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We show that supersymmetry can provide a versatile platform in synthesizing a new class of optical

structures with desired properties and functionalities. By exploiting the intimate relationship between

superpatners, one can systematically construct index potentials capable of exhibiting the same scattering

and guided wave characteristics. In particular, in the Helmholtz regime, we demonstrate that one-

dimensional supersymmetric pairs display identical reflectivities and transmittivities for any angle of

incidence. Optical supersymmetry is then extended to two-dimensional systems where a link between

specific azimuthal mode subsets is established. Finally, we explore supersymmetric photonic lattices

where discreteness can be utilized to design lossless integrated mode filtering arrangements.

DOI: 10.1103/PhysRevLett.110.233902 PACS numbers: 42.25.Bs, 11.30.Er, 42.81.Qb, 42.82.Et

Supersymmetry (SUSY) emerged within quantum field
theory as a means to relate fermions and bosons [1–6]. In
this mathematical framework, these seemingly very differ-
ent entities constitute superpartners and can be treated on
equal footing. Transitions between their respective states
require transformations between commuting and anticom-
muting coordinates—better known as supersymmetries.
The development of SUSY was also meant to resolve
questions left unanswered by the standard model [7], such
as the origin of mass scales or the nature of vacuum energy,
and to ultimately link quantum field theory with cosmology
towards a grand unified theory. Moreover, SUSY has found
numerous applications in random matrix theory and disor-
dered systems [8]. Even though the experimental validation
of SUSY is still an ongoing issue, some of its fundamental
concepts have been successfully adapted to nonrelativistic
quantum mechanics. Interestingly, in this context, SUSY
has led to new methods in relating Hamiltonians with
similar spectra. In this regard, it has been used to identify
new families of analytically solvable potentials and to
enable powerful approximation schemes [9–12]. SUSY
schemes have been also theoretically explored in quantum
cascade lasers [13] and ion-trap arrangements [14]. Clearly
of interest will be to identify other physical settings where
the rich structure of SUSY can be directly observed and
fruitfully utilized.

In quantum mechanics, SUSY establishes a relationship
between superpartners through the factorization of an op-

erator, i.e., Lð1Þ ¼ AyA, where y denotes the Hermitian
adjoint. In this respect, the superpartner is defined through

Lð2Þ ¼ AAy, from where one finds that ALð1Þ ¼ AAyA ¼
Lð2ÞA and AyLð2Þ ¼ AyAAy ¼ Lð1ÞAy. It then follows that
the two eigenvalue problemsLð1;2ÞXð1;2Þ¼�ð1;2ÞXð1;2Þ yield
identical spectra �ð1Þ ¼ �ð2Þ. Moreover, the SUSY opera-
tors Ay and A pairwise transform the eigenfunctions of

the respective potentials into one another: Xð1Þ / AyXð2Þ

and Xð2Þ / AXð1Þ [9]. In addition, supersymmetry demands

that A annihilates the ground state of Lð1Þ. Therefore,
the corresponding eigenvalue is removed from the spec-

trum ofLð2Þ. If, however, A does not annihilate the ground

state of Lð1Þ, then the two operators share the exact
same spectrum (including the fundamental state), and
SUSY is said to be broken. In the language of superpoten-
tials, this may also be characterized through the Witten
parameter [6,9].
In this Letter, we show that optics can provide a fertile

ground where the ramifications of SUSY can be explored
and utilized to realize a new class of functional structures
with desired characteristics. In particular, we demonstrate
that supersymmetry can establish perfect phase matching
conditions between a great number of modes—an out-
standing problem in optics. In this vein, we illustrate the
intriguing possibility for preferential mode filtering where
the fundamental mode of a structure can be selectively
extracted. Moreover, in the Helmholtz regime, SUSY
endows two very different scatterers with identical reflec-
tivities and transmittivities irrespective of the angle of
incidence. Subsequently, we extend the concept of optical
SUSY to two-dimensional (2D) settings with cylindrical
symmetry, as in optical fibers. We show that a partner
potential with a SUSY spectrum of radial modes exists,
offering the possibility for angular momentum multiplex-
ing. Finally, we investigate the implications of supersym-
metry within the framework of finite periodic structures
and propose a versatile approach to systematically design
SUSY optical lattices.
To explore the consequences of supersymmetry in op-

tics, we consider optical wave propagation in an arbitrary
one-dimensional refractive index distribution nðxÞ. Waves
propagating in the xz plane can always be decomposed
in their transverse electric (TE) and transverse magnetic
(TM) components. For TE waves the field evolution
is governed by the Helmholtz equation ð@xx þ @zz þ
k20n

2ðxÞÞEyðx; zÞ ¼ 0. Modes propagating in this system
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have the form Eyðx; zÞ ¼ fðxÞei�z and satisfy the following
eigenvalue equation for the propagation constant �:

H fðxÞ ¼ ��2fðxÞ; (1)

where H ¼ �ðd2=dx2Þ � k20n
2ðxÞ corresponds to the

Hamiltonian operator in a Schrödinger equation. For a

given index profile nð1ÞðxÞ, SUSY now provides a system-

atic way for generating a superpartner nð2ÞðxÞ. If the index
distribution nð1ÞðxÞ supports at least one bound state fð1Þ1 ðxÞ
(the ground state) with a propagation eigenvalue �ð1Þ

1 ,

SUSY can be established via H ð1Þ þ ð�ð1Þ
1 Þ2 ¼ AyA,

where A ¼ þd=dxþWðxÞ and Ay ¼ �d=dxþWðxÞ are
defined in terms of a yet to be determined superpotential
WðxÞ. The optical potential and its superpartner then
satisfy

ð k0nð1;2ÞðxÞÞ2 ¼ ð�ð1Þ
1 Þ2 �W2 �W0: (2)

Taking into account that AyAfð1Þ1 ¼ 0, one finds that

Afð1Þ1 ¼ 0. Thus a valid solution for W can be obtained

from the logarithmic derivative of the node-free fundamen-
tal mode

WðxÞ ¼ � d

dx
lnðfð1Þ1 ðxÞÞ: (3)

Figure 1(a) depicts an arbitrary refractive index distribu-
tion supporting a set of six guided modes. Here the maxi-
mum index contrast is 5� 10�3 and the wavelength used is
1 �m. While Eqs. (1)–(3) are valid in the Helmholtz
regime, here we consider a low contrast structure that is
experimentally feasible. For this example, the SUSY part-
ner [Fig. 1(b)] has been numerically calculated from
Eq. (2) through the corresponding superpotential
[Fig. 1(c)] that was obtained from Eq. (3). As Fig. 1(a)

clearly shows, the fundamental mode of nð1Þ lacks a partner

in the eigenvalue spectrum of nð2Þ, indicating unbroken

SUSY. On the other hand, the second state of nð1Þ is paired
with the first mode of nð2Þ that has exactly the same
propagation constant in spite of its different parity. In this
way, all the modes of these two superpartners can be
perfectly phase matched except for the fundamental

mode of nð1Þ. Therefore, SUSY provides the only strategy
we know of to achieve global phase matching conditions,
irrespective of how large the number of modes is, in such
multimode optical potentials. This latter feature can be
exploited for mode filtering applications. The idea is illus-

trated in Fig. 2(a) where nð1Þ has the form of a step-index–
like waveguide that supports three modes at � ¼ 1:5 �m.
The optical propagation when this system is excited with
an arbitrary input beam, is depicted in the first propagation
section of this figure. In this range, the field evolution is
seemingly chaotic because of modal interference. Once the
superpartner waveguide is put in proximity, however, all

the modes of nð1Þ (apart from the fundamental) are peri-
odically coupled between these two structures. Despite
their parity, coupling between the phase-matched modes
occurs through their evanescent tails. If, for example, the
second waveguide is made intentionally lossy, all the

modes of nð1Þ eventually disappear except the fundamental,
as shown in Figs. 2(b) and 2(c). Similarly, the fundamental
mode can be selectively amplified. This behavior could be
potentially useful in large mode area laser sources. SUSY
structures also exhibit identical scattering properties in
terms of their reflectivities and transmittivities. In this
case, the radiation mode continua are related to each other
through the SUSYalgebra. Let us consider again the SUSY

pair described by Eq. (2). We also assume that nð1Þ asymp-
totically approaches a constant background value n1 at
x ! �1. For an angle of incidence �, the components of
the incident wave vector are kx ¼ k0n1 cosð�Þ and kz ¼
k0n1 sinð�Þ. The SUSY formalism then relates the field

reflection or transmission coefficients rð1;2Þ and tð1;2Þ asso-
ciated with these two structures in the following way [15]:

rð2Þ ¼ þW1 þ ikx
W1 � ikx

rð1Þ; tð2Þ ¼ �W1 þ ikx
W1 � ikx

tð1Þ; (4)

FIG. 1 (color online). (a) Exemplary refractive index land-
scape (gray area) and its six bound modes (vertical placement
indicates their respective eigenvalues). (b) SUSY partner and its
five modes. The operators A, Ay transform the phase-matched
modes into each other. (c) Both index landscapes can be con-
structed from the superpotential W and its slope W0.

FIG. 2 (color online). Beam propagation in a multimode wave-
guide. (a) When isolated (before dashed line), and when coupled
to its lossy superpartner (after dashed line, losses: ��0:4cm�1).
Two more advanced stages of this same field evolution in the
coupled system are shown in (b), (c).
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where W1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�ð1Þ
1 Þ2 � k20n

21
q

represents the limit of the

superpotential at x ! þ1 as obtained from Eq. (2). Note
that the argument of the square root is always a non-

negative quantity [16]. It follows that nð1;2Þ exhibit identical
reflectivities Rð1Þ ¼ Rð2Þ ¼ jrð1;2Þj2 and transmittivities

Tð1Þ ¼ Tð2Þ ¼ jtð1;2Þj2. Consequently, barring direct phase
measurements, the two SUSY structures would be indis-
tinguishable at any angle of incidence. Interestingly, the

phase difference between rð1Þ and rð2Þ, and between tð1Þ and
tð2Þ for any given � is solely determined by the propagation

constant �ð1Þ
1 of the fundamental mode and the background

refractive index n1. A schematic of a possible scattering
arrangement is depicted in Fig. 3. The angle-dependent
reflection or transmission coefficients for the SUSY pair
considered in Figs. 1(a) and 1(b) were evaluated by means
of the differential transfer matrix method [17] when the
background refractive index is n1 ¼ 1:5. In accordance
with our previous discussion, the two structures display
identical reflectivities [Fig. 3(a)]. The phase difference
between their respective transmission coefficients is also
shown in Fig. 3(b). Having investigated SUSY in 1D
optical systems, the question naturally arises as to whether
these concepts can be extended to 2D structures. The
answer is not particularly obvious given that the aforemen-
tioned factorization technique relies on 1D Hamiltonians
[9]. In what follows, we show that this limitation can be
overcome in paraxial settings with cylindrical symmetry,
as in weakly guiding optical fibers. In this regard, let us
consider the radial refractive index profile nðrÞ ¼ n1 þ
�nðrÞ where �n � n1. In this case, the slowly varying
field envelope U satisfies the paraxial equation

�

� @2

@�2
� 1

�

@

@�
� 1

�2

@2

@�2
� Vð�Þ

�

U ¼ i
@

@�
U; (5)

where � ¼ r=r0 is a normalized radial coordinate, r0 is an
arbitrary spatial scale, � is the azimuthal angle, and the
normalized axial coordinate is given by � ¼ z=ð2k0n1r20Þ.
In this representation the optical potential reads V ¼
2n1k20r20�n. By expressing the mode U ¼ ei��ei‘�Rð�Þ
in terms of its orbital angular momentum ‘, and after using

the radial transformation R ¼ ��1=2u we reduce Eq. (5) to
a 1D form,

�

� d2

d�2
� Veffð�Þ

�

u ¼ ��u; (6)

with the effective potential Veffð�Þ ¼ Vð�Þ þ ð1=4�
‘2Þ=�2. By designating the modes of Eq. (6) as u‘m, having
azimuthal and radial mode numbers ‘ and m, respectively,

one can then generate an effective partner potential Vð2Þ
eff ð�Þ

for a given effective potential Vð1Þ
eff ð�Þ. As in the 1D case

investigated before, these two potentials are related via the

fundamental mode uð1Þ‘11
of the first potential; Vð2Þ

eff ¼ Vð1Þ
eff þ

2 d2

d�2 lnðuð1Þ‘11
Þ. In the original coordinate system, Rð1Þ

‘11
¼

��1=2uð1Þ‘11
, which yields the following relation between

the superpartner potentials:

Vð2Þð�Þ ¼ Vð1Þð�Þ þ 2
d2

d�2
ln

�

�ð‘2
1
�‘2

2
þ1Þ=2Rð1Þ

‘11

�

: (7)

Note that in deriving themost general expression forVð2Þwe
have assumed a different azimuthal mode number ‘2 for the

partner potential. In other words, a potential Vð1Þ and its

partnerVð2Þ, constructed for a certain ‘1 and ‘2, will only be
supersymmetricwith respect to the subsetsRð1Þ

‘1m
andRð2Þ

‘2m
of

their respective radial modes (m ¼ 1; 2; . . . ). Note that the
second term in Eq. (7)may introduce a singularity at� ¼ 0.
Yet, this can be alleviated through an appropriate choice of
‘1 and ‘2. Near the origin (� � 1), the radial solutionsR‘m

of any well-behaved potential Vð�Þ are proportional to �j‘j

[15], and thus R‘11ð�Þ � �j‘1j. Therefore, Eq. (7) yields a
nonsingular partner potential only if j‘2j ¼ j‘1j þ 1.
This relation reveals an unexpected result; in cylindrically
symmetric settings, SUSY provides a link between sets
of modes with adjacent azimuthal numbers. Given that

Vð1Þ vanishes at � ! 1 it then follows that [15] Rð1Þ
‘11

�
1
ffiffiffi

�
p expð� ffiffiffiffiffiffiffiffiffiffi

�‘11
p

�Þ, and hence Vð2Þð�Þ � 1=�2 in this

same limit. Figures 4(a) and 4(b) depict the field

profiles of the modes LPð1;2Þ
‘1;2m

¼ ei‘1;2�Rð1;2Þ
‘1;2m

ð�Þ corre-

sponding to the two cylindrical superpartner index profiles
in Figs. 4(c) and 4(d). In this case, the original refractive

index distribution is taken to be �nðrÞ ¼ 	e�ðr=r0Þ8 , where
the core radius is r0 ¼ 30 �m, the index contrast amounts
to 	 ¼ 2� 10�3 and the background refractive index is
n1 ¼ 1:5. At awavelength of 1:55 �m, it supports a total of
twelve guided modes. Based on the lowest state with
‘1 ¼ 1, a partner potential for ‘2 ¼ 2 was generated
according to Eq. (7) [see Fig. 4(d)]. Note that whereas
SUSY holds between the modes with ‘1 ¼ 1 and ‘2 ¼ 2,
the rest of the eigenvalues remain disjoint, as shown in
Figs. 4(e) and 4(f). By relating mode subsets of different
azimuthal indices in this 2D setting, SUSY offers the pos-
sibility for a fully integrated realization of optical angular
momentum multiplexing [18]. We next consider SUSY in

FIG. 3 (color online). Scattering properties of the SUSY pair
from Fig. 1: (a) logarithmic plot of the angle-dependent reflec-
tivities Rð1;2Þ (the graphs have been offset for visibility), and
(b) phase difference of the transmission coefficients tð1;2Þ (inset:
schematic of the scattering configuration).
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finite periodic arrangements. For example, a lattice of N
well-separated single-mode waveguides is known to sup-
port a set of N bound states or supermodes. In this array
environment, the fundamental state is again node free and
hence can be readily used to generate a superpotential
according to Eq. (2). The corresponding SUSY partner
resembles a lattice with N � 1 dissimilar channels located
in the gaps between the original waveguides. The coupled
mode formalism provides an effectiveway to describewave
evolution in photonic lattices within the first band. The set
of coupled differential equations [19] for the modal field
amplitudes a can be written in the form Ha ¼ �a, where
H is now the discrete Hamiltonian of the system. This
discretization provides a powerful approach for construct-
ing SUSY pairs: the Hamiltonian can be directly factorized
using the Cholesky method [20]. The pair of isospectral
Hamiltonians thus obtained retains the tridiagonal shape
of H ; i.e., the SUSY partner represents again a photonic
lattice with nearest-neighbor coupling. Note that whereas
both Hamiltonians are N � N matrices, SUSY is, never-
theless, unbroken in the sense that the Nth waveguide of
lattice 2 is completely decoupled.

Even more importantly, the discrete formalism outlined
above relaxes the need for exactly controlling the refractive

index landscape. In particular, the technological difficulties
associated with sharp index depressions can be circum-
vented without any loss of functionality. Indeed, the control
of only two parameters is here sufficient for the actual
realization of SUSY optical systems: the waveguide’s ef-
fective refractive index, which determines the propagation
constant, and their separation, which relates to the coupling
coefficient. A sequence of SUSY potentials can be itera-
tively obtained by discarding the respective isolated chan-
nels. Such a SUSY ‘‘ladder’’ can facilitate a lossless
decomposition of any input beam into its modal constitu-
ents. Aweak coupling cL between such consecutive partner
lattices, as indicated in Fig. 5(a), does not perturb SUSYand
allows for an interaction only between states with equal
eigenvalues. Consequently, energy initially carried by the
kth supermode in the fundamental lattice can be transported
between all layers 1 . . . k, but is rejected by layer kþ 1.
The propagation dynamics arising from the excitation of
several supermodes in the fundamental lattice are shown in
Figs. 5(b)–5(d) for such a SUSY ladder based on a uniform
array with N0 ¼ 6 waveguides. The condition of weak
interlayer coupling was assured by setting cL to be 5% of
the couplingCwithin the uniform lattice. In conclusion, we
have shown that SUSYpartner systems can be generated for
any 1D refractive index landscape supporting at least one
bound state. Despite their dissimilar shapes, SUSY struc-
tures can exhibit identical reflectivities and transmittivities
for arbitrary angles of incidence. Subsequently, the concept
of optical SUSY was extended to 2D settings with cylindri-
cal symmetry. In this case SUSY was established for sets
of modes exhibiting consecutive azimuthal indices. In the
context of photonic lattices, SUSY manifests itself as a
reduction in the number of channels. This concept is general
and highlights the potential of SUSY for robust optical
filtering and signal processing applications. Using super-
symmetry in non-Hermitian systems that include gain and
loss could be another interesting direction [21].
We acknowledge financial support from NSF

(Grant No. ECCS-1128520) and AFOSR (Grant
No. FA95501210148). M.H. was supported by the German
National Academyof Sciences Leopoldina (GrantNo. LPDS
2012-01).

FIG. 4 (color online). (a), (b) Supersymmetric subsets of
bound states corresponding to the SUSY pair of cylindrically
symmetric index profiles (c), (d) generated for azimuthal num-
bers ‘1 ¼ 1 and ‘2 ¼ 2. (e), (f) Complete eigenvalue spectra
(effective refractive indices) of both potentials. The respective
subsets of SUSY states are indicated by dashed frames.

FIG. 5 (color online). (a) Schematic of a SUSY ladder with
N ¼ 6 layers. Propagation dynamics when a supermode of the
original lattice is selectively excited. (b) k ¼ 1 (fundamental
state): confined in the first layer. (c) k ¼ 3: penetrates only the
first 3 layers. (d) k ¼ 6: moves freely across the entire ladder.
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