University of Arkansas, Fayetteville

From the Selected Works of Raymond Walter

January, 2016

Electrical Control of Chiral Phases in Electrorotoroidic Nanocomposites

Raymond Walter, University of Arkansas, Fayetteville
Sergei Prokhorenko, University of Arkansas, Fayetteville
Zhigang Gui, University of Arkansas, Fayetteville
Yousra Nahas, University of Arkansas, Fayetteville
Laurent Bellaiche, University of Arkansas, Fayetteville

Available at: https://works.bepress.com/raymond-walter/7/
System and Method

The 36x36x36 supercell (38,880 atom) of the BaTiO$_3$-SrTiO$_3$ nanocomposite$^{[5]}$ used in our simulations is schematized below. Each BaTiO$_3$ wire has (x, y, z)-plane cross-section (plane of [100] and [010]) of 4.8x4.8 nm2 (12x12=144 sites) and adjacent wires are separated by 2.4 nm (6 sites) of SrTiO$_3$ medium with periodicity of 2.4 nm (6 sites) along x-axis or y-axis.

- Order parameters of polarization (P_z) and toroidal moment (G_z) paralled to the nanowire axis
- Exhibits complex phenomena such as translational invariance and a vortex core transition
- Ferroelectricity and chirality vanish above Curie temperature T_{C_2} = 240 K, vortices and G_z vanish above electrostrictoronic transition temperature T_{C_2} = 300 K
- H_{app} for (Ba,Sr)TiO$_3$ alloys from $[7]$ used in MC to build electric-field phase diagram to see where $T_C ≃ T_{C_2}$; total energy consists of internal energy of hypothetical simple (A/B)O$_3$ system in virtual crystal approximation (VCA) and energy associated with alloy effects beyond VCA
- MC simulations heat from ground state at 5 K to 565 K while applying constant DC field along [001] for magnitudes from 0 to 1 × 106 V/m at each temperature; 105 sweeps to equilibrate, 105 sweeps for averages
- For some temperatures and DC electric fields, final MC configuration is used as input for MD simulations to calculate gyrotropy coefficient g_{11}

Phase Diagram (Monte Carlo)

Polarization P_z is enhanced and toroidal moment G_z is decreased when increasing applied DC field$^{[3]}$. Out-of-plane susceptiblity is used to identify T_{C_2} for P_z and T_{C_2} for G_z.

Phase A: ferroelectric and $T < T_{C_2}$, this phase is chiral and encompasses the chiral phases at zero field

Phase B: ferroelectric and $T > T_{C_2}$, reducing to paraelectric but electrostrictoronic at zero field

Phase C: parastrictoronic and $T < T_{C_2}$, a new phase corresponding to no phases at zero field

Phase D: parastrictoronic and $T > T_{C_2}$, reducing to paraelectric and paratoroidic phase at zero field

PHENOMENOLOGY

Consider a Landau phenomenological model for this system under DC electric field $E = E_z$, and a biquadratic coupling$^{[5]}$ of constant strength λ between polarization P_z and toroidal moment G_z = G_{11}. The free energy density is given by:

$$F = F_0(G, P, P_z) + A P_z^2 + \frac{1}{2} \lambda P_z^2$$

where $F_0(G, P, P_z)$ = $\alpha P_z^3 + \beta \lambda P_{13}^3 + \gamma G_{11}^2 + \delta G_{11}^4 + \cdots$

- Applying DC field favors P_z via $-E_z$ term of Eq. (2), thus increasing P_z (phase diagram) and increasing P_z for any temperature below T_{C_2}
- Field-induced increase of P strengthens repulsion between P and G as λ in the coupling energy term is positive; then increasing DC electric field reduces G_{11} (phase diagram) and decreases G_z for any temperature below T_{C_2}

ACKNOWLEDGEMENT

We thank S. Pressnacek for indicating references and providing suggestions on critical phenomena and phase transitions. This research was supported by the NSF GRFP Program under Grant No. DGE-0957326 and the University of Delaware Graduate School Distinguished Doctoral Fellowship, Y.N., Z.G., and L.B. acknowledge the support of the ARO grant W911NF-12-1-0085. S.P. and L.B. thank the financial support of the DARPA grant HR0001-15-2-0038 and the Physics Department of the University of Arkansas.

REFERENCES

[6] L. Louis, I. Kornev, G. Geneste, B. Dhillon, L. Bellaiche, JPCM (royal society web) acknowledged this work is supported by the NSF GRFP Program under Grant No. DGE-0957326 and the University of Delaware Graduate School Distinguished Doctoral Fellowship, Y.N., Z.G., and L.B. acknowledge the support of the ARO grant W911NF-12-1-0085. S.P. and L.B. thank the financial support of the DARPA grant HR0001-15-2-0038 and the Physics Department of the University of Arkansas.