
University of Arkansas, Fayetteville

From the SelectedWorks of Raymond Walter

May 9, 2013

Natural optical activity and its control by electric
field in electroroidic materials
Sergey Prosandeev, University of Arkansas, Fayetteville
Andrei Malashevich, Yale University
Zhigang Gui, University of Arkansas, Fayetteville
Lydie Louis, University of Arkansas, Fayetteville
Raymond T Walter, University of Arkansas, Fayetteville, et al.

Available at: https://works.bepress.com/raymond-walter/5/

http://www.uark.edu
https://works.bepress.com/raymond-walter/
https://works.bepress.com/raymond-walter/5/


PHYSICAL REVIEW B 87, 195111 (2013)
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We propose the existence, via analytical derivations, novel phenomenologies, and first-principles-based
simulations, of a class of materials that are not only spontaneously optically active, but also for which the
sense of rotation can be switched by an electric field applied to them via an induced transition between the
dextrorotatory and laevorotatory forms. Such systems possess electric vortices that are coupled to a spontaneous
electrical polarization. Furthermore, our atomistic simulations provide a deep microscopic insight into, and
understanding of, this class of naturally optically active materials.
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I. INTRODUCTION

The speed of propagation of circularly polarized light
traveling inside an optically active material depends on its
helicity.1,2 Accordingly, the plane of polarization of linearly
polarized light rotates by a fixed amount per unit length,
a phenomenon known as optical rotation. One traditional
way to make materials optically active is to take advan-
tage of the Faraday effect by applying a magnetic field.
However, there are some specific systems that are naturally
gyrotropic, that is, they spontaneously possess optical activity.
Examples of known natural gyrotropic systems are quartz,3

some organic liquids and aqueous solutions of sugar and
tartaric acid,1 the Pb5Ge3O11 compound,4,5 and the layered
crystal (C5H11NH3)2ZnCl4.6 Finding novel natural gyrotropic
materials has great fundamental interest. It may also lead to
the design of novel devices, such as optical circulators and
amplifiers, especially if the sign of the optical rotation can
be efficiently controlled by an external factor that is easy to
manipulate.

When searching for new natural gyrotropic materials, one
should remember the observation of Pasteur that chiral crystals
display spontaneous optical activity, which reverses sign when
going from the original structure to its mirror image.7 Hence it
is worthwhile to consider a newly discovered class of materials
that are potentially chiral, and therefore may be naturally
gyrotropic. This class is formed by electrotoroidic compounds
(also called ferrotoroidics8). These are systems that possess
an electrical toroidal moment, or equivalently, exhibit electric
vortices.9 Such intriguing compounds were predicted to exist
around nine years ago,10 and were found experimentally only
recently.11–15 One may therefore wonder if this new class of
materials is indeed naturally gyrotropic, and/or if there are
other necessary conditions, in addition to the existence of an
electrical toroidal moment, for such materials to be optically
active.

In this work, we carry out analytical derivations, origi-
nal phenomenologies, and first-principles-based computations
that successfully address all the aforementioned important
issues. In particular, we find that electrotoroidic materials
do possess spontaneous optical activity, but only if their

electric toroidal moment changes linearly under an applied
electric field. This linear dependence is proved to occur if the
electrotoroidic materials also possess a spontaneous electrical
polarization that is coupled to the electric toroidal moment, or
if they are also piezoelectric with the strain affecting the value
of the electric toroidal moment. We also find that, in the former
case, the applied electric field further allows the control of the
sign of the optical activity. Our atomistic approach also reveals
the evolution of the microstructure leading to the occurrence
of field-switchable gyrotropy, and it shows that the optical
rotatory strength can be significant in some electrotoroidic
systems.

II. RELATION BETWEEN GYROTROPY AND THE
ELECTRICAL TOROIDAL MOMENT IN

ELECTROTOROIDIC SYSTEMS

Let us first recall that the gyrotropy tensor elements, gml ,
are defined via16

gmk = ω

2c
eijmγijk, (1)

where eijm is the Levi-Civita tensor,17 c is the speed of light,
and ω is the angular frequency. Note that this angular frequency
is not restricted to the optical range. For instance, it can also
correspond to the 1–100 GHz frequency range. The γ tensor
provides the linear dependence of the dielectric permittivity
on the wave vector k in the optically active material, that is,

εik (ω,k) = ε
(0)
ik (ω) + iγiklkl . (2)

Here, kl is the l component of the wave vector; εik (ω,k)
denotes the double Fourier transform in time and space of
the dielectric tensor, with the long-wavelength components
being denoted by ε

(0)
ik . Throughout this paper we adopt Einstein

notation, in which one implicitly sums over repeated indices
[as it happens, e.g., for the l index in Eq. (2)]. Thus,
the calculation of the gyrotropy tensor can be reduced to
the calculation of the tensor γ , which describes the spatial
dispersion of the dielectric permittivity.
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Alternatively, one can use the following formula for the
dielectric permittivity:1,16

εik (ω,k) = δik + 4πi

ω
σik (ω,k)

= δik + 4πi

ω

[
σ

(0)
ik (ω) + σiklkl

]
, (3)

where δik is the Kronecker symbol and σik (ω,k) is the
effective conductivity tensor in reciprocal space, at a given
frequency.1 σikl is the third-rank tensor associated with the
linear dependence of the effective conductivity tensor on the
wave vector, and σ

(0)
ik is the effective conductivity tensor at

zero wave vector. Combining Eq. (3) with Eq. (2) yields

γikl = 4π

ω
σikl = 4π

ω

[
σS

ikl(ω) + σA
ikl(ω)

]
, (4)

where

σA
ijk = 1

2 (σijk − σjik) (5)

and

σS
ijk = 1

2 (σijk + σjik). (6)

Moreover, using the results of Ref. 18 and working at
nonabsorbing frequencies (i.e., frequencies, such as GHz in
ferroelectrics, for which the corresponding energy is below
the band gap of the material), one can write

σA
ijk = ic(ejklβil − eiklβjl) + ωξijk (7)

with

βij = i Im
(
χem

ij

) =−i Im
(
χme

ji

)
(8)

and

ξijk = 1

2

[
dQkj

dEi

− dQki

dEj

]
, (9)

where Im stands for the imaginary part and Q is the
quadrupole moment of the system.19 χme is the response of
the magnetization, M, to an electric field E, while χem is the
response of the electrical polarization, P, to a magnetic field
B, that is,

χme
ij = dMi

dEj

and χem
ji = dPj

dBi

. (10)

Inserting Eq. (7) into Eq. (4) provides

γijk = 4π

ω

[
c
(
ejklIm χme

li − eiklIm χme
lj

) + ωξijk

] + γ S
ijk,

(11)

where γ S
ijk = (4π/ω)σS

ijk is the contribution of the symmetric
part of the conductivity to the γ tensor. As a result, γ S

ijk is
nonzero only when the system is magnetized or possesses a
spontaneous magnetic order.16

Let us now focus on the magnetization, which can be written
as19

M = 1

2cV

∫
[r × J (r)] d3r, (12)

where c is the speed of light, V is the volume of the system,
r is the position vector, and J (r) is the current density. We
consider here the following contributions to this density:

J (r) = Ṗ(r) + c∇ × M0(r), (13)

where the dot symbol indicates a partial derivative with
respect to time. P(r) is the polarization field, that is, the
quantity for which the spatial average is the macroscopic
polarization. Similarly, M0(r) is the magnetization field, that
is, the quantity for which the spatial average is the part of
the macroscopic magnetization that does not originate from
the time derivative of the polarization field.20 Combining the
previous two equations, we find

M = 1

2cV

∫
[r × Ṗ(r)]d3r + 1

2V

∫
[r × ∇ × M0(r)]d3r

= 1

2cV

∫
[r × Ṗ(r)]d3r + M0. (14)

The first term in the expression on the right-hand-side bears
some similarities with the definition of the electrical toroidal
moment, G, that is,9

G = 1

2V

∫
[r × P(r)] d3r. (15)

More precisely, taking the time derivative of G gives

Ġ � 1

2V

∫
[r × Ṗ(r)]d3r (16)

when omitting the time dependency of the volume (the
numerical simulations presented below indeed show that
one can safely neglect this dependency when computing the
time derivative of the electric toroidal moment). As a result,
combining Eqs. (16) and (14) for a monochromatic wave
having an ω angular frequency gives

M − M0 � 1

c
Ġ = − iω

c
G (17)

in electrotoroidic systems.
Plugging this latter equation in Eq. (10) then gives

χme
ij = χ

me(0)
ij − iω

c

dGi

dEj

, (18)

where χ
me(0)
ij is the magnetoelectric tensor related to the

derivative of M0 with respect to an electric field. Therefore,

Im
(
χme

ij − χ
me(0)
ij

) = −ω

c

dGi

dEj

. (19)

This relation between the imaginary part of the magnetoelec-
tric susceptibility and the field derivative of the electrical
toroidal moment is reminiscent of the connection discussed
in Ref. 22 between the linear magnetoelectric response and
the magnetic toroidal moment.

Inserting Eqs. (19) and (9) into Eq. (11) then provides

γijk = γ S
ijk + 4πc

ω

(
ejklImχ

me(0)
li − eiklImχ

me(0)
lj

)

+ 4π

[
eikl

dGl

dEj

− ejkl

dGl

dEi

+ 1

2

(
dQkj

dEi

− dQki

dEj

)]
.

(20)

Combining this latter equation with Eq. (1), and recalling
that γ S

ijk is a symmetric tensor while eijm is antisymmetric
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(which makes their product vanishing), gives

gmk = 4π
(
δmkImχ

me(0)
ll − Imχ

me(0)
mk

)

+ 4πω

c

[(
dGm

dEk

− dGl

dEl

δmk

)

+ 1

4
eijm

(
dQkj

dEi

− dQki

dEj

)]
. (21)

Choosing a specific gauge20 and neglecting quadrupole
moments (simulations reported below show that spontaneous
and field-induced quadrupole moments can be neglected for
the ferrotoroidics numerically studied in Sec. IV) lead to the
reduction of Eq. (21) to

gmk = 4πω

c

[(
dGm

dEk

− dGl

dEl

δmk

)]
. (22)

This formula nicely reveals that optical activity should
happen when the electrical toroidal moment linearly responds
to an applied electric field.

III. NECESSARY CONDITIONS FOR GYROTROPY IN
ELECTROTOROIDIC SYSTEMS

According to Eq. (22), an electrotoroidic system possessing
nonvanishing derivatives of its electrical toroidal moment with
respect to the electric field automatically possesses natural op-
tical activity. Let us now prove analytically that the occurrence
of such nonvanishing derivatives requires additional symmetry
breaking in electrotoroidic systems, namely that an electrical
polarization or/and piezoelectricity should also exist, as well as
couplings between the electrical toroidal moment and electric
polarization and/or strain.

For that, let us express the free energy of an electrotoroidic
system that exhibits couplings between electrical toroidal
moment G, polarization P, and strain η as

F = F0 + ζijklGiGjηkl + λijklGiGjPkPl

+ qijklPiPjηkl − hiGi, (23)

where hi = (∇ × E)i is the field conjugate of Gi .
The equilibrium condition, ∂F/∂Gn = 0, implies that

∂F0/∂Gn + (ζnjkl + ζjnkl)Gjηkl + (λnjkl + λjnkl)GjPkPl

= hn, (24)

which indicates that hn depends on both the polarization and
the strain.

As a result, the change in electrical toroidal moment
with electric field can be separated into the following two
contributions:

dGi

dEj

=
(

dGi

dEj

)(1)

+
(

dGi

dEj

)(2)

(25)

with (
dGi

dEj

)(1)

= dGi

dhn

∂hn

∂Pl

dPl

dEj

= χ
(G)
in

∂hn

∂Pl

χ
(P )
lj (26)

and (
dGi

dEj

)(2)

= dGi

∂hn

∂hn

∂ηkl

dηkl

dEj

= χ
(G)
in

∂hn

∂ηkl

dklj . (27)

Here

χ
(G)
in = dGi

dhn

(28)

is the response of the electrical toroidal moment to its
conjugate field,

χ
(P )
ij = dPi

dEj

(29)

is the electric susceptibility, and

dijk = dηij

dEk

(30)

is a piezoelectric tensor.
The remaining derivatives appearing in Eqs. (26) and (27)

can be found from Eq. (24):(
∂hn

∂Pl

)
= (λnjlm + λnjml + λjnlm + λjnml)GjPm (31)

and (
∂hn

∂ηkl

)
= (ζnjkl + ζjnkl)Gj . (32)

Equations (25)–(32) reveal that there are two scenarios for
the occurrence of natural optical activity in electrotoroidic
systems. In the first scenario, the system possesses a finite
polarization that has a biquadratic coupling with the electrical
toroidal moment [see Eqs. (26), (31), and (23)]. In the second
scenario, the electrotoroidic system is also piezoelectric, and
electrical toroidal moment and strain are coupled to each other
[see Eqs. (27), (32), and (23)]. An example of the latter can
be found in Ref. 23, where a pure gyrotropic phase transition
leading to a piezoelectric, but nonpolar, P 212121 state (that
exhibits spontaneous electrical toroidal moments) was discov-
ered in a perovskite film. Next, we describe the theoretical
prediction of a material where the former scenario is realized.

IV. PREDICTION AND MICROSCOPIC UNDERSTANDING
OF GYROTROPY IN ELECTROTOROIDIC SYSTEMS

The system we have investigated numerically is a nanocom-
posite made of periodic squared arrays of BaTiO3 nanowires
embedded in a matrix formed by (Ba,Sr)TiO3 solid solutions
having an 85% Sr composition. The nanowires have a long
axis oriented along the [001] pseudocubic direction (chosen
to be the z axis). They possess a squared cross section of
4.8 × 4.8 nm2 in the (x,y) plane, where the x and y axes
are chosen along the pseudocubic [100] and [010] directions,
respectively. The distance (along the x or y directions) between
adjacent BaTiO3 nanowires is 2.4 nm.

We choose this particular nanocomposite system because
a recent theoretical study,24 using an effective Hamiltonian
(Heff) scheme, revealed that its ground state possesses a
spontaneous polarization along the z direction inside the
whole composite system, as well as electric vortices in the
(x,y) planes inside each BaTiO3 nanowire, with the same
sense of vortex rotation in every wire. Such a phase-locking,
ferrotoroidic and polar state is shown in the top left panel (state
1) of Fig. 1. It exhibits an electrical toroidal moment parallel
to the polarization. State 1 (the other states will be clarified
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Arrows in wires 
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FIG. 1. (Color online) Dipole arrangement in the (x,y) plane of the studied nanocomposite for the states playing a key role in the occurrence
of gyrotropy. The four wires are made of pure BaTiO3, and the medium is mimicked to be formed by BST solid solutions having an 85% Sr
composition. See the text for the labels and meanings of the different panels.

below) also reveals the presence of antivortices located in the
medium, half-way between the centers of adjacent vortices.

In the present study, we use the same Heff as in Ref. 24,
combined with molecular dynamics techniques, to determine
the response of this peculiar state to an ac electric field applied
along the main z direction of the wires. In our simulations, the
amplitude of the field was fixed at 109 V/m and its frequency
ranged between 1 and 100 GHz. Therefore, the sinusoidal
frequency-driven variation of the electric field with time makes
this field range in time between 109 V/m (field along [001])
and −109 V/m (field along [00-1]). The idea here is to check
if the electrical toroidal moment has a linear variation with
this field at these investigated frequencies, and therefore if the
investigated system can possess nonzero gyrotropy coefficients
[see Eq. (22)].

In this effective Hamiltonian method, developed in Ref. 25
for (Ba,Sr)TiO3 (BST) compounds, the degrees of freedom
are as follows: the local mode vectors in each five-atom unit
cell (these local modes are directly proportional to the electric
dipoles in these cells), the homogeneous strain tensor, and
inhomogeneous-strain-related variables.26 The total internal
energy contains a local mode self-energy, short-range and
long-range interactions between local modes, an elastic energy,
and interactions between local modes and strains. Further
energetic terms model the effect of the interfaces between
the wires and the medium on electric dipoles and strains, as
well as take into account the strain that is induced by the size
difference between Ba and Sr ions and its effect on physical
properties. The parameters entering the total internal energy
are derived from first principles. This Heff can be used within
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FIG. 2. (Color online) Predicted hysteresis loops in the studied
nanocomposite at 15 K for a frequency of 1 GHz. Panels (a) and
(b) show the electrical toroidal moment and polarization, respectively,
as a function of the value of the ac electric field. In these panels, the
number and symbols inside parentheses refer to the states displayed
in Fig. 1.

Monte-Carlo or molecular-dynamics simulations to obtain
finite-temperature static or dynamical properties, respectively,
of relatively large supercells (i.e., of the order of thousands or
tens of thousands of atoms). Previous calculations25,27–30 for
various disordered or ordered BST systems demonstrated the
accuracy of this method for several properties. For instance,
Curie temperatures and phase diagrams, as well as the
subtle temperature-gradient-induced polarization, were well
reproduced in BST materials. Similarly, the existence of two
modes (rather than a single one as previously believed for a
long time) contributing to the GHz-THz dielectric response of
pure BaTiO3 and disordered BST solid solutions was predicted
via this numerical tool and experimentally confirmed.

Figures 2(a) and 2(b) report the evolution of the z com-
ponent of the electrical toroidal moment, Gz, and of the
polarization, Pz, respectively, as a function of the electric field,

for a frequency of 1 GHz at a temperature of 15 K. In practice,
Gz is computed within a lattice model24 by summing over
the electric dipoles located at the lattice sites, rather than by
continuously integrating the polarization field of Eq. (15) over
the space occupied by the nanowires. The panels in Fig. 1 show
snapshots of important states occurring during these hysteresis
loops in order to understand gyrotropy at a microscopic level.
A striking piece of information revealed by Fig. 2(a) is that
Gz linearly decreases with a slope of −1.6 e/V when the
applied ac field varies between 0 (state 1) and its maximum
value of 109 V/m (state 2). Such a variation therefore results
in positive g11 and g22 gyrotropy coefficients that are both
equal to 0.94 × 10−7 for a frequency of 1 GHz, according
to Eq. (22) (that reduces here to g11 = g22 = − ω

cε0

dGz

dE
in S.I.

units, since there are no x and y components of the toroidal
moment and since the field is applied along z in the studied
case). Interestingly, we found that the aforementioned slope
of −1.6 e/V stays roughly constant over the entire frequency
range we have investigated (up to 100 GHz). As a result,
Eq. (22) indicates that g11 = g22 should be proportional to
the angular frequency ω of the applied ac field, and that the
meaningful quantity to consider here is the ratio between
g11 and this frequency. Such a ratio is presently equal to
5.9 × 10−16 per Hz. Moreover, the rate of optical rotation
is related to the product between ω/c and the gyrotropy
coefficient according to Ref. 16. As a result, the rate of
optical rotation depends on the square of the angular frequency
because of Eq. (22), which is consistent with one finding of
Biot in 1812.2 Here, the ratio of the rate of optical rotation
to the square of the angular frequency is found to be four
orders of magnitude larger than that measured in “typical”
gyrotropic materials, such as Pb5Ge3O11.4,5 As a result, the
plane of polarization of light will rotate by around 1.2 radians
per meter at 100 GHz (or by 1.24 × 10−4 radians per meter at
1 GHz) when passing through the system.

Figure 2(b) indicates that the observed decrease of Gz

is accompanied by an increase of the polarization, which is
consistent with our numerical finding that increasing the field
from 0 to 109 V/m reduces the x and y components of the
electric dipoles inside the nanowires (that form the vortices)
while enhancing the z component of the electric dipoles in the
whole nanocomposite (i.e., wires and medium). Interestingly,
the antivortices in the medium progressively disappear during
this linear decrease of Gz and increase of Pz, as shown in
Fig. 1. Figure 2 also shows that decreasing the electric field
from 109 V/m (state 2) to � − 0.031 × 109 V/m (state 3) leads
to a linear increase of the electric toroidal moment (yielding the
aforementioned values of g11 and g22), while the z component
of the polarization decreases but still stays positive.

Further increasing the magnitude of negative electric fields
up to � − 0.094 × 109 V/m results in drastic changes for the
microstructure: dipoles in the medium now adopt a negative z

components (state 3), and sites at the interfaces between the
medium and the wires also flip the sign of the z component
of their dipoles (states 3 and α). During these changes, the
overall polarization rapidly varies from a significant positive
value along the z axis to a slightly negative value [Fig. 2(b)],
while Gz is nearly constant, therefore rendering the gyrotropic
coefficients null. Then, continually increasing the strength of
the negative ac field up to � − 0.48 × 109 V/m leads to the
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FIG. 3. (Color online) Temperature behavior of the g11 gyrotropic
coefficient in the nanocomposite studied in the paper. The solid lines
represent the fit of the data by A/

√
(TC − T )(TG − T ).

next stage: dipoles inside the wires begin to change the sign
of their z components (states β, 4, and γ ) until all of the
z components of these dipoles point down (state 5). During
that process, Pz becomes more and more negative, while the
electrical toroidal moment decreases very fast but remains
positive (indicating that the chirality of the wires is unaffected
by the switching of the overall polarization).

Once this process is completed, further increasing the mag-
nitude of the applied field along [001̄] up to −109 V/m (state
2′) leads to a linear decrease of the electrical toroidal moment.
Interestingly, this decrease is quantified by a slope dGz/dE

that is exactly opposite to the corresponding one when going
from state 1 to state 2. As a result, the g11 and g22 gyrotropic
coefficients associated with the evolution from state 5 to state
2′ are now negative and equal to −0.94 × 10−7 at 1 GHz.

Finally, Figs. 1 and 2 indicate that varying now the ac field
from its minimal value of −109 V/m to its maximal value of
109 V/m leads to the following succession of states: 2′, 5, 1′,
3′, α′, β ′, 4′, γ ′, 5′, and 2, where the prime used to denote the
i ′ states (with i = 2, 3, 4, 5, α, β, and γ ) indicates that the
corresponding states have z components of their dipoles that
are all opposite to those of state i (for instance, state β ′ has
z components of the dipoles being positive in the medium
while being negative in the wires, which is exactly opposite to
state β). During this path from state 2′ to state 2, the gyrotropic
coefficients g11 and g22 can be negative (from state 2′ to state
3′) or positive (from state 5′ to state 2), depending on the sign
of the polarization.

Such a possibility of having both negative and positive gy-
rotropic coefficients in the same system originates from the fact
that the polarization can be down or up, and is consistent with
Eqs. (31), (26), and (22). As a result, one can rotate the polar-
ization of light either in a clockwise or anticlockwise manner
in electrotoroidic systems via the control of the direction of the
polarization by an external electric field—which induces the
switching between the dextrorotatory and laevorotatory forms
of these materials (see states 1 and 1′). Such control may be
promising for the design of original devices.31,35

Figure 3 shows how the gyrotropic coefficient g11 depends
on temperature. One can clearly see that g11 significantly
increases as the temperature increases up to 240 K. As
indicated in the figure, the temperature behavior of g11 is very
well fitted by A/

√
(TC − T )(TG − T ), where A is a constant,

TC = 240 K is the lowest temperature at which the polarization
vanishes, and TG = 330 K is the lowest temperature at which
the electric toroidal moment is annihilated.24 To understand
such fitting, let us combine Eqs (22), (26), and (31) for the
studied case, that is,

g11 = −4πω

c

dG3

dE3
= −4πω

c
χ

(G)
3n

∂hn

∂Pl

χ
(P )
l3

= −4πω

c
(λn3l3 + λn33l + λ3nl3 + λ3n3l)χ

(G)
3n G3P3χ

(P )
l3 .

(33)

The usual temperature dependencies of the order parameter
and its conjugate field imply that G3 and P3 should be
proportional to

√
(TG − T ) and

√
(TC − T ), respectively,

while their responses, χ (G)
3n and χ

(P )
l3 , should be proportional to

1/(TG − T ) and 1/(TC − T ), respectively. This explains why
the behavior of g11 as a function of T is well described by
A/

√
(TC − T )(TG − T ).

V. SUMMARY

In summary, we propose the existence of a class of
spontaneously optically active materials, via the use of differ-
ent techniques (namely, analytical derivations, phenomenolo-
gies, and first-principles-based simulations). These materials
are electrotoroidics for which the electric toroidal moment
changes linearly under an applied electric field. Such linear
change is demonstrated to occur if at least one of the following
two conditions is satisfied: (i) the electric toroidal moment is
coupled to a spontaneous electrical polarization, or (ii) the
electric toroidal moment is coupled to strain and the whole
system is piezoelectric. We also report a realization of case (i)
and further show that applying an electric field in such a case
allows a systematic control of the sign of the optical rotation,
via a field-induced transition between the dextrorotatory and
laevorotatory forms. We therefore hope that our study deepens
the current knowledge of natural optical activity and will be
put in use to develop novel technologies.
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