (P < 0.05) (Fig. 11) and
females (fig. S3). Intrathecal NTX reinstated hy-
peralgesia in a model of postsurgical pain (P < 0.05)
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(Fig. 1J) (23), in several other models of inflam-
matory and neuropathic pain, and in multiple mouse
strains.

Whether signaling with MOR and heterotri-
meric GTP-binding protein (G protein) can be
maintained for sufficient duration to oppose chron-
ic pain is unknown. First, we found that disruption
of Goy, signaling with intrathecal injection of

pertussis toxin precipitated hyperalgesia in CFA-
21d mice but not sham-injured mice (P < 0.05)
(Fig. 1K). Second, we assessed guanosine-5"-O-
(3*S]thio)triphosphate ([*>S]GTP-y-S) binding
in fresh spinal cord slices (Fig. 1, L and M). In
control slices, the MOR-selective agonist [D-Ala?,
N-methyl-Phe®, Gly-ol’]-enkephalin (DAMGO)
elicited a stimulation of [*>S]JGTP-y-S binding with

REPORTS

a maximum physiological effect (E,,.x) and me-
dian effective concentration (ECsy) of 58.02 +
0.67% and 0.24 = 0.01 uM, respectively (Fig.
IM). E,,.x Was potentiated in CFA-21d slices not
only in the ipsilateral dorsal horns (79.85 + 7.35%,
P < 0.05 compared with sham-injured) (Fig. 1M)
but also in the contralateral dorsal horns (74.05 +
4.13%, P < 0.05 compared with sham-injured)
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Fig. 1. Injury-induced pain sensitization is tonically opposed by spinal
MOR—G-protein signaling. (A) Progression of mechanical hyperalgesia
after intraplantar CFA (5 pl) injection (n = 10). (B) Resolution of hyperalgesia
during and 14 days after infusion of NTX (10 mg/kg of body weight per day,
subcutaneously) in sham-injured and CFA-injected mice (n = 5 to 6). %P <
0.05 compared with CFA+saline, ®P < 0.05 compared with Sham+NTX. (C)
Time course of reinstatement of hyperalgesia after subcutaneous NTX (3 mg/kg)
in CFA-21d mice (n = 6 to 13). (D) Dose-response effects of NTX on hyperalgesia
(n = 6 per dose). MPE: maximal possible effect. (E and F) Effect on hyperalgesia
of (E) subcutaneous or (F) intrathecal NTX (3 mg/kg or 1 ug) or NMB (3 mg/kg or
0.3 ug) (n=5to 10). (G to J) Effect of intrathecal NTX (1 ug) on reinstatement of
(G) mechanical hyperalgesia in sham-injured and CFA-injected mice (1 =5 to 8),
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Ipsilateral Contralateral

(H) heat hyperalgesia (n = 5 to 10), (I) spontaneous pain (1 = 4 to 8), and (])
postoperative pain (n = 6 to 11). (K) Effect of intrathecal pertussis toxin (0.5 ug)
on hyperalgesia (n = 6). (L) Representative radiograms and (M) dose-response
effects of DAMGO-stimulated [>S]GTP-y-S binding in lumbar spinal cord; (inset)
binding Ennax (0 = 7 to 9). (N) Effect of DAMGO administered intrathecally on
hotplate latency (n = 8). (0) Effect of intrathecal CTOP (100 ng) on hyperalgesia
(n = 6 to 7). (P to R) Representative images and (S) dorsal horn laminar
quantification (I and Il and 11l to V) of light touch-evoked pERK after intrathecal
NTX (1 ug) (n =5 to 7). (T) Confocal image of pERK+ cells. (U to W) From boxed
region in (T): Co-localization of pERK with the biomarker NeuN. All scale bars,
200 um. %P < 0.05 for all panels. All data shown as means + SEM. See fig. S1
for full time-course data for (E) to (]) and (O).
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(fig. S4), with no change in the ECsq. Third, the
antinociceptive effects of intrathecal DAMGO were
potentiated in CFA-21d mice (P < 0.05) (Fig. IN),

Fig. 2. Pain reinstate-
ment requires potenti-
ated NMDAR activation
of calcium-sensitive
AC 1. (A) Time course of
glutamate-evoked (0.3 mM)
[Ca®*); in spinal cord slices
from sham-injured and
CFA-injected mice (n =4
to 7 mice) shown as the
ratio of change in fluores-
cence intensity at 340 nm
and 380 nm (AFz40/Fsg0).
Naive BL, baseline. (B) Ef-
fect of CTOP (1 wM), NTX
(10 uM), or NTX-+MK-801
(100 uM) on [Ga**];. Val-
ues are relative to predrug
control responses (7 =3 to
5 mice). (C) Representa-
tive fluorescence inten-
sity at 380 nm, image of
dorsal horn neurons from
a CFA-21d slice respond-
ing to glutamate before
(top) and after NTX (10 M)
(bottom) (yellow arrows).
Decrease in fluorescence
intensity corresponds to
increase in [Ca®*].. The
red traces illustrate the
rise in [Ca%*]; for the in-
dicated cell (red arrow).
(Insets) Areas in white
boxes. Scale bars: 0.02 for
AFIF (vertical) and 3 min
(horizontal), and 100 um
and 10 um (inset). Effect
of intrathecal MK-801
(1 ug) on NTX-precipitated
(1 ng (D) hyperalgesia
and (E) touch-evoked dor-
sal horn pERK expression
(n =5 to 10). (F) Spinal
cord cAMP levels after
intrathecal vehicle (n =
14 to 18), CTOP (100 ng;
n=26),or NTX (Lug; n =
6 to 10). (G) Effect of in-
trathecal MK-801 (1 ng)
on NTX-precipitated spinal
cAMP overshoot (n = 5).
(H to K) Effect of intra-
thecal NMDA (3 pmol; n =
5 to 7) or forskolin (1.5 pg;
n=6) on (H and J) sponta-
neous nocifensive behav-
iors and (I and K) spinal
cAMP levels. (L) Progres-
sion of mechanical hyper-
algesia and (M) effect of

which reflected increases in receptor number, re-
ceptor affinity, or descending modulatory circuits.
Fourth, intrathecal injection of Phe-Cys-Tyr-Trp-

Orn-Thr-Pen-Thr-NH, (CTOP), a MOR-selective

antagonist, reinstated hyperalgesia in CFA-21d mice
but not sham-injured mice (P < 0.05) (Fig. IM).
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1396

20 SEPTEMBER 2013 VOL 341

SCIENCE www.sciencemag.org



We next asked whether central sensitization
(increased responsiveness of CNS nociceptive neu-
rons to normal or subthreshold afferent input)
silently persists in the posthyperalgesia state un-
der the control of endogenous MOR inhibition.
Tested 21 days after CFA injection, an innocuous
light touching of the injured hindpaw did not in-
crease the dorsal horn expression of phosphorylated
extracellular signal-regulated kinase (pERK) (Fig.
I, Q and S). However, intrathecal NTX in-
creased touch-evoked pERK in lamina I and II

(P <0.05) (Fig. 1, R and S, and fig. S4) and III
to V (P < 0.05) (Fig. 1, R and S). NTX also
increased pERK at the contralateral dorsal horn
(opiates P < 0.05) (Fig. 1, S and T). Confocal
microscopy revealed that pERK was expressed
in neurons (Fig. 1, U to W, and fig. S5) but not
in microglia or astrocytes (fig. S5).

We next tested the hypothesis that N-methyl-
p-aspartate receptor (NMDAR)-Ca**-dependent
mechanisms of central sensitization (/, 24) con-
tinue to operate after the resolution of inflamma-

REPORTS

tory pain. Using live-cell Fura-2 ratiometric
analysis in adult spinal cord slices (25), we found
that glutamate-evoked intracellular calcium (Ca®")
in lamina II neurons was potentiated 3 days after
CFA injection and then resolved by day 21 (F3 ;7 =
15, P < 0.0001) (Fig. 2A). This potentiation
coincides with the temporal onset and resolution
of inflammatory hyperalgesia. Perfusion of either
CTOP or NTX increased the peak amplitude of
glutamate-evoked intracellular Ca*>" in CFA-21d
slices but not sham-injured slices [lamina II: < 0.05
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Fig. 4. Prolonged endogenous MOR signaling generates psychological
and physical dependence. (A) Behavioral signs of psychological withdrawal
(aversion associated with spontaneous pain) were reflected by place pref-
erence for intrathecal lidocaine upon naloxone administration. (Left) Intra-
group chamber analysis for intrathecal saline (5 ul) or lidocaine (0.04%) in
sham-injured and CFA-21d mice treated with intraperitoneal saline or nal-
oxone (3 mg/kg). (Right) Intergroup difference score analysis illustrating time
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spent in intrathecal lidocaine-paired chambers (n = 6 per group). (B and C)
Behavioral signs of physical withdrawal, recorded for 60 min after injection of
NTX (3 mgrkg), NMB (3 mg/kg), or vehicle (n = 6 to 7). (D) Progression of paw
edema and (E) effects of repeated subcutaneous vehicle or NTX (3 mg/kg) on
hyperalgesia over 105 days after CFA (n = 7 per group). (F) Effect of repeated
NTX (3 mg/kg) on the number of precipitated escape jumps over 77 days after
CFA (n = 8). *, %P < 0.05. All data shown as means + SEM.
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(Fig. 2, B and C, and fig. S6); lamina I: P <0.05 (fig.
S7)] or CFA-injured slices after 24 hours (fig.
S1C). The activity-dependent NMDAR blocker,
MK-801, prevented the NTX-mediated rise in intra-
cellular calcium concentration [Ca%]i (Fy16=4.6,
P <0.05) (Fig. 2C), hyperalgesia (F5 5, = 6.5, P <
0.005) (Fig. 2D) and dorsal horn pERK levels (P <
0.05) (Fig. 2E, ipsilateral and fig. S8, contralateral).

Opioids produce their acute actions in part
through inhibition of ACs, whereas chronic opi-
ate exposure produces a homeostatic up-regulation
of ACs (9, 14). In this opioid-dependent state,
receptor antagonists produce cellular withdrawal,
characterized by an adenosine 3',5"-cyclic mono-
phosphate (¢(AMP) overshoot response. To deter-
mine whether similar homeostatic mechanisms
operate in the setting of tonic opioid receptor
signaling after injury, we sampled intracellular
cAMP content from ex vivo lumbar spinal tissue.
Basal spinal cAMP levels were comparable in
sham-injured and CFA-21d mice, suggestive of a
return to baseline AC function (Fig. 2F and sup-
plementary text S2). In CFA-21d mice, however,
intrathecal CTOP or NTX increased cAMP lev-
els in CFA-21d mice (P < 0.05) (Fig. 2F), in-
dicative of AC superactivation. Because the
Ca**-stimulated isoforms of ACs are activated
by NMDARS (26), we hypothesized that NMDAR
signaling contributes to this ;AMP overshoot. In-
trathecal MK-801 abolished the NTX-precipitated
increases in cAMP (P < 0.05 compared with NTX
group) (Fig. 2G). Moreover, direct activation of
spinal NMDARSs and ACs by intrathecal NMDA
or forskolin, respectively, increased nocifensive
behaviors (P < 0.05) (Fig. 2, H and J) and spinal
cAMP levels (P < 0.05) (Fig. 2, I and K) in CFA-
21d mice as compared with sham-injured mice,
which suggests latent up-regulation, but not oc-
clusion, of NMDAR-AC pathways.

Adenylyl cyclase type 1 (AC1) in the brain is
intricately linked to morphine dependence (27, 28)
and chronic pain (29), whereas in the spinal cord, it
contributes to activity-dependent LTP (30).
Baseline mechanical thresholds were similar in
wild-type and AC1 knockout mice (AC1 ") (29)
(Fig. 2L). However, AC1 gene deletion reduced
inflammatory hyperalgesia (3 days later versus
baseline: P <0.05, ¢ test; Fy 1; =31.5, P<0.0005,
Genotype x Time) (Fig. 2L), without affecting
edema (fig. S9). At day 21 after CFA treatment,
NTX reinstatement was lost in AC1”~ mice (F17=
20.3, P <0.005) (Fig. 2M). Furthermore, intrathe-
cal NBO0O1, a selective AC1 inhibitor (30), pre-
vented NTX-based reinstatement of hyperalgesia
(F19=6.6, P<0.05) (Fig. 2N), as well as cAMP
overshoot and spontaneous pain (P < 0.05) (Fig. 2,
O and P). These data suggest that withdrawal from
tonic MOR signaling increases pronociceptive
neural excitability consequent to AC1 superacti-
vation (Fig. 2Q).

Tonic MOR signaling arises from either
continuous agonist stimulation or constitutive
(agonist-independent) activity (3/-34). MORca
develops with chronic morphine administration
and leads to physical and affective signs of opiate
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dependence and addiction (17, 19-22). To de-
termine the existence and physiologic significance
of MOR(4 in pathological pain processing, we
used the neutral antagonist 6B-naltrexol, a struc-
tural analog of NTX (35). Intrathecal 68-naltrexol
alone did not change Ca®" levels in sham-injured
or CFA-21d spinal slices (Fig. 3A) and failed to
precipitate a cAMP overshoot (Fig. 3B) or hy-
peralgesia (Fig. 3C). 6p-Naltrexol abolished
the ability of NTX to produce Ca®>" mobilization
(P<0.05) (Fig. 3A), cAMP overshoot (P < 0.05)
(Fig. 3B), and hyperalgesia in CFA-21d mice
(P <0.05) (Fig. 3C). 6B-Naltrexol also abolished
NTX-induced reinstatement of mechanical hy-
peralgesia in a postoperative pain model (23)
(Fig. 3D). These data suggest that NTX acts as
an inverse agonist to inactivate MORc, in mul-
tiple models of inflammatory pain (supplementary
text S3 and S4) (36, 37).

Intrathecal administration of an alternative
u-selective inverse agonist, B-funaltrexamine (3-FNA)
(38), reinstated hyperalgesia in CFA-21d, but not
sham-injured, mice (P < 0.05) (Fig. 3E). Because
MOR4 results in elevated basal G protein cycling
(19, 38), we determined whether B-FNA could
promote the MOR-inactive state and, thereby, de-
crease spontaneous basal GDP/GTP-y-S exchange.
B-FNA reduced basal [*>S]GTP-y-S binding in a
concentration-dependent manner in dorsal horn
sections from CFA-21d mice and, to a significant-
ly lesser degree, sham-injured mice, in both ipsi-
lateral and contralateral dorsal horns (Fig. 3, F and
G, and fig. S11).

Pain comprises sensory (hyperalgesia) and
affective (aversiveness) components; the latter can
be identified by changes in the rewarding property
of analgesics and associated motivational behav-
ior. In a conditioned place preference paradigm
(39-41), the negative reinforcing capacity of in-
trathecal lidocaine (motivation to seek pain relief)
demonstrates the presence of aversive pain 1 day
after CFA injection (40). This aversive component
was absent at 21 days (Fig. 4A, CFA-21d+saline
group). CFA-21d, but not sham-injured, mice re-
sponded to systemic naloxone by spending more
time in the chamber paired with intrathecal lido-
caine (538 + 39 s) than with intrathecal saline
(283 £ 28 s, P < 0.001) (Fig. 4A). Systemic
NTX, but not saline or NMB, precipitated numer-
ous escape and somato-motor behaviors analo-
gous to classical morphine withdrawal (42, 43)
in CFA-21d mice, with no effect in sham-injured
mice (Fig. 4, B and C).

To determine whether pain sensitization and
endogenous opioid physical dependence persist
beyond tissue healing, we gave periodic injec-
tions of NTX during and after the course of in-
flammatory edema, which subsided within 77 days
after CFA injection (Fig. 4D). NTX, but not sa-
line, reinstated hyperalgesia for at least 105 days
after CFA treatment (21 days: Fjgp = 8.5, P <
0.05; 49 days: F 7, =59, P < 0.0001; 77 days:
F1’72 = 76, P< 00001, 105 days: Fl,64 = 33, P<
0.0001) (Fig. 4E). This was true 200 days after
CFA injection (fig. S12 and supplementary text S5),

and after a single intrathecal injection 105 days
after CFA injection, without prior exposure of the
animal to the testing environment, of NTX or
CTOP (fig. S12). NTX-precipitated escape-jump
frequency increased with time after the injury
(F409 =14, P <0.0001) (Fig. 4F), which suggested
that intensifying opioidergic and compensatory
neuroadaptations create a physical and psy-
chological dependence that greatly outlasts acute
pain and tissue injury (supplementary text S6).

These data indicate that blockade of MORcp
unmasks a silent AC1 central sensitization pathway
that persists beyond the resolution of pain and
inflammation, reflective of hyperalgesic priming
(44). The presence of contralateral spinal MORc4
and neural sensitization illustrates the spread of this
pathology to areas of the CNS beyond those di-
rectly innervated by the injured tissue. Thus, MOR ¢
might tonically repress widespread hyperalgesia
(supplementary text S7). If true, then loss of MOR o
antinociception (e.g., during stress) could lead to
the emergence of rampant chronic pain (45, 46).

We have identified an injury-induced MORcA
that promotes both endogenous analgesia and de-
pendence. Our data suggest that long-term MOR 5
inhibition of AC1-mediated central sensitization
drives a counteradaptive, homeostatic increase in
pronociceptive AC1 signaling cascades (29, 47)
and thereby paradoxically promotes the mainte-
nance of latent central sensitization. Thus, injury
produces a long-lasting dependence on MORcp
that tonically prevents withdrawal hyperalgesia,
consistent with proposed mechanisms of depen-
dence to opiate drugs such as morphine (27, 48).
We contend that loss of MOR(,, and the ensuing
reinstatement of pain, reflects a process of spinal
cellular withdrawal (NMDA-mediated AC1 super-
activation) to enhance pronociceptive synaptic
strength (supplementary text S8) (49, 50), as ob-
served after NMDA-R—dependent spinal LTP at
C-fiber synapses during withdrawal from exoge-
nous opiates (/2). Indeed, stress (46) or injury (57)
escalates opposing inhibitory and excitatory in-
fluences on nociceptive processing, as a patholog-
ical consequence of increased endogenous opioid
tone. This raises the prospect that opposing ho-
meostatic interactions between MOR4 analgesia
and latent NMDA-R—ACT pain sensitization create
a lasting susceptibility to develop chronic pain.
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Human LilrB2 Is a B-Amyloid Receptor and
Its Murine Homolog PirB Regulates
Synaptic Plasticity in an Alzheimer's Model

Taeho Kim,** George S. Vidal,* Maja Djurisic,* Christopher M. William,? Michael E. Birnbaum,?
K. Christopher Garcia,® Bradley T. Hyman,? Carla ]. Shatz'*

Soluble B-amyloid (AB) oligomers impair synaptic plasticity and cause synaptic loss associated with
Alzheimer's disease (AD). We report that murine PirB (paired immunoglobulin-like receptor B) and its
human ortholog LilrB2 (leukocyte immunoglobulin-like receptor B2), present in human brain, are
receptors for AB oligomers, with nanomolar affinity. The first two extracellular immunoglobulin (Ig)
domains of PirB and LilrB2 mediate this interaction, leading to enhanced cofilin signaling, also seen in
human AD brains. In mice, the deleterious effect of AB oligomers on hippocampal long-term potentiation
required PirB, and in a transgenic model of AD, PirB not only contributed to memory deficits present in
adult mice, but also mediated loss of synaptic plasticity in juvenile visual cortex. These findings imply that
LilrB2 contributes to human AD neuropathology and suggest therapeutic uses of blocking LilrB2 function.

oluble oligomeric species of B-amyloid (AB)
are thought to be key mediators of cognitive
dysfunction in Alzheimer’s disease (AD)
(1, 2). Transgenic mice expressing elevated levels
of human AP experience memory loss and syn-
aptic regression (3—6). AP production is thought
to be activity-dependent (7, 8), and even in wild-
type mice, addition of soluble AP oligomers to
hippocampal slices or cultures induces loss of
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long-term potentiation (LTP), increases long-term
depression (LTD), and decreases dendritic spine
density (9-11). AP oligomers may exert some
of their adverse effects on synaptic plasticity
and memory by binding to receptors, thereby
perturbing or engaging downstream signaling.
At least two A receptors, cellular prion protein
(PrP%) and ephrin type B receptor 2 (EphB2),
have been identified, and downstream signaling
from both alters N-methyl-p-aspartate (NMDA)
receptor function in response to AR (6, 12, 13).
AP oligomers are also known to engage other
signaling pathways, including the actin-severing
protein cofilin and protein phosphatases PP2A
and PP2B/calcineurin, thereby mediating spine
loss and synaptic defects (9, /4); however, sig-
naling upstream of these pathways is not well
understood.

Recently, a very early loss of activity-dependent
plasticity was discovered in vivo in APP/PS1
transgenic mice, an AD model in which mutant
alleles of both amyloid precursor protein (APPswe)
and presenilin 1 (PSEN1AE9) are expressed (15, 16):
Ocular dominance plasticity (ODP) during the
critical period of development in visual cortex
[postnatal day 22 (P22) to P32] is defective (/7).
This observation directly contrasts with mice lack-
ing PirB (paired immunoglobulin-like receptor B),
in which ODP is enhanced during the critical pe-
riod and in adults (/8). PirB, a receptor originally
thought to function exclusively in the immune sys-
tem (/9), is now also known to be expressed by
neurons, present in neuronal growth cones, and
associated with synapses (18, 20). Thus, it is pos-
sible that AB acts through PirB to diminish ODP
in APP/PS1 mice.

To determine whether PirB can act as a re-
ceptor for soluble AP oligomers, we prepared bio-
tinylated synthetic human A4, (AB42) peptides
either without (mono-AB42) or with oligomeriza-
tion (oligo-AB42; consists primarily of high-n oligo-
mers) (Fig. 1, A and B, and fig. S1A) (12, 21, 22).
We then measured binding of AB42 peptides to
human embryonic kidney (HEK) 293 cells that
expressed mouse PirB (PirB-IRES-EGFP) or con-
trol vector (IRES-EGFP). Relative to monomeric
AB42, oligomerized AB42 peptides bound to PirB-
expressing cells about 6 times as much (Fig. 1, A
to D). Oligo-AB42 was consistently associated with
PirB protein, as seen both by coimmunostaining
(Fig. 1E, arrowheads) and by coimmunoprecipita-
tion (fig. S1, B and C), indicating a direct interac-
tion with PirB. This assay also confirms previously
reported Nogo-66 binding to PirB (fig. S2) (20).
In contrast, binding of AB42 oligomers was not
evident in heterologous cells expressing mouse
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