Skip to main content
Article
Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes
Open Access Articles
  • Natalia N. Singh, University of Massachusetts Medical School
  • Ravindra N. Singh
  • Elliot J. Androphy, University of Massachusetts Medical School
UMMS Affiliation
Department of Medicine
Date
12-16-2006
Document Type
Article
Subjects
*Alternative Splicing; Base Sequence; Cell Line, Tumor; Cyclic AMP Response Element-Binding Protein; *Exons; Humans; Molecular Sequence Data; Mutagenesis, Site-Directed; Nerve Tissue Proteins; Nucleic Acid Conformation; RNA; RNA Splice Sites; RNA Stability; RNA-Binding Proteins; *Regulatory Sequences, Ribonucleic Acid; Ribonucleases; Ribonucleoprotein, U1 Small Nuclear
Abstract

Humans have two nearly identical copies of the survival motor neuron (SMN ) gene, SMN1 and SMN2. Homozygous loss of SMN1 causes spinal muscular atrophy (SMA). SMN2 is unable to prevent the disease due to skipping of exon 7. Using a systematic approach of in vivo selection, we have previously demonstrated that a weak 5' splice site (ss) serves as the major cause of skipping of SMN2 exon 7. Here we show the inhibitory impact of RNA structure on the weak 5' ss of exon 7. We call this structure terminal stem-loop 2 (TSL2). Confirming the inhibitory nature of TSL2, point mutations that destabilize TSL2 promote exon 7 inclusion in SMN2, whereas strengthening of TSL2 promotes exon 7 skipping even in SMN1. We also demonstrate that TSL2 negatively affects the recruitment of U1snRNP at the 5' ss of exon 7. Using enzymatic structure probing, we confirm that the sequence at the junction of exon 7/intron 7 folds into TSL2 and show that mutations in TSL2 cause predicted structural changes in this region. Our findings reveal for the first time the critical role of RNA structure in regulation of alternative splicing of human SMN.

Rights and Permissions
Citation: Nucleic Acids Res. 2007;35(2):371-89. Epub 2006 Dec 14. Link to article on publisher's site
Related Resources
Link to Article in PubMed
PubMed ID
17170000
Citation Information
Natalia N. Singh, Ravindra N. Singh and Elliot J. Androphy. "Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes" Vol. 35 Iss. 2 (2006) ISSN: 1362-4962 (Electronic)
Available at: http://works.bepress.com/ravindra-singh/6/