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Abstract
The recently proposed coupling between the angular momentum density and magnetic moments is shown
to provide a straightforward alternative explanation for galvanomagnetic effects, i.e., for both anisotropic
magnetoresistance (AMR) and planar Hall effect (PHE). Such coupling naturally reproduces the general
formula associated with AMR and PHE and allows for the occurrence of so-called ‘negative AMR’. This
coupling also provides a unifying link between AMR, PHE and the anomalous Hall effect (AHE) since this
same coupling was previously found to give rise to AHE (Bellaiche et al 2013 Phys. Rev. B 88 161102).

Fundamental Quantities
The (classical) electromagnetic field angular mo-
mentum density is

J =
1

c2
r′ × (E×B)

for position vector r′, electric field E, and magnetic
field B. Consider the magnetization of a conducting
electron M(r′) = µδ(r′ − r) for r the center of the
volume V ′ around the electron and µ the electron’s
magnetic moment with V ′ sufficiently small so E
and B are homogeneous. We examine the physical
energy resulting from coupling J with µ:

E = −a
2

∫
V ′

[r′ × (E×B)] · M(r′)d3r′

= −a
2
r× (E×B) · µ

.

Ordinary Hall Effect+AHE
The Hall effect is the production of a voltage difference
across an electrical conductor, transverse to an electric cur-
rent j = σE in the conductor (say, in the x-direction) and
a magnetic field perpendicular to the current (say, in the z-
direction). This effect is frequently used in automative sen-
sors, keyboards, and timing devices. It was discovered by Ed-
win H. Hall in 1879, and in 1880 he discovered the anomalous
Hall effect (AHE) in ferromagnets. In AHE, the conductivity
σxy has a component directly proportional to the magnetiza-
tion of the material. Modern theories of intrinsic AHE invoke
sophisticated ideas of Berry phase curvature, but the pro-
posed coupling of electromagnetic angular momentum den-
sity and magnetic moments provides a simpler model readily
related to Berry phase curvature.
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Derivations+Extensions
In a ferromagnet consider homogeneous E and B, the
latter restricted to the xz-plane and proportional to
magnetization: E = x̂Ex + ŷEy + ẑEz and B =
αM = α (Mz ẑ +Mxx̂) . Embedding force F = −∇E
in a Drude model with the Lorentz force gives the equa-
tion of motion

dp

dt
= −eE− e

m
p×B + F− p

τ
,

for p momentum of the electron, e magnitude of electron
charge, m mass of the electron, and τ mean time between
two successive electronic collisions. Going component-
wise in steady-state ( dp

dt
= 0), multiplying through by

−eτ
Vm

, summing over all electrons in that volume, noting
My = 0, identifying current density j = −ne

m
p, and con-

sidering jy = 0 = jz in steady-state, we obtain

jx =
(
ne2τ
m

+ aαeτ
2m
M2

z

)
Ex − aαeτ

2m
MxMzEz ,

eτ
m
Bzjx = −ne

2τ
m

Ey − aαeτ
2m

EyM2 ,

aαeτ
2m
MxMzEx =

(
ne2τ
m

+ aαeτ
2m
M2

x

)
Ez.

Dividing the second equation by eτ
mEy

Bz derives ordi-

nary and anomalous Hall effect contributions to conduc-
tivity σxy. Resistivities for AMR and PHE are given by
ρxx = Ex/jx and ρzx = Ez/jx, obtained from the first
and third equations. Consider three cases.
Case (1): M =Mxx̂ =⇒ ρxx = Ex/jx = m

ne2τ
=: ρxx,‖

Case (2): M =Mz ẑ =⇒

ρxx =
m

ne2τ

(
1 +

aα

2en
M2

)−1

=: ρxx,⊥

Case (3): M =McosΘx̂+MsinΘẑ, for Θ angle between
the magnetization vector and the x-axis. Let ξ = aα

2en

and solve the first and third equations simultaneously:

ρxx = ρ‖
1 + ξM2 cos2 Θ

1 + ξM2
= ρxx⊥ + (ρxx‖ − ρxx⊥) cos2 Θ

ρzx =
1

2
ρ‖
ξM2 sin 2Θ

1 + ξM2
=

1

2
(ρxx‖ − ρxx⊥) sin 2Θ .

Evidently we have reproduced Eq. (1). Thus coupling
between EM angular momentum density and magnetic
moments in a Drude model provides a unified explana-
tion for AHE, AMR, and PHE consistent with their re-
spective dependencies on spin-orbit interaction and ex-
isting theories of these effects. It is an open question
whether a Berry phase curvature theory of AMR is pos-
sible, as was the case for AHE; our theory suggests this
possibility.

AMR + PHE
Anisotropic magnetoresistance (AMR) essentially consists of
dependence of longitudinal resistivity in a ferromagnet on the
orientation of magnetization relative to applied electric field.
The planar Hall effect (PHE) (also called transverse AMR)
consists of the formation of a transverse electric field for mag-
netization with longitudinal and transverse components (if
longitudinal direction is x and transverse direction is z, then
this transverse electric field is along z-axis) with an applied
longitudinal electric field. This is expressed mathematically
as

ρxx = ρxx,⊥ +
(
ρxx,‖ − ρxx,⊥

)
cos2(Θ) (1)

ρzx =
1

2

(
ρxx,‖ − ρxx,⊥

)
sin(2Θ)

where ρxx,⊥ and ρxx,‖ are the longitudinal resistivities when
the magnetization is along the z-axis and x-axis, respectively,
while Θ is the angle between this magnetization and the di-
rection of the applied electric field. Prevailing theories of
AMR involve spin-orbit interaction. Use of second-order per-
turbation theory suggests our coupling constant a originates
from spin-orbit interaction [2] and is a material dependent
constant. In particular, if the sign of a depends on the ma-
terial, then for some materials a may be negative and hence
‘negative AMR’ is natural in our coupling-based theory.

Research Program
Since its recent proposal [2], this coupling has been
used to explain a wide variety of phenomena:

• demonstrates existence of physical energy of
magnetic vortices via such coupling and sense
of vortex rotation switched by reversing sign
of E×B [2]

• characterizes spin current model and existence
of magnetic cycloids in multiferroics [2, 3, 4]

• predicts antiferroelectricity-driven magnetic
anisotropy [2]

• provides an alternative explanation for the
anomalous Hall effect (AHE) that links to
more standard semiclassical electron dynamics
and complicated Berry phase curvature theo-
ries of AHE [5]

• predicts a novel Hall effect that can conceiv-
ably be tested by experiment

• predicts novel spintronic effects near interfaces
between two different materials [6]

• provides an explanation for the topological
Hall effect in magnetic skyrmions (see poster
by Charles Paillard)
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