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Using Fourier transform and convolution techniques, it is illustrated how all aspects of 
Fraunhofer diffraction of virtually any aperture real or complex can be calculated and displayed 
in two- and three-space using an IBM-compatible PC. Details of program commands using 
software MATLABTM are illustrated as well as results of plotting software, SURFER ™ . Fresnel 
diffraction is illustrated using Fourier transformation. 

I. INTRODUCTION 

It is now possible to explore the Fourier transform rela
tionships that result from the scalar theory of diffraction, in 
three-space, by personal computer. All aspects of Fraun
hofer diffraction of essentially any two-dimensional aper
ture can be obtained rather simply: amplitude, irradiance 
(point spread function), modulation and phase transfer 
functions; real or complex. Additionally, some aspects of 
Fresnel diffraction may also be portrayed. 

The above statement is intended to show contrast with 
past articles of this journal I in which, theoretically or ex
perimentally, diffraction is often treat�d as one dimension
al; or if two dimensional, we are presented with only irra
diance pictures. We can now have it all. Optics journals 
have recently used some three-space computer graphics, 
but how they did it is only briefly described, if at all. We 
hope to remedy that here. Admittedly, one may need inge
nuity creating the aperture matrix. 

We have been using 286 and 386 computers and two 
IBM-compatible software packages, SURFERTM 2 and 
MATLABTM . J If one can solve by hand for the Fraunhofer 
diffraction amplitude, e.g., the z(x,y) = Cab sinc( 1Tax) 
X sinc ( 1Tby) for the a X b rectangular aperture, then SURF
ER can plot this z(x,y) very easily at any orientation and 
with great resolution of detail. All of our plots were drawn 
by a Hewlett-Packard 9872B (II" X 17" paper size) pen 
plotter. SURFER, in its Grid program, allows one to square 
the amplitude function and plot the irradiance or point 
spread function. If the Fraunhofer amplitude is mathemat
ically complex, e.g., phase shifted, one can also have SURF
ER plot phase in the amplitude pattern, 0(x,y) = arctan 
(1m z/ Re z). SURFER also allows one to do element-by
element operations between two grids of z(x,y) data and 
hence create a third output grid of z(x,y) data for plotting 
or for further manipulation and simulation. 
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But SURFER cannot do all of the mathematical opera
tions required in the Fourier approach to diffraction. The 
convolution theorem as mapped out in Fig. I is a very con
venient way to remember the Fourier approach. Examina
tion of it will show it to be a complete description of Fraun
hofer diffraction, and more. It is the MA TLAB software, and 
other such utilities, which allow one to do: two-dimension
al fast Fourier transformations,4 inverse transformations, 
convolutions, correlations, etc., on data in matrix form. 
Many modern optics textboqks introduce - Fourier tech
niques and it is possible that such an approach might be 
better in first year calculus-based General Physics rather 
than the limited, perhaps obscure, phasor treatment of dif
fraction. 

II. THE SQUARE APERTURE 

As an example of the ease of use we will first demonstrate 
diffraction by a single square aperture. PC-MATLAB allows 

f(x,y) 
Aperture (or Pupil Function) 

(Real or Complex) 

� 8 
f*(x,y) 

Complex Conjugate 
of f(x,y) 

II 
OTF(u,v) 

Optical Transfer 
Function 

(Real or Complex) 

H14 
4ifft2 

!tl4 
4ifft2 

fll4 
4ifft2 

F(u,v) 
Fraunhofer Amplitude 

(Real or Complex) 

X � 
F*(u,v) . 

Complex Conjugate � 
of F(u,v) � 

II 
PSF(u,v) 

Fraunhofer Irradiance 
or Point Spread 
Function (Real) 

Fig. I. A Fourier description of Fraunhofer diffraction. The OTF requires 
normalization for expression in (u,v) coordinates. 
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Fig. 2. The square aperture. 

a 64 X64 matrix working space; AT-MATLAB, which we 
have used here, allows a 90x90 matrix. Apparently, 386-
MATLAB has no limit, but all have specific hardware re
quirements. Because of the reciprocal relationship between 
aperture size and spread of the Fourier transform, we find 
that a square of size 7 X 7 within the 90 X 90 matrix is a nice 
size for diffraction portrayal. We shall describe here each 
step for this square aperture but relegate subsequent details 
to an Appendix: 

sq = zeros(90); 

sq(43:49,43:49) = ones(7) ; 

mesh(sq) 
sqft = fft2(sq) ; 

mesh(sqft) 

creates a 90 X 90 
array of zeros. We 
chose the name sq. 
creates the centered 
7 X 7 square aper
ture; i.e., sq (xstart 
xend,ystart:yend) . 
yields Fig. 2 
creates the fast 
Fourier transform. 
will display it. 

It is sometimes referred to as the Amplitude Point 
Spread Function (ASF).5 It will have an appearance 
somewhat like Fig. 3, "like" because they may also be a 
spiky nature from MATLAB'S calculations. The fft2 algo
rithm places the zero order at one corner of the matrix. 
Figure 3 is actually the real part of the transform, and each 
quadrant requires a 180-deg rotation. 

To eliminate the spiky nature it seems best to first shift 
the square to the corners of the matrix, then do tft2. The 
command fftshift(sq); does that, Fig. 4. Figure 3 was 
mesh (fft2 (fftshift (sq) ». Much of this can be combined 

Fig. 3. The square aperture Fourier transform (modulus), zero order in 
the matrix corner. 
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Fig. 4. The FFT shifted square. 

into a single line, such as, 
sqreft = real( fftshift (fft2 (fftshift (sq) ) ) ) ;  

mesh (sqreft) yields Fig. 5, 
the real part of the Fourier transform of the square aper
ture. Because some transformations are complex one might 
also wish to create the modulus 

sqmdft = abs (ffshift(fft2 (fftshift(sq) »); 

mesh (sqmdft) yields the modulus diagram. 

Often one runs out of useable computer memory. With 
MATLAB the command, whos, will show what occupies 
memory. The command, pack, will rearr�nge it. Some few 
lOOK bytes are used in each of the calcuhitions just per
formed. The command, clear filename, followed by pack 
and whos will erase the named file, create more useable 
memory and show memory available. The command, save 
filename, will save the data to hard disk with the extension 
.mat, for reloading when needed again. 

There was a print error in early versions of MA TLAB pre
venting printout of 90 X 90 graphics. It has been corrected 
in later versions. 

Our focus in this paper is on the optical functions, not on 
axis scalin��ing. This can be done, as one chooses, in 
MA TLAB-and SURFER. 

The Fraunhofer irradiance, also called the point spread 
function (PSF), can be displayed, 

sqft = fftshift ( fft2 ( fftshift ( sq) ) ) ;  
creating the amplitude function. It  may be complex, and 
will be, if the aperture, sq, is not centered in the matrix. 

Fig. 5. The square aperture Fourier transform (real part), zero-order 
centered. 
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Fig. 6. The square aperture point spread function. 

Recall that a Fraunhofer diffraction pattern is phase shift
ed if the symmetric aperture is not centered on the optical 
axis. The command mesh(sqft) will display only the real 
part. The irradiance then, 

psf = sqft.*conj (sqft) ; .*is element-by-element 
multiplication. 

mesh(psf) 
will calculate and display the point spread function, Fig. 6. 

We know that the adjacent regions of light along the axes 
in the diffraction pattern of a square are phase shifted by pi 
radians. Kaiser and Russel6 suggest a nice way to demon
strate this. But diagonally in the pattern there are no phase 
shifts whatsoever. 

sqftph = angle(sqft) ; 
creates the phase matrix of the aperture Fourier transform, 
i.e., arctan (Imaginary part of ftiReal part of ft) . The algo
rithm, angle usually does not do a splendid job of keeping 
track of 2rr phase changes. The command unwrap attempts 
to smooth out such phase plots by removing branch cuts in 
the arctan function. Several unwraps may bring continued 
improvement. We created a MATLAB function called unw
rap2 which executes the command unwrap(unwrap(angle
(filename) ) ') ' to speed up the operation, apostrophes 
yielding transposed matrices. Figure 7 shows phase in the 
Fourier transform unwrapped a few times. The central 
maximum has zero phase, all steps are rr, and note the 2rror 
absence of phase change diagonally. 

Completion of the operations in Fig. 1, bringing this ap
plication of the convolution theorem full circle, requires 
the calculation of the optical transfer function (OTF). The 
OTF is very useful when the aperture function is used for 

Fig. 7. The square aperture, phase in the Fourier transform. 

51 Am. J. Phys., Vol. 60, No. 1, January 1992 

imaging with incoherent light. The OTF is made up of a 
modulation transfer function (MTF) and a phase transfer 
function (PTF) ; OTF = (MTF)ei(PTF), where 
MTF = IOTF I or modulus of the OTF. The MTF de
scribes the contrast allowed each spatial frequency in an 
image plane, while the PTF describes phase shifts for each 
spatial frequency in an image. But a description of comput
er simulation of imaging in three-space using Fourier 
methods would be the subject of another paper for this 
journal. 

The optical transfer function (OTF) can be calculated 
by two different paths according to Fig. 1: (1) By inverse 
Fourier transformation of PSF, (2) By discrete convolu
tion of the aperture function, slower but more accurate. If 
we do this with the PSF from the 7 X 7 aperture we will get 
a rather small OTF surrounded by a mostly flat surface of 
zeros. A 20 X 20 square can be created for Method 1: 

sq = zeros (90) ; 
sq(37:56,37:56) = ones (20); 
sqft = fftshift (fft2 (fftshift (sq) ) ) ;  
psf= sqft.*conj (sqft) ; 
otf = ifft2 ( psf) ; 
mesh (otf) and we see it in the corners, 

quite spiky. 
otf = fftshift ( otf) ; 
mesh (otf) 

otf = abs (otf) ; 

and small values of imaginary 
parts may have created phase 
noise. We know this OTF is 
real. 

mesh (otf) would be a good portrayal, 
though still surrounded by a 
flat surface of zeros. 

Having created the centered PSF as above, the OTF calcu
lation can be condensed to a single line: 

otf = fftshift (ifft2 (fftshift (psf) ) ) ;  

creates OTF without phase noise. Method 1 is limited to 
45 X 45 squares in the 90 X 90 array of AT -MA TLAB. 

Method 2: 

otf = conv2 (ones( 20) ,ones (20) ) ;  

mesh (otf) . will portray a 39 X 39 gridded OTF. 

The maximum size: otf = conv2 ( ones( 45),ones( 45»; 

mesh ( otf) yields an 89 X 89 gridded OTF, Fig. 
8. It takes minutes. 

Fig. 8. A portrait of the square's OTF. 
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Fig. 9. Square aperture, one half with only one half amplitude transmit
tance. 

MATLAB can output to a printer and figure tilt and rotation 
can be changed within MA TLAB. We translated all MA TLAB 

data files to SURFER binary Grid files and pen-plotted out 
of SURFER. SURFER as well as MA TLAB can do topographic 
plots and SURFER can also stack a contour plot over the 
three-space surface plot. Topographic plots have not been 
included here for they will not nicely withstand size reduc
tion for this Journal. They are available from author RGW. 

III. OTHER REAL APERTURES 

We are struck by the simplicity now available for three
space calculation and display to simulate Fourier diffrac
tion techniques. We will now demonstrate a few more. 

A. Half square, half transmitting 

An interesting variation on the square aperture is the 
square aperture with half of it only partially transmitting. 
Using the same 7 X 7 square and reducing amplitude trans
mission by 1/2 in one-half the aperture we get Fig. 9, which 
is a good size for Fourier transforming_ The modulus of the 
Fourier transform, Fig. 10, looks distinctly different. Phase 
changes are shown in Fig. 11 and topography of the modu
lus can also be shown. Comparison with the fully transmit
ting square is worthwhile, and further transmission reduc
tion of half of the aperture, say to 1/4, leads one to what 
would be expected, thinking of reduction all the way to 
zero. In this case, zero, the aperture would no longer be 
symmetric and a linear phase shift will appear in one direc
tion. The formulas can be calculated by hand, and SURFER 
used to get higher resolution than these 90 X 90 plots; 
126 X 126 gives nice detail. 

Fig. 10. Modulus of the Fourier transform of Fig. 9. 
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Fig. II. Phase in the Fourier transform of Fig. 9. 

B. Circular 

Diffraction by a circular aperture can be demonstrated 
by the same procedures. It is impossible to get a perfectly 
round circle in a 90 X 90 square matrix of MA TLAB, espe
cially of small enough size with which to do good Fourier 
transforms; the ragged edge affects the transforms notice
ably. We created a MA TLAB function called eirc (radius) to 
produce square-symmetric circular apertures. But SURFER 

understands Bessel functions of the first and second kind, 
of any order and will yield high resolution graphic simula
tions. 

C. Square and circle 

We created in MA TLAB a double aperture, square and 
circle each of the same width, 24, spaced similarly. Figure 
12 is the discrete convolution; which represents the optical 
transfer function for this double aperture. See the Appen
dix for MA TLAB commands. It is clear from the OTF, 
achieved by convolution, that a folding operation occurred 
prior to the shifting process. Without folding, an autocor
relation would result, something quite different, Fig. 13. 
Anticipating optical correlations, MATLAB did this one 
simply. See the Appendix for commands. 

D. A composite aperture 

Diffraction by composite apertures can easily be simu
lated because of the linearity of Fourier transforms. The 
diffraction amplitude of an annular ring can be determined 
by subtracting the transform of the interior circle from that 

Fig. 12. The self-convolution of the double aperture. 
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Fig. 13. The autocorrelation of the double aperture. 

of the exterior circle; diffraction by an annular square fol
lows similarly. Since these calculations can be done by 
hand, SURFER can yield high resolution graphics from 
them. But using the 90 X 90 array of MAT LAB Fig. 14 shows 
a circular aperture blocked by an opaque square of diag
onal the same as the circle's diameter. Figure 15 shows the 
real optical transfer function obtained by discrete convolu
tion of the aperture, a calculation one would not like to do 
by hand. 

IV. INVERSE PROBLEMS 

We can turn the process around, work it backwards. One 
can propose a real function to represent the Fourier trans
form of a hypothetical aperture. With this function entered 
into MA TLAB, the following commands should yield the 
hypothetical aperture: hyp-ap = fftshift (ifft2 (fftshift (real 
function»); mesh (hyp-ap) . 

The command for inverse Fourier transform is ifft2. 
This inverse process is easily demonstrated when you have 
the transform (real) for the square aperture sitting in the 
computer memory. The commands nicely return the 
square aperture. 

If there is phase variation in the function or the aperture 
then one has a problem considerably more difficult, i.e., 
complex, to analyze. Recall that the phase information 
contained in a complex function is essentially lost when 
that function is squared. But even so, when dealing with 

Fig. 14. Circular aperture blocked by an opaque square. 
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Fig. 15. The OTF of the aperture of Fig. 14. 

complex functions, MA TLAB clm be asked to present the 
real part, the imaginary part, the modulus, or the phase 
contained therein. An example is available from author 
RGW. . 

When one looks at the x-ray diffraction pattern of, say, a 
biologically important molecule, the question is inverse 
also, "What structure caused that?" When the radar signal 
returns, bounced off the aircraft, the question is, "What 
aircraft is that?" Using lasers in diffraction and interfer
ence experiments of physics courses everyone knows 632.8 
nm is the wavelength. Ask the students to fully determine 
the structure causing the diffraction pattern. 

V. EDGE DETECTION BY SPATIAL FILTERING 

An example of spatial filtering: Fig. 16 represents a 
square aperture blocked by an opaque triangle. We will 
attempt to do edge detection. The information about sharp 
edges is in the high spatial frequencies of the Fourier trans
forms. We create the transform matrix then go into it and 
block out (set to zero) a square array of all the low spatial 
frequency terms. Figure 17 shows the modulus of the modi
fied transform. Now Fourier transform this modified 
transform matrix, which is equivalent to reimaging the ap
erture with another lens. What one would see or detect is 
the complex square of this transform, Fig. 18, wherein we 
would see brightness mainly along the edges of the square 
aperture and its blocking triangle. We think this is rather 
neat! Have you ever tried demonstrating spatial filtering to 
a large class? These images can be used as slides or over
head transparencies. 

Fig. 16. Square aperture blocked by an opaque triangle. 

Wilson, McCreary, and Thompson 53 



 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

198.178.132.252 On: Mon, 29 Feb 2016 13:30:26

Fig. 17. Blocking Idw spatial frequencies, Fourier transform modulus por
trait. 

Fig. 18. Edge-detection of the aperture of Fig. 16. 

Fig. 19. Phase variation in a coma-aberrated circular aperture. 

Fig. 20. Modulus of the Fourier transform of the aperture of Fig. 19. 
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Fig. 2 1. The MTF of the aperture of Fig. 19. 

VI. A COMPLEX APERTURE-COMA 

Now into the realm of the more difficult, visualization of 
a primary aberration, coma, in a circular aperture. This 
aperture function will be complex. We are guided here by 
Kim and Shannon.7 See the Appendix for MA TLAB com
mands. The complex, phase aberrated, round aperture 
function is shown in Fig. 19, but this is too large to Fourier 
transform. A smaller aperture is created and the modulus 
of its Fourier transform is shown in Fig. 20. Even though it 
is the modulus it is easily recognizable as coma. The point 
spread function can be created by squaring the (complex) 
Fourier transform. 

The modulation transfer function (MTF) and the phase 
transfer function (PTF) can be easily created, all com
mands in the Appendix. Figure 21 is the MTF. All of these 
figures, especially the phase plots, require some thoughtful 
interpretation. 

VII. FRESNEL DIFFRACTION VIA FOURIER 
TRANSFORM 

The visualization of the results of the coma aberration 
required the Fourier transformation of a complex function. 
It can be shown8 that the Fresnel diffraction amplitude 
function for a simple aperture can be obtained similarly by 
Fourier transformation of exp(i1T/..1.Z)(X2 + /) which 
must then also be multiplied by two additional complex 
exponential functions. (A. is the scaled wavelength and z is a 
scaled distance from the diffracting aperture.) The com
plex square of this result yields the Fresnel irradiance and 
as such, the two additional complex functions can be ig
nored if one is seeking only the irradiance portrayal. Figure 
22 is a Fresnel irradiance pattern from a square aperture. 
We have not examined Fig. I to see if convolution could 
also be a route to Fresnel irradiance, nor have we examined 
Fresnel diffraction by apertures with specific transmission 
and/or phase functions. 

Glance at the commands for this in the Appendix. Is this 
not easier than using Cornu spirals and Fresnel integrals?') 
If one wishes to have numerical data, it exists, here in the 
"fresirr" matrix, and likewise in all the other matrices 
created as described in this paper. 

The command mesh (ap) will show the real part of the 
fictitious aperture used for this calculation. The command 
mesh(ft) will show only the real part of the transform that 
requires multiplication by two more complex functions in 
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Fig. 22. Fresnel irradiance from a square aperture, obtained by Fourier 
transformation, see text for scaling. 

order to portray the Fresnel amplitude. As the quantity 
"fres" approaches zero the irradiance pattern calculated, 
"fresirr," approaches that of Fraunhofer diffraction. 

In SURFER the data can be converted for a topographic 
plot, and it shows the "plaid" appearance often found in 
Fresnel patterns from rectangular structures. Contour line 
density is related to irradiance. Thus can be portrayed 
Fresnel diffraction by any simple aperture. 

VIII. CONCLUSIONS 

The somewhat traditional phasor approach to diffrac
tion and slit interference (perhaps preliminary preparation 
for Cornu spirals and Fresnel integrals ) is quite limited in 
usefulness. In.a general physics course where students 
know the rudiments of calculus, Fourier spectrum anal¥sis 
should be an attractive alternative, because a Fourier ap
proach will have widespread usefulness for students in 
many fields of science and engineering. (Reconsider Sec. 
IV). Reasonably simple apertures Fourier transform with 
work but with relative ease. We hope we have shown that 
simulations and visualizations of optical transformations 
in three-space for any aperture can now be achieved easily 
on a PC. In an advanced laboratory it would not be too 
difficult for students to design their own diffraction" aper
tures, for photographic reduction on, say, Kodak 
Ultratec ™ film; and with laser and optical bench create 
the PSF for comparison with a computer simulated PSF. 
Even phase steps \0 can be included. Kodak Technical Pan 
film and a range of exposures might help visualize the detl\il 
in the PSFs. See the paper of S. A. Dodds, Ref. 1. 

In this paper we have only scratched the surface, so to 
speak, of computer simulation ofthe wide ranging tech
niques of optical processing. There is much fascination to 
be found in aperture design, matched and coinplex filter
ing, optical correlating, optical computing, etc. JoI Comput
er graphics allows us to visualize more than the eye can see. 

APPENDIX-MATLAB COMMANDS 

1. Square and circle double aperture: 
ap = circ( l2) ;  

55 

ap(49:72,:) = ones(24); 
db = zeros(74,26) ; 
db(2:73,2:25) = ap; 
mesh (db) aperture display with faulty 

screen perspective? 

Am. J. Phys., Vol. 60, No.1, January 1992 

otf= conv2(db,db); 
mesh (otf) displays the OTF. When 

plotted the perspective was 
correct. Fig. 12. 

Here are the cross-(auto-) correlation commands. 

sqcrcorr = xcorr2(db,db); and then, mesh(sqcrcorr).  

2 .  Coma aberrated aperture: 
[x,y] = meshdom( - 1:2189:1, - 1:2/89: 1) ; 

r = sqrt(x. �2 + y. �2) ; 
theta = a tan 2(y,x) ; 

These establish four matrices; all 90 X90, one called x, one 
called y; one called r, one called theta: 

coma = sqrt( 8) * (3* (r. �2) - 2). *r. *cos(theta) ; 

see Ref. 7. 
This represents the phase in the aperture. The command 
mesh (coma) shows a phase variation in a 90 X 90 grid. 
Now put the phase variation into a round aperture: 

ap = zeros(90); 
ap = circ(45) .*exp(i*2*pi*(.2) *coma) ; 

mesh (abs (ap) ) will show a flat circle, 
there is only phase 
variation in the aperture. 

mesh(angle(ap» will display the wave-
front (phase) 

error in the round aperture. The command unwrap does 
not help. We can get rid of some of the spiking (round off 
error) at the edge of the aperture, by going to an 88 X 88 
array and a 44 radius circle. 

ape 2:89,2:89) 
= circ( 44). *exp(i*2*pi* (.2)*coma(2:89,2:89»; 

mesh (angle( ap) ) should look somewhat better, 
Fig. 19. 

This is a good resolution, simple portrayal of a complex 
aperture but it is too large for Fourier transforming. Make 
a smaller one: 

. 

[x,y] = meshdom( - 1:21 19:1, - 1:21 19: 1) ; 

r = sqrt(x. �2 + y. �2) ; 
theta = a tan 2(y,x) ; 

coma = sqrt(8)*(3*(r. �2) - 2). *r. *cos(theta) ; 

ap = zeros(90); 

ap(36:55,36:55) = circ( 1O) .*exp(i*2*pi*(.2)*coma); 
mesh (abs (ap) ) 
mesh (angle (ap) ) 

will show a flat top cylinder; 
will show a coma aberrated 

aperture of appropriate size for Fourier transforming and 
squaring for the PSF. 

Figure 20 is the modulus of the Fourier transform, plot
ted by SURFER using only lines of constant z. 

For the OTF we will use a larger aperture and discrete 
convolution. 

[x,y] = meshdom( - 1:2144:1, - 1:2/44: 1) ; 
r = sqrt(x. �2 + y. �2) ; 
theta = a tan 2(y,x) ; 

coma = sqrt( 8) * (3* (r. �2) - 2). *r. *cos(theta) ; 

ap = circ(22.5) .*exp(i*2*pi*(.2)*coma); 
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comaotf = conv2 (ap,ap) ; whos tells us it is com
plex. 

comamtf = abs (comaotf) ; creates the modulus, 
the MTF, Fig. 21. 

comaptf = angle (comaotf) ; creates PTF 

3. Fresnel irradiance by Fourier transform. Here is a proce
dure for a Fresnel irradiance portrait of a simple square 
aperture where J.z = 112: 

[x,y) = meshdom ( - 1:21 19: 1, -1:2/19: 1) ; 

fres= (x.A2+y.A2)* ( l ) ;  

ap = zeros (90) ; 

ap (37:56,37:56) = ones (20) .*exp (i*2*pi*fres); 

ft = fftshift (fft2 (fftshift (ap) ) ) ;  
fresirr = ft. *conj (ft) ; 

mesh (fresirr) See Fig. 22. 

4. Triangle (not discussed above) . An equilateral triangle 
(with two ragged edges) of appropriate size for transfor
mation can be created: 

ap = zeros (89); 
for i = 35:45 
jmin = (6/1O) * (i - 45) + 45; 
jmax= - (6/1O) *(i-45) +45; 

for j = jmin:jmax 
ap (i,j) = 1; 
end; 
end; 
mesh (ap ) yields the aperture matrix. 
ft = fftshift(fft2 (fftshift (ap) »; for the Fourier 

transform. 

MA TLAB returns the real part of the transform on 
mesh (ft) ; or use reft = real(ft) ; and mesh (reft) . abs (ft) 
returns the modulus, imag (ft) returns the imaginary part. 
The command angle (ft) and a few unwraps will return a 
phase plot of the transform. 
For the OTF a larger triangle can be established: 

ap = zeros(40) ; 
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for i = 1:39 

jmin = ( l/sqrt(3»* (i - 39) + 23; 
jmax= - ( l/sqrt (3»* (i-39) +23; 

for j = jmin: jmax 
ap (i,j) = 1; 
end; 

end; 
mesh (ap) yields the larger aperture. 
triotf = conv2 (ap,ap) ; 
mesh (triotf) yields the OTF. 
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This last calculation seems slow even on a 386 computer. 
Smith and Marsh 12 have shown how to do some of these 
calculations by hand. 
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