Constitutive mu-Opioid Receptor Activity Leads to Long-Term Endogenous Analgesia and Dependence

Renee R. Donahue, University of Kentucky
Gregory Corder, University of Kentucky
Suzanne Doolen, University of Kentucky
Michele K Winter, University of Kansas Medical Center
Brandon L Jutras, University of Kentucky, et al.
Constitutive μ-Opioid Receptor Activity Leads to Long-Term Endogenous Analgesia and Dependence
G. Corder et al.
Science 341, 1394 (2013);
DOI: 10.1126/science.1239403

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of September 22, 2013):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/341/6152/1394.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2013/09/18/341.6152.1394.DC1.html

This article cites 80 articles, 29 of which can be accessed free:
http://www.sciencemag.org/content/341/6152/1394.full.html#ref-list-1
of cGas−/− mice are strikingly similar to those of Sting−/− mice [this study and (19)]. These results, together with our biochemical data showing that cGAS is a cytosolic enzyme activated by its binding to generic DNA (2, 3), formally demonstrate that cGAS is a nonredundant and general cytosolic DNA sensor that activates STING.

We present evidence that 2′,3′cGAMP is an effective adjuvant that boosts the production of antigen-specific antibodies and T cell responses in mice. Although the bacterial second messengers cyclic di-GMP and cyclic di-AMP are being developed as potential vaccine adjuvants (22), 2′,3′cGAMP is a much more potent ligand of STING than any of the bacterial cyclic dinucleotides (7). Thus, 2′,3′cGAMP may be developed as an adjuvant for next-generation vaccines to prevent or treat human diseases, including infectious diseases and cancer.

References and Notes
9. 2′,3′cGAMP was generated by in vitro fertilization using sperm harboring a targeted insertion at the cGas/Mtb21d locus. For details, see materials and methods in the supplementary materials.

Constitutive μ-Opioid Receptor Activity Leads to Long-Term Endogenous Analgesia and Dependence

Opioid receptor antagonists increase hyperalgesia in humans and animals, which indicates that endogenous activation of opioid receptors is involved in the development of pain. Therefore, the mechanisms that underlie the development of pain are critical for understanding the role of opioid receptors in pain modulation. Here, we show that systemic naltrexone (NTX) administration to mice has been used as an effective analgesic agent in pain research. We found that systemic administration of NTX, a competitive antagonist of μ-opioid receptor (MOR) and δ-opioid receptor (DOR), produces analgesic effects by inhibiting spinal nociceptive signaling in mice. These results suggest that systemic administration of NTX may be used as an effective analgesic agent in pain research.

C hronic pain is defined by a combination of mechanisms such as long-term potentiation (LTP) of synaptic strength in dorsal horn neurons (1–3). Whereas exogenously applied opiates produce acute pain relief, repeated administration leads to the development of opioid tolerance (4), resulting in a lack of pain relief. Spinal enkephalin release exerts inhibitory control of acute pain intensity soon after tissue injury (7, 8). It remains unclear how the endogenous opioid system might persistently repress pathological pain. Opiates provide effective pain relief, but repeated administration leads to the development of compensatory neuroadaptations underlying opioid tolerance and dependence (9), including the selective up-regulation of calcium-sensitive adenylyl cyclase (AC) isoforms (10, 11). Cessation of opiates leads to cellular and behavioral signs of withdrawal (12–16). An intriguing hypothesis of drug addiction suggests that chronic opiates increase μ-opioid receptor (MOR) constitutive activity (MORCA) to preserve physical and psychological dependence (17–21), which is enhanced by enkephalins (22). Whether MORs adopt constitutive signaling states in other disease syndromes, such as chronic pain, is unknown. We tested the hypothesis that tissue injury increases MORCA in the spinal cord. With sufficient time after injury, enhanced basal MOR signaling should produce endogenous cellular and physical dependence in the CNS.

We first discovered that spinal opioid signaling promotes the intrinsic recovery of acute inflammatory pain and orchestrates long-lasting antinociception. In mice, unilateral intraplantar injection of complete Freund’s adjuvant (CFA) produced mechanical hyperalgesia that resolved within 10 days (Fig. 1A). Subcutaneous chronic minipump infusion of naltrexone hydrochloride (NTX), a nonselective opioid receptor antagonist, prolonged hyperalgesia throughout the 14-day infusion period in CFA-injured mice (Fig. 3A, P < 0.0001) (Fig. 1B), although it had no effect in sham-injured mice. When the NTX pump was removed, hyperalgesia rapidly declined. NTX did not alter the induction phase of CFA-induced hyperalgesia (Fig. 2A, and A and B, and supplementary text S1); however, when delivered 21 days after CFA injection (CFA-21d mice) in the complete absence of pain, systemic NTX reinstated hyperalgesia (Fig. 4A, P < 0.0001) (Fig. 1C) in a dose-dependent manner with no effect in sham-injured mice (Fig. 1D). By contrast, systemic injection of naltrexone methobromide (NMB), an opioid receptor antagonist that does not cross the blood-brain barrier, failed to alter mechanical thresholds at either the ipsilateral or contralateral paws (both P > 0.05) (Fig. 1E). Intrathecal administration of either NTX or NMB precipitated robust hyperalgesia in CFA-treated mice after 21 days at both the injured ipsilateral paw (P < 0.05) (Fig. 1F) and uninjured contralateral paw (P < 0.05) (Fig. 1G), with no effect in sham-injured mice (Fig. 1H). NTX also induced heat hyperalgesia (P < 0.05) (Fig. 1H), as well as spontaneous pain in males (P < 0.05) (Fig. 1I) and females (Fig. S3). Intrathecal NTX reinstated hyperalgesia in a model of postsurgical pain (P < 0.05)
Whether signaling with MOR and heterotrimeric GTP-binding protein (G protein) can be maintained for sufficient duration to oppose chronic pain is unknown. First, we found that disruption of \(G_{\alpha i/o} \) signaling with intrathecal injection of pertussis toxin precipitated hyperalgesia in CFA-21d mice but not sham-injured mice \((P < 0.05)\) (Fig. 1K). Second, we assessed guanosine-5'-O-(3-[\(^{35} \)S]thio)triphosphate \(([^{35}S]GTP-\gamma-S) \) binding in fresh spinal cord slices (Fig. 1, L and M). In control slices, the MOR-selective agonist \([\text{D-Ala}^2, \text{N-methyl-Phe}^4, \text{Gly-ol}^5]\)-enkephalin (DAMGO) elicited a stimulation of \([^{35}S]GTP-\gamma-S \) binding with a maximum physiological effect \((E_{\text{max}})\) and median effective concentration \((EC_{50})\) of 58.02 ± 0.67\% and 0.24 ± 0.01 \(\mu \)M, respectively (Fig. 1M). \(E_{\text{max}} \) was potentiated in CFA-21d slices not only in the ipsilateral dorsal horns \((79.85 ± 7.35\%, P < 0.05 \) compared with sham-injured) (Fig. 1M) but also in the contralateral dorsal horns \((74.05 ± 4.13\%, P < 0.05 \) compared with sham-injured).

Fig. 1. Injury-induced pain sensitization is tonically opposed by spinal MOR–G-protein signaling. (A) Progression of mechanical hyperalgesia after intraplantar CFA (5 \(\mu \)l) injection \((n = 10)\). (B) Resolution of hyperalgesia during and 14 days after infusion of NTX (10 \(\text{mg/kg} \) of body weight per day, subcutaneously) in sham-injured and CFA-injected mice \((n = 5 \text{ to } 6)\). \(\star P < 0.05 \) compared with CFA+saline. \(\star \star P < 0.05 \) compared with Sham+NTX. (C) Time course of reinstatement of hyperalgesia after subcutaneous NTX (3 \(\text{mg/kg} \) in CFA-21d mice \((n = 6 \text{ to } 13)\). (D) Dose-response effects of NTX on hyperalgesia \((n = 6 \text{ per dose})\). MPE: maximal possible effect. (E) and (F) Effect on hyperalgesia of (E) subcutaneous or (F) intraplantar NTX (3 \(\text{mg/kg} \) or 1 \(\mu \)g) or NMB (3 \(\text{mg/kg} \) or 0.3 \(\mu \)g) \((n = 5 \text{ to } 10)\). (G) to (J) Effect of intrathecal NTX (1 \(\mu \)g) on reinstatement of (G) mechanical hyperalgesia in sham-injured and CFA-injected mice \((n = 5 \text{ to } 8)\), (H) heat hyperalgesia \((n = 5 \text{ to } 10)\), (I) spontaneous pain \((n = 4 \text{ to } 8)\), and (J) postoperative pain \((n = 6 \text{ to } 11)\). (K) Effect of intrathecal pertussis toxin (0.5 \(\mu \)g) on hyperalgesia \((n = 6)\). (L) Representative radiograms and (M) dose-response effects of DAMGO-stimulated \([^{35}S]GTP-\gamma-S \) binding in lumbar spinal cord; (inset) binding \(E_{\text{max}} \) \((n = 7 \text{ to } 9)\). (N) Effect of DAMGO administered intrathecally on hotplate latency \((n = 8)\). (O) Effect of intrathecal CTOP (100 ng) on hyperalgesia \((n = 6 \text{ to } 7)\). (P) to (R) Representative images and (S) dorsal horn laminar quantification \((I \text{ and II and III to V})\) of light touch-evoked pERK after intrathecal NTX (1 \(\mu \)g) \((n = 5 \text{ to } 7)\). (T) Confocal image of pERK+ cells. (U to W) From boxed region in (T): Co-localization of pERK with the biomarker NeuN. All scale bars, 200 \(\mu \)m. \(\star \star \) P < 0.05 for all panels. All data shown as means ± SEM. See fig. S1 for full time-course data for (E) to (J) and (O).
which reflected increases in receptor number, receptor affinity, or descending modulatory circuits. Fourth, intrathecal injection of Phe-Cys-Tyr-Trp-Orn-Thr-Pen-Thr-NH₂ (CTOP), a MOR-selective antagonist, reinstated hyperalgesia in CFA-21d mice but not sham-injured mice ($P < 0.05$) (Fig. 1M).
We next asked whether central sensitization (increased responsiveness of CNS nociceptive neurons to normal or subthreshold afferent input) silently persists in the posthyperalgesia state under the control of endogenous MOR inhibition. Tested 21 days after CFA injection, an innocuous light touching of the injured hindpaw did not increase the dorsal horn expression of phosphorylated extracellular signal–regulated kinase (pERK) (Fig. 1, Q and S). However, intrathecal NTX increased touch-evoked pERK in lamina I and II ($P < 0.05$) (Fig. 1, R and S) and III to V ($P < 0.05$) (Fig. 1, R and S). NTX also increased pERK at the contralateral dorsal horn (opiates $P < 0.05$) (Fig. 1, S and T). Confocal microscopy revealed that pERK was expressed in neurons (Fig. 1, U to W, and fig. S5) but not in microglia or astrocytes (fig. S5).

We next tested the hypothesis that N-methyl-D-aspartate receptor (NMDAR)–Ca2+-dependent mechanisms of central sensitization (1, 24) continue to operate after the resolution of inflammatory pain. Using live-cell Fura-2 ratiometric analysis in adult spinal cord slices (25), we found that glutamate-evoked intracellular calcium (Ca2+) in lamina II neurons was potentiated 3 days after CFA injection and then resolved by day 21 ($F_{1,17} = 15$, $P < 0.0001$) (Fig. 2A). This potentiation coincides with the temporal onset and resolution of inflammatory hyperalgesia. Perfusion of either CTOP or NTX increased the peak amplitude of glutamate-evoked intracellular Ca2+ in CFA-21d slices but not sham-injured slices [lamina II: $P < 0.05$].

Fig. 3. Spinal MORs acquire constitutive activity after injury. (A to C) Effects of NTX (1 μM or 1 μg), 6β-naltrexol (1 μM or 10 μg), or coadministration of 6β-naltrexol+NTX in sham-injured and CFA-21d mice on (A) [Ca2+]i, (B) spinal cAMP levels, and (C) hyperalgesia. (D) Effect of intrathecal 6β-naltrexol and/or NTX on hyperalgesia in mice 21 days after a paw incision ($n = 6$ to 7). (E) Effect of intrathecal β-funaltrexamine (β-FNA, 2.5 μg) on hyperalgesia ($n = 6$ to 7). (F) Representative radiograms and (G) dose-response effects of β-FNA on basal [35S]GTP-γ-S binding in lumbar ipsilateral dorsal horn; (inset) binding E_{max} ($n = 7$ to 9). *$P < 0.05$. All data are shown as means ± SEM. See fig. S9 for full time-course data of (C) to (E).

Fig. 4. Prolonged endogenous MOR signaling generates psychological and physical dependence. (A) Behavioral signs of psychological withdrawal (aversions associated with spontaneous pain) were reflected by place preference for intrathecal lidocaine upon naloxone administration. (Left) Intragroup chamber analysis for intrathecal saline (5 μl) or lidocaine (0.04%) in sham-injured and CFA-21d mice treated with intraperitoneal saline or naloxone (3 mg/kg). (Right) Intergroup difference score analysis illustrating time spent in intrathecal lidocaine-paired chambers ($n = 6$ per group). (B and C) Behavioral signs of physical withdrawal, recorded for 60 min after injection of NTX (3 mg/kg), NMB (3 mg/kg), or vehicle ($n = 6$ to 7). (D) Progression of paw edema and (E) effects of repeated subcutaneous vehicle or NTX (3 mg/kg) on hyperalgesia over 105 days after CFA ($n = 7$ per group). (F) Effect of repeated NTX (3 mg/kg) on the number of precipitated escape jumps over 77 days after CFA ($n = 8$). *, **$P < 0.05$. All data shown as means ± SEM.
Intrathecal CTOP or NTX increased cAMP levels in sham-injured or CFA-21d spinal slices (Fig. 3A) and failed to precipitate a cAMP overshoot (Fig. 3B) or hyperalgesia (Fig. 3C). β-Naltrexol abolished the ability of NTX to produce Ca²⁺ mobilization (P < 0.05) (Fig. 3A), cAMP overshoot (P < 0.05) (Fig. 3B), and hyperalgesia in CFA-21d mice (P < 0.05) (Fig. 3C). β-Naltrexol also abolished NTX-induced reinstatement of mechanical hyperalgesia in a postoperative pain model (23) (Fig. 3D). These data suggest that NTX acts as an inverse agonist to inactivate MORCA in multiple models of inflammatory pain (supplementary text S3 and S4) (36, 37).

Intrathecal administration of an alternative μ-selective inverse agonist, β-fairulactamine (β-FNA) (38), reinstated hyperalgesia in CFA-21d, but not sham-injured, mice (P < 0.05) (Fig. 3E). Because MORCA results in elevated basal G protein cycling (19, 38), we determined whether β-FNA could promote the MOR-inactive state and, thereby, decrease spontaneous basal GDP/GTP-γ-S exchange. β-FNA reduced basal [³²⁺]GTP-γ-S binding in a concentration-dependent manner in dorsal horn sections from CFA-21d mice and, to a significantly lesser degree, sham-injured mice, in both ipsilateral and contralateral dorsal horns (Fig. 3, F and G, and fig. S11).

Pain comprises sensory (hyperalgesia) and affective (aversiveness) components; the latter can be identified by changes in the rewarding property of analgesics and associated motivational behaviors. In a conditioned place preference paradigm (39–41), the negative reinforcing capacity of intrathecal lidocaine (motivation to seek pain relief) demonstrates the presence of aversive pain 1 day after CFA injection (40). This aversive component was absent at 21 days (Fig. 4A, CFA-21d+saline group). CFA-21d, but not sham-injured, mice responded to systemic naloxone by spending more time in the chamber paired with intrathecal lidocaine (538 ± 39 s) than with intrathecal saline (283 ± 28 s, P < 0.001) (Fig. 4A). Systemic NTX, but not saline or NMB, precipitated numerous escape and somato-motor behaviors analogous to classical morphine withdrawal (42, 43) in CFA-21d mice, with no effect in sham-injured mice (Fig. 4, B and C).

To determine whether pain sensitization and endogenous opioid physical dependence persist beyond tissue healing, we gave periodic injections of NTX during and after the course of inflammatory edema, which subsided within 77 days after CFA injection (Fig. 4D). NTX, but not saline, reinstated hyperalgesia for at least 105 days after CFA treatment (21 days: F₁,₈₀ = 8.5, P < 0.05; 49 days: F₁,₈₀ = 59, P < 0.0001; 105 days: F₁,₆₄ = 33, P < 0.0001) (Fig. 4E). This was true 200 days after CFA injection (fig. S12 and supplementary text S5), and after a single intrathecal injection 105 days after CFA injection, without prior exposure of the animal to the testing environment, of NTX or CTOP (fig. S12). NTX-precipitated escape-jump frequency increased with time after the injury (F₄,₂₉ = 14, P < 0.0001) (Fig. 4F), which suggested that intensifying opioidergic and compensatory neuroadaptations create a physical and psychological dependence that greatly outlasts acute pain and tissue injury (supplementary text S6).

These data indicate that blockade of MORCA unmasks a silent AC1 central sensitization pathway that persists beyond the resolution of pain and inflammation, reflective of hyperalgesic priming (44). The presence of contralateral spinal MORCA and neural sensitization illustrates the spread of this pathology to areas of the CNS beyond those directly innervated by the injured tissue. Thus, MORCA might tonically repress widespread hyperalgesia (supplementary text S7). If true, then loss of MORCA antinociception (e.g., during stress) could lead to the emergence of rampant chronic pain (45, 46).

We have identified an injury-induced MORCA that promotes both endogenous analgesia and dependence. Our data suggest that long-term MORCA inhibition of AC1-mediated central sensitization drives a counteradaptive, homeostatic increase in pronociceptive AC1 signaling cascades (29, 47) and thereby paradoxically promotes the maintenance of latent central sensitization. Thus, injury produces a long-lasting dependence on MORCA that tonically prevents withdrawal hyperalgesia, consistent with proposed mechanisms of dependence to opiate drugs such as morphine (27, 48). We contend that loss of MORCA, and the ensuing reinstatement of pain, reflects a process of spinal cellular withdrawal (NMDA-mediated AC1 superactivation) to enhance pronociceptive synaptic strength (supplementary text S8) (49, 50), as observed after NMDA-R–dependent spinal LTP at C-fiber synapses during withdrawal from exogenous opiates (12). Indeed, stress (46) or injury (51) escalates opposing inhibitory and excitatory influences on nociceptive processing, as a pathological consequence of increased endogenous opioid tone. This raises the prospect that opposing homeostatic interactions between MORCA analgesia and latent NMDA-R–AC1 pain sensitization create a lasting susceptibility to develop chronic pain.

References and Notes
Soluble oligomeric species of β-amyloid (Aβ) are thought to be key mediators of cognitive dysfunction in Alzheimer’s disease (AD) (1, 2). Transgenic mice expressing elevated levels of human Aβ experience memory loss and synaptic regression (3–6). Aβ production is thought to be activity-dependent (7, 8), and even in wild-type mice, addition of soluble Aβ oligomers to hippocampal slices or cultures induces loss of long-term potentiation (LTP), increases long-term depression (LTD), and decreases dendritic spine density (9–11). Aβ oligomers may exert some of their adverse effects on synaptic plasticity and memory by binding to receptors, thereby perturbing or engaging downstream signaling. At least two Aβ receptors, cellular prion protein (PrPc) and ephrin type B receptor 2 (EphB2), have been identified, and downstream signaling from both alters N-methyl-D-aspartate (NMDA) receptor function in response to Aβ (6, 12, 13). Aβ oligomers are also known to engage other signaling pathways, including the actin-severing protein cofilin and protein phosphatases PP2A and PP2B/calcinium, thereby mediating spine loss and synaptic defects (9, 14); however, signaling upstream of these pathways is not well understood.

Recently, a very early loss of activity-dependent plasticity was discovered in vivo in APP:PS1 transgenic mice, an AD model in which mutant alleles of both amyloid precursor protein (APPsw) and presenilin 1 (PSEN1ΔE9) are expressed (15, 16). Ocular dominance plasticity (ODP) during the critical period of development in visual cortex [postnatal day 22 (P22) to P32] is defective (17). This observation directly contrasts with mice lacking PrkB (paired immunoglobulin-like receptor B), in which ODP is enhanced during the critical period and in adults (18). PrkB, a receptor originally thought to function exclusively in the immune system (19), is now also known to be expressed by neurons, present in neuronal growth cones, and associated with synapses (18, 20). Thus, it is possible that Aβ acts through PrkB to diminish ODP in APP:PS1 mice. To determine whether PrkB can act as a receptor for soluble Aβ oligomers, we prepared bio-tylated synthetic human Aβ1–42 (Aβ42) peptides either without (mono-Aβ42) or with oligomerization (oligo-Aβ42; consists primarily of high-α oligomers) (Fig. 1, A and B, and fig. S1A) (12, 21, 22). We then measured binding of Aβ42 peptides to human embryonic kidney (HEK) 293 cells that expressed mouse PrkB (PrkB-IRE5-EFGP) or control vector (IRE5-EFGFP). Relative to monomeric Aβ42, oligomerized Aβ42 peptides bound to PrkB-expressing cells about 6 times as much (Fig. 1, A to D). Oligo-Aβ42 was consistently associated with PrkB protein, as seen by both communostaining (Fig. 1E, arrowheads) and by coimmunoprecipitation (fig. S1, B and C), indicating a direct interaction between PrkB and Aβ. This assay also confirms previously reported Nogo-66 binding to PrkB (fig. S2) (20). In contrast, binding of Aβ42 oligomers was not evident in heterologous cells expressing mouse