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Abstract

Content Delivery Networks (CDNs) deliver web content to end-users from a large dis-
tributed platform of web servers hosted in data centers belonging to thousands of Internet
Service Providers (ISPs) around the world. The bandwidth cost incurred by a CDN is
the sum of the amounts it pays each ISP for routing traffic fromits servers located in that
ISP out to end-users. A large enterprise may also contract with multiple ISPs to provide
redundant Internet access for its origin infrastructure using technologies such as mul-
tihoming and mirroring, thereby incurring a significant bandwidth cost across multiple
ISPs. This paper initiates the formalalgorithmicstudy of bandwidth cost minimization
in the context of a large enterprise or a CDN, a problem area that is both algorithmically
rich and practically very important. First, we model different types of contracts that are
used in practice by ISPs to charge for bandwidth usage, including average, maximum,
and95th-percentile contracts. Then, we devise an optimal offline algorithm that routes
traffic to achieve the minimum bandwidth cost, when the network contracts charge either
on a maximum or on an average basis. Next, we devise a deterministic (resp., random-
ized) online algorithm that achieves cost that is within a factor of 2 (resp., e

e−1
) of the

optimal offline cost for maximum and average contracts. In addition, we prove that our
online algorithms achieve the best possible competitive ratios in both the deterministic
and the randomized cases. An interesting theoretical contribution of this work is that we
show intriguing connections between the online bandwidth optimization problem and
the seemingly-unrelated but well-studied ski rental problem where similar optimal com-
petitive ratios are known to hold. Finally, we consider extensions for contracts with a
committed amount of spend (known as Committed Information Rate or CIR) and con-
tracts that charge on a95th-percentile basis.

Key words: Internet content delivery, Content delivery networks, Optimization
algorithms, Bandwidth cost minimization, Network algorithms, Traffic management
algorithms, Online algorithms.

Preprint submitted to Elsevier May 25, 2011



1. Introduction

The Internet has emerged as a business-critical medium for enterprises to commu-
nicate with their vendors and clients. However, the Internet itself was designed as a
best-effort delivery network with no guarantees on availability or performance. The In-
ternet is a network of networks, where each network is managed independently by an
Internet Service Provider (ISP) who builds and manages the routers, links, and other
networking infrastructure. As such, there are more than 13,000 ISPs that constitute the
Internet today, ranging from large Tier-1 providers with a global presence (such as Level
3, and ATT), national providers (such as China Telecom, and SingTel in Singapore),
regional providers (such as Earthnet), and local Tier-3 ISPs. An enterprise requiring
high-levels of availability for their Internet services faces a fundamental challenge. It is
not sufficient for the enterprise to obtain their Internet connectivity from a single ISP,
as any single ISP is prone to failure caused by router breakdowns, fiber cuts, and con-
figuration errors. Therefore, many enterprises use strategies such as mutihoming and
mirroring that allow them to access the Internet using multiple ISPs and data centers.
In addition, many major enterprises use a Content Delivery Network (CDN) that is a
large fault-tolerant distributed platform of web servers hosted in potentially thousands
of ISPs. Examples of such CDNs include Akamai [4] and Limelight [3]. A significant
fraction of the web traffic today use CDNs, including most major media, entertainment,
e-commerce, and extranet portals. For a comprehensive description of the rationale for
CDNs and the system architecture of Akamai’s CDN, the readeris referred to [11].

1.1. CDN System Architecture

The model and results of this paper apply in several general technological contexts
where cost-efficient inter-ISP traffic management is critical. But, perhaps the most im-
portant context is that of a large global CDN. We provide a brief overview of CDN
architecture (see Figure 1). It is instructive to follow theactions of a typical user to see
how the various system components interact to deliver content to that user.

• When the user types a URL into his/her browser, the domain name of the URL is
translated by the mapping system into the IP address of an edge server to serve
the content (arrow 1). To assign the user to a server, the mapping system bases its
answers on large amounts of historical and current data thathave been collected
and processed regarding global network and server conditions, and cost. This data
is used to choose an edge server that is located close to the end user.
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Figure 1: The system architecture of a CDN.

• Each edge server is part of the edge server platform, a large global deployment of
servers located in thousands of sites around the world. These servers are respon-
sible for processing requests from users and serving the requested content (arrow
2).

• In order to respond to a request from a user, the edge server may need to request
content from an origin server (arrow 3). The transport system is used to download
the required data in a reliable and efficient manner.

• The communications and control system is used for disseminating status informa-
tion, control messages, and configuration updates in a fault-tolerant and timely
fashion. The data collection and analysis system is responsible for collecting and
processing data from various sources such as server logs, client logs, and net-
work and server information. Finally, the management portal serves two functions.
First, it provides a configuration management platform thatallows an enterprise
customer (i.e., Content Provider) to retain fine-grained control how their content
and applications are served to the end user. In addition, themanagement portal
provides the enterprise with visibility on how their users are interacting with their
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applications and content, including reports on audience demographics and traffic
metrics.

While a comprehensive description of the CDN architecture is out of the scope of the
current paper (see [11] and [1] instead), we restrict our attention to one specific facet
of the mapping system that optimizes the bandwidth costs incurred in routing traffic to
end-users.

1.2. Bandwidth Cost Optimization

A CDN negotiates network contracts to buy Internet bandwidth from a large number
of ISPs and co-locates its edge servers in those ISPs. An end-user accessing web content
hosted on the CDN is directed by the CDN’s mapping system to anappropriate server at
one of the contracted ISPs, so as to optimize availability and performance for the end-
user and to minimize bandwidth costs for the CDN. Thus, a CDN’s mapping system [11]
operates as an “Internet traffic cop” by controlling which portion of the traffic demand
is served from which ISP. The traffic assignments happen in anonline and “real-time”
fashion where assignments are changed periodically at the time granularity of minutes
(say, every 5 minutes).

A CDN can be viewed as a reseller of Internet bandwidth, whereit pays each ISP for
the traffic served from that ISP to end-users. A CDN in turn gets paid by the enterprises
(i.e., content providers) for the traffic the CDN delivered on their behalf. A significant
portion of the variable1 costs of operating a CDN is the total bandwidth costs that it
pays the ISPs, and minimizing this cost is the primary focus of this paper. Note that
while bandwidth costs are incurred throughout the CDN system, our focus is the cost
of transmitting content from edge servers to end-users (seeFigure 1) that constitutes the
lion’s share of the bandwidth costs in the system.

A CDN buys bandwidth from ISPs using network contracts that fall into one of three
types depending on how the bill for traffic usage is computed in each billing period.
The billing period (typically, a month) is divided into a sequence ofM time buckets
(typically, 5-minute buckets, so that there are aboutM = 8640 buckets per month).
Each ISP computes thetraffic profile 〈b1, b2, · · · , bM−1, bM 〉, wherebi represents the
average traffic (in Mbps) sent in time bucketi from the CDN’s servers located in that
ISP. Then, depending on the type of the contract, thebillable traffic for the billing period
is computed as either the average (AVG), the maximum (MAX), or the95th percentile of
the values〈b1, b2, · · · , bM−1, bM 〉. The CDN pays the ISP the product of an agreed-upon
unit cost (in dollars per Mbps) and the billable traffic (in Mbps). The unit costs vary from
ISP to ISP, with some ISPs being cheaper than others, depending on the specifics of the
contracts negotiated between the CDN and the ISPs. Note thatwhile most real-world
contracts are either AVG or95th, MAX is highly important from a practical system

1A CDN also incurs fixed costs such as costs for servers and colocation.
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design perspective, since traffic cannot be controlled in a precise enough fashion2to take
advantage of the5% window for free traffic in a95th percentile contract. Therefore,
real-life bandwidth cost optimizers view95th percentile contracts as MAX contracts
for purposes of the optimization, and hence studying the MAXcontract model is very
important.

The overall bandwidth cost incurred by a CDN is the sum of the costs incurred
at each individual ISP, where each ISP charges the CDN for traffic usage as specified
in the contract. Because the contract terms with each ISP canvary significantly, the
manner in which the CDN splits up the aggregate traffic demandbetween individual ISPs
significantly influences the overall bandwidth cost incurred by the CDN. The primary
focus of this paper is optimal algorithms for assigning traffic demand across multiple
ISPs to minimize the overall bandwidth cost. In particular,we seek algorithms that
produce solutions that areprovablyoptimal or near-optimal.

1.3. Mirroring and Multihoming

While the model and results presented in this paper use CDNs as a motivating exam-
ple, the results are also applicable to other important technologies such as multihoming
[2], where an enterprise contracts with multiple ISPs to provide redundant Internet ac-
cess for its origin infrastructure. The enterprise would then route traffic to and from its
origin via uplinks that connect to the Internet via different ISPs, so as to minimize band-
width costs and maximize availability and performance. A multihomed enterprise can
use a number of techniques to manage the traffic on its uplinks. The enterprise can man-
age multiple ip address spaces associated with multiple ISPs and use the Domain Name
System (DNS) to resolve each domain name to an appropriate ipaddress. The routes
used by traffic to that domain name is governed by the ip address that is returned by
DNS. Alternately, enterprises may manage a single ip address space and use the Border
Gateway Protocol (BGP) to appropriately announce all or portions of this address space
on the various uplinks, thereby controlling the traffic routes through those links [16]. In
addition to multihoming, the enterprise could also create multiple replicas (or, mirrors)
of its origin infrastructure in different ISPs and different geographies. Multihoming and
mirroring are used by large enterprises in a complementary fashion to using a CDN. Our
model and results are also applicable to the problem of assigning the origin traffic to
multiple mirrors and/or multihomed uplinks to minimize bandwidth cost.

1.4. Performance versus Cost

While this paper considers optimizing cost in isolation, real-world technologies such
as CDNs and multihoming aim to first optimize a notion of performance (such as mini-
mizing web download time by reducing latency and loss) whilestriving to optimize cost.

2The imprecision comes from several sources. For instance, some browsers don’t comply with TTLs in
a precise fashion, and traffic moved away from an ISP by the optimizer will decay slowly over time instead
of falling sharply.
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However, pure cost optimization that we consider in this paper is an important first step
for the following reasons.

• From an algorithmic standpoint understanding pure cost optimization is a major
stepping stone for the more general bi-criteria cost-performance optimization that
we plan to do in future work. We believe that the algorithmic ideas generated in
this study will shed light on the more complex bi-criteria optimization framework.

• Different types of traffic have different sensitivities to performance and cost. De-
livering a real-time application is extremely performancesensitive but also less
cost sensitive as customers are willing to pay more for higher performance. How-
ever, other types of traffic such as (non-realtime) background downloads of large
files is less performance sensitive but also more cost sensitive as customers expect
to pay much less. The latter situation is more closely aligned with the pure cost
optimization regime presented in this paper.

• The pure cost optimization studied in this paper provides a lower bound on the
bandwidth cost achievable by any real-world system that simultaneously opti-
mizes performance and cost. Comparing the actual incurred cost with this lower
bound delineates the portion of the actual cost that is intrinsic to the contracts and
traffic from the remaining additional cost premium attributable to providing per-
formance and other considerations. Understanding this cost premium and how it
varies with different types of traffic is critical to understanding the cost structure
of the content delivery service.

1.5. Prior Work

Considering the practical importance of the problem in recent years, heuristic im-
plementations exist. However, this is the first formal study3 of algorithms for bandwidth
cost minimization across multiple ISPs. Recently, there has been some interesting work
on cost minimization from a multihoming perspective [14] where AVG and95th per-
centile contracts are considered and empirically evaluated. However, our work is unique
in considering the typical CDN situation where the optimizer simultaneouslyroutes traf-
fic to ISPs withboundedcapacities and a mix of contract types, and formal bounds for
optimality are shown in the competitive ratio framework foronline algorithms. There is
extensive literature on online algorithms [12, 13]. Prior research on online algorithms
for ski-rental and related problems [10, 9] is particularlyrelevant as we show inter-
esting connections between our problem and this class of problems. Specifically, our
techniques to solve the bandwidth minimization problem areinspired by those used to
solve variants of the ski-rental problem. In addition, the competitive ratios of our online
algorithms are also reminiscent of those derivable for the ski rental problem.

3A preliminary version of this paper appeared as [15].
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CDNs have been the focus of much research in recent years [17,18], though there
has not been much prior work in the current context of bandwidth cost optimization. In
our work, we primarily consider a CDN that owns and operates adedicated distributed
network of servers that deliver content on behalf of contentproviders. The dedicated
network approach is the predominant model for CDNs today with providers such as
Akamai and Limelight utilizing that model. However, there are other models for con-
tent delivery that have been proposed. For instance, multiple CDNs could cooperate to
serve content [25]. Alternately, content delivery can be achieved by P2P systems such
as KaZaa [20], or Gnutella [19] that utilize (non-dedicated) peers to serve other peers.
High-quality content delivery is harder to achieve with P2Psystems in practice, though
there has been has been much recent research to make P2P systems more scalable, more
available and better performing, including a number of experimental systems such as
Chord [21], Content Addressable Networks [22], Tapestry [23], and Pastry [24]. Band-
width cost is less of an issue for P2P systems since peer bandwidth is typically free
from the perspective of the entity that provides the P2P service. However, much of the
enterprise-quality content delivery happens today on traditional CDNs in the dedicated
network model where our research is directly applicable.

1.6. Our Contributions

The first contribution of the paper is the modeling and formulation of an area of great
practical importance with a rich potential for future algorithmic investigation. The model
and algorithms presented here are immediately relevant to commercial technologies of
today, advancing the current state-of-the-art. Our goal here is to develop algorithmic
techniques for cost optimization and to deriveprovablyoptimal algorithms, leaving the
empirical study of these ideas for future work.

We study bothoffline and online algorithms for the bandwidth cost minimization
problem. An offline algorithm knows the traffic that needs to be routed for the entire
billing period in advance. While an online algorithm makes routing decisions knowing
only the past and current traffic levels and without any knowledge of the future traffic.
Both kinds of algorithms are useful in practice. Routing traffic in an actual system is
necessarily online, while offline algorithms are used for retrospective cost analysis. In
Section 3, we derive an optimal offline algorithm that routestraffic to a set of ISPs with
AVG and MAX contracts such that the total cost is minimized. Note that the offline
optimal algorithm produces a lower bound on the cost againstwhich any online algo-
rithm can be compared at the end of each billing period. Further, an optimal offline
algorithm is of independent interest in practice since it can be used retrospectively to
derive the lowest achievable cost of the prior billing period. A comparison of the offline
optimal cost with the (higher) actual cost incurred during the billing period provides
valuable information on the cost structure of the CDN, i.e.,which portion of the cost is
an inevitable function of the ISP contracts and what is the additional cost for providing
greater performance in an online setting.
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Next, in Section 4, we turn to online algorithms that know only the current and the
past traffic levels, and are unaware of any events in the future. Note that any cost opti-
mizer that is implemented as a part of the mapping system is necessarily online. Specif-
ically, in Section 4.1, we devise a deterministic online algorithm that is at most a factor
of 2 in cost from the optimal offline solution. Further, in Section 4.2, we devise a ran-
domized online algorithm that has an expected cost that is a factor of at most e

e−1
from

the optimal offline solution. In both cases, we show that the competitive ratios are the
best possible. Note that our results fully characterize thevalue of knowing future traf-
fic in bandwidth cost minimization. Another interesting theoretical contribution of this
work is that we show intriguing connections between the online bandwidth optimization
problem and the seemingly-unrelated but well-studied ski rental problem. Specifically,
our work shows that the online decision to route through a MAXversus an AVG contract
is a generalized form of the buy-versus-rent decision in theski-rental problem. This fur-
thers our understanding of the class of online problems where competitive ratios of2 and
e/(e − 1) are optimal for deterministic and randomized online algorithms respectively.
Other problems in this class include previously known generalizations of ski rental, such
as the Bahncard problem [7] and the TCP Acknowledgment problem [6, 9] where the
same competitive ratios apply.

In Section 5, we extend the contract framework to include thenotion of a committed
information rate (CIR), where the CDN has paid in advance fora certain committed
amount of traffic through an ISP. We extend our results of Section 3 to provide an optimal
offline algorithm for MAX and AVG contracts with CIR.

Finally, we show the intractability of optimizing95th percentile contracts. Specifi-
cally, we show that optimizing costs for95th percentile contracts is NP-hard, differenti-
ating it from the MAX and AVG contracts.

2. The Bandwidth Cost Minimization Problem

In this section, we model network contracts and formally describe the bandwidth
cost minimization problem.

2.1. Network Contracts

A first important step in our study is accurately modeling theparameters of a CDN’s
typical network contract with an ISP. While a network contract is a complex legal docu-
ment, there are three important parameters that provide a simple yet realistic model for
designing applicable optimization algorithms.

1. Type. The contract type dictates how the ISP will bill for the traffic that is sent
over its links. As noted earlier in Section 1.2, the three types of contracts are AVG,
MAX, and 95th.

2. Unit Cost.Unit costC is the cost per Mbps that the ISP charges the CDN.
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3. Capacity. The capacityP is the maximum bandwidth (in Mbps) that one can
transmit from the CDN’s servers in that ISP.

The amount that a CDN paysISPj is computed using the first two parameters above as
shown below. The billing period (typically, a month) is divided into a sequence ofM
time buckets (typically, 5-minute buckets, so that there are aboutM = 8640 buckets per
month).

1. The traffic profile
〈

yj
1
· · · , yj

t , · · · y
j
M

〉

is computed, whereyj
t represents the av-

erage traffic sent (in Mbps) in time buckett from the CDN’s servers located in

ISPj . Next, thesorted traffic profile
〈

xj
1
, xj

2
, · · · , xj

M−1
, xj

M

〉

is computed by

sorting the traffic profile in descending order, i.e.,xj
1
≥ xj

2
≥ · · · ≥ xj

M .

2. For an AVG contract the billable traffic is computed to betj =
∑

i xj
i/M . Like-

wise, the billable traffic of a MAX contract istj = xj
1
. And, the billable traffic of a

95th contract istj = xM
20

, sinceM
20

time periods represents5% of the billing period

and hencexM
20

is the95th percentile of the traffic values in the billing period.

3. The total amount that the CDN pays theISPj is the unit costCj (in dollars per
Mbps) multiplied by the billable traffictj (in Mbps).

In addition to these three parameters, an additional parameter called the Committed
Information Rate (CIR) is important to model. CIR represents the committed amount of
billable traffic that must be sent through an ISP. The CIR is paid for in advance, whether
or not it is used. CIRs are considered in the later part of the paper in Section 5.

2.2. Cost Minimization

The optimization problem proposed here models an aspect of the mapping compo-
nent in a CDN that senses the incoming traffic requests and assigns them to servers in
multiple ISPs. Typically, the traffic assignment is performed by resolving domain names
using DNS, and the incoming traffic represents requests fromthousands of nameservers
around the world. For simplicity, we will assume that the total traffic demand as well
as the traffic routed through each ISP during each time interval are integers. Further,
we assume that the traffic can be split and assigned in any manner to the ISPs at the
granularity of a single unit of traffic. This is a good first-cut approximation as most of
the Internet web traffic comes from a large number of nameservers. Each nameserver
can be routed independently by responding to the DNS requestfrom the nameserver
with an appropriate set of server ips. Since each nameserveris responsible for only a
small portion of the total traffic, it is possible to control the routing of the traffic at a fine
granularity.

The bandwidth cost minimization problem is modeled as follows. The billing period
(typically one month) is divided intoM 5-minute time buckets. We model the incoming
aggregate traffic demand as a sequenceI = 〈b1, · · · , bt, · · · bM 〉, wherebt is the average
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traffic (Mbps) in time buckett. Note thatbt represents the total traffic demand from
end-users that must be served by the CDN at time buckett. At any time t, a traffic
routing algorithmpartitions the incoming trafficbt and assignsyj

t Mbps toISPj such
that

∑

j yj
t = bt. Further, it ensures that capacity constraints are met at each ISPj and

at each time1 ≤ t ≤ M , i.e.,yj
t ≤ Pj, wherePj is the capacity ofISPj . The total cost

incurred by the traffic routing algorithm for the input traffic sequenceI is simply

C(I) =
∑

j

Cjtj ,

whereCj is the unit cost ofISPj and thetj is the billable traffic computed from the

profile
〈

yj
1
· · · , yj

t , · · · y
j
M

〉

of traffic served fromISPj taking into consideration the

type of contract.
An offline algorithm knows the entire time-ordered input sequence of traffic de-

mands,I = 〈bt〉, 1 ≤ t ≤ M , for the entire billing period. It makes traffic routing
decisions based on this complete knowledge. An online algorithm makes routing de-
cisions at timet knowing onlybj , 1 ≤ j ≤ t, i.e., knowing only the past and current
values. Note that the incoming trafficbt, the traffic assignmentsyj

t , and capacitiesPj

areintegral values in the units of bits per second.
As mentioned earlier, we study both offline and online algorithms for traffic manage-

ment that optimize the total cost incurred in the network contracts for the billing period.
We use the notion of competitive ratio [13] to bound the costCA(I) of an online algo-
rithm A in terms of the optimal offline cost ofCOPT (I). In particular, a deterministic
online algorithmA is said to bec-competitive if there exists a constantα such that for
all input sequencesI, CA(I) ≤ c · COPT (I) + α. A similar competitive notion applies
to randomized online algorithms where theexpectedvalue of the cost is used instead.
Note that the competitive ratio guarantees derived for our online algorithms hold in the
worst-case, irrespective of the behavior and (un)predictability of the incoming traffic.

3. The Offline Algorithm

In this section, we derive an optimal offline algorithm that routes traffic with mini-
mum total bandwidth cost to ISPs with AVG or MAX contracts. Without loss of gen-
erality, we assume that no two AVG ISPs (resp., MAX ISPs) havethe same unit cost,
since two such ISPs can be considered to be one ISP with the sumof their individual
capacities.

3.1. MAX ISPs

To start with, assume that we are given contracts that are allMAX ISPs and there
are no AVG ISPs. Let there bem MAX ISPs Maxi, 1 ≤ i ≤ m, such thatCMax1

<
CMax2

< · · · < CMaxm. Define the thresholdtMaxi
of an ISPMaxi to be the maximum

traffic routed during the billing period through that ISP. The following lemmas hold.
10



Lemma 1. In any optimal solution, thresholdtMaxi
> 0 only if tMaxj

= PMaxj
for all

j < i, wherePMaxj
is the capacity of the ISPMaxj .

Proof: Assume that there exists an optimal solution contrary to this lemma. LetMaxj ,
j < i, be an ISP such thattMaxj

< PMaxj
. We can now move traffic of up toPMaxj

−
tMaxj

in every time bucket from ISPMaxi to the cheaper ISPMaxj. This results in a
reduction of the threshold ofMaxi, and hence a reduction in total cost. Contradiction.
�

Lemma 2. There exists an optimal solution in whichMaxi is not used in a time interval
unless each ISPMaxj , j < i, has been used to its full capacity ofPMaxj

.

Proof: Suppose that the lemma does not hold for an optimal solution in some time
buckett. We show how to reroute the traffic in that time bucket to create a new optimal
solution with same cost that obeys the lemma in that time bucket. Let i be the largest
value such thatMaxi is used in time buckett. Using Lemma 1 and the fact thattMaxi

>
0, it follows that tMaxj

= PMaxj
, for all j < i. Therefore, one can reroute the traffic

in time buckett by filling the ISPs to capacity in sequential order starting from Max1.
This does not increase any of the thresholds and hence does not affect the overall cost.
Thus, the new solution after the rerouting is also optimal.�

Thus the greedy algorithm of using a cheaper MAX ISPs to its full capacity before
using a costlier MAX ISPs routes traffic throughm MAX ISPs with the least cost. As the
cost is determined by the bucket with most traffic to be routedthe time taken to calculate
the cost of the optimal routing isO(m log m + M), since sorting the contracts by cost
takesO(m log m) time and finding the bucket with maximum traffic takesO(M) time.

3.2. AVG ISPs
Now we give a similar greedy algorithm for routing traffic when we have only AVG

ISPs. Assume that we are given contracts fromn AVG ISPsAvgi, 1 ≤ i ≤ n, such that
CAvg1

< CAvg2
< · · · < CAvgn . The following Lemma holds.

Lemma 3. In any optimal solution, ISPAvgi is not used in a time interval unless each
ISPAvgj , j < i, is used to its full capacity.

Proof: Assume there is an optimal solution contrary to this lemma. Moving traffic from
Avgi to a cheaper ISPAvgj that has residual capacity left reduces the cost. Contradic-
tion. �

Thus the greedy algorithm where in each interval a cheaper AVG ISPs is used to its
full capacity before using costlier AVG ISPs routes traffic throughn AVG ISPs with the
least cost. We can find the most expensive AVG ISP that needs tobe used in a bucket
in O(log n) time by using binary search to search for the bucket capacityin an array
of sizen, whosekth element is

∑k
i=1

CAvgi
for 1 ≤ k ≤ n. As the ISPs need to be

sorted by their cost, the total time taken to calculate the cost of the optimal solution is
O((n + M) log n).
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Figure 2: The structure of an optimal offline solution

3.3. MAX ISPs and AVG ISPs

Now we consider the general case when we haveboth MAX ISPs and AVG ISPs.
Assume that we are given contracts fromm MAX ISPs Maxi, 1 ≤ i ≤ m, such that
CMax1

< CMax2
< · · · < CMaxm . Further, assume that we are also given contracts

from n AVG ISPsAvgi, 1 ≤ i ≤ n, such thatCAvg1
< CAvg2

< · · · < CAvgn .
Let x1 ≥ x2 ≥ · · · ≥ xM be the average traffic within each of theM time buckets

during the billing period, sorted and placed in descending order. The assignment of
traffic to ISPs over a billing period can be represented visually as in Figure 2. The
vertical bars represent thexi, 1 ≤ i ≤ M . Each vertical bar is subdivided horizontally
to represent the assignment of that traffic to multiple ISPs.We now show that there exists
an optimal solution that is of the form shown in Figure 2.

Lemma 4. There exists an optimal solution such that in any time interval an AVG ISP is
used only if all MAX ISPs are used to their respective thresholds for the billing period.

Proof: Start with any optimal solution where ISPAvgi receivesx > 0 units of traffic in
a time interval, but some ISPMaxj is used less than its threshold byy > 0 units. By
movingmin{x, y} > 0 units of traffic fromAvgi to Maxj , the total cost of ISPAvgi

does not increase while the cost ofMaxj remains the same. Thus, the overall cost does
not increase and we have an optimal solution which satisfies the given property.�
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Thus there exists a dividing line at some heighth (Figure 2) such that all traffic
below this line is routed through MAX ISPs and all traffic above is routed through AVG
ISPs.4 Thus the problem can be broken into three parts - finding the optimal heighth
of the dividing line, routing traffic below the heighth through MAX ISPs and routing
traffic above the heighth through AVG ISPs. The problem of routing traffic below
(resp., above) the dividing line at heighth through only MAX ISPs (resp., AVG ISPs)
can be solved by greedy algorithms given in Section 3.1 (resp. Section 3.2). The Max-
Thresholdh, defined to be the sum of the thresholds of the MAX ISPs, can be found by
binary search using the following lemma.

DefineCMax(h) (resp.,CAvg(h)) to be the total cost of routing traffic below (resp.,
above) the dividing line at heighth through the MAX ISPs (resp., AVG ISPs) using
the greedy algorithms given above. SinceCMax(h) (resp.,CAvg(h)) is right differ-
entiable, we defineC ′

Max(h+) (resp.,C ′
Avg(h

+)) to be its right derivative ath i.e.,
limδh→0+(CMax(h + δh) − CMax(h))/δh. Let C(h) = CMax(h) + CAvg(h) and
thusC ′(h+) = C ′

Max(h+) + C ′
Avg(h

+). Further, recall thatx1 the largest traffic that is
to be routed within any time bucket.

Lemma 5. For all h1,h2 if C ′(h+

1
) andC ′(h+

2
) are well-defined andx1−

∑n
i=1

PAvgi
≤

h1 < h2 <
∑m

j=1
PMaxj

, thenC ′(h+

1
) ≤ C ′(h+

2
).

Proof: C ′
Max(h+) is the cost of the cheapest MAX ISP that has not been used to itsfull

capacity when the Max-Threshold ish. ThusC ′
Max(h+) is defined whereverCMax(h)

is defined, except whenh is the sum of the capacities of the MAX ISPs. From Lemma 2,
it follows thatC ′

Max(h+) is a non-decreasing function.
C ′

Avg(h
+) = −

∑M
i=1

(cost of the most expensive AVG ISP used in theith interval
when the Max-Threshold ish). ThusCAvg(h) is right differentiable wherever it is de-
fined. From Lemma 3, it follows thatC ′

Avg(h
+) is a non-decreasing function. The

lemma follows asC ′(h+) = C ′
Max(h+) + C ′

Avg(h
+).�

Givenm MAX ISPs,n AVG ISPs, and the traffic values for the entire billing period,
the offline optimal algorithm (which we refer to asOPT ) works as follows:

1. Using binary search, compute the optimal Max-Thresholdh as the value that min-
imizes the cost functionC(h).

2. Route all traffic at or belowh greedily through the MAX contracts.
3. Route all traffic aboveh greedily through AVG contracts as shown in Figure 2.

Theorem 6. The offline optimal solution and its cost can be computed inO(L(log m +
M log n) + n log n + m log m) time, wherem is the number of MAX ISPs,n is the

4Note that the algorithm could produce a solution that uses only the AVG contracts, if that is optimal,
by computing the heighth to be zero. In fact, that would be the case if the unit cost of the AVG contracts
are significantly lower than the unit cost of the MAX contracts.
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number of AVG ISPs,M is the total number of intervals in the billing period andL
is the number of bits required to represent the maximum amount of traffic sent in an
interval.

Proof: C(h) is a continuous function as bothCMax(h) andCAvg(h) are continuous
functions. From Lemma 5 and the fact thatC(h) is continuous it follows thatC(h)
reaches its minimum wheneverC(h+) changes from being non-positive to being posi-
tive. As a preprocessing step, we sort the MAX ISPs and AVG ISPs in the ascending
order of their unit cost in timeO(n log n + m log m). Then, we use binary search over
all values ofh to find theh such thatC(h+) changes sign. There are at most2L pos-
sible values forh. So there are at mostlog(2L) = L steps. At each step of the binary
search we need to calculateC ′(h+) by computingC(h) values. This can be done in
O(log m+M log n) time, using binary search to find the most expensive AVG ISP used
in each bucket and the most expensive MAX ISP used. The most expensive MAX ISP to
be used can be found inO(log m) time by using binary search to search forh in an array
of sizem, whosekth element is

∑k
i=1

CMaxi
for 1 ≤ k ≤ m. Thus we can calculate the

optimal solution and its cost inO(L(log m + M log n) + n log n + m log m) time.�

4. Online Algorithms

We provide both deterministic and randomized optimal online algorithms for the
problem of routing traffic through AVG and MAX ISPs with minimum cost with com-
petitive ratios of2 and e

e−1
respectively. Note that an online algorithm at timet knows

the current and past traffic values,b1, b2, · · · , bt, but does not know future traffic values
bt+1, bt+2, · · · , bM .

4.1. Optimal Deterministic Online Algorithm

In this Section, we present a 2-competitive deterministic online algorithmA that
routes traffic through AVG and MAX ISPs. Assume the time-ordered sequence of traffic
demands isI = 〈b1, b2, · · · , bM−1, bM 〉. At a given time intervalt, the online algorithm
A does the following:

1. Runs the offline algorithmOPT of Section 3 on the input〈b1, b2, · · · , bt, 0, 0, · · · , 0〉.
That is, run the optimal offline algorithm on a prefix of the input assuming all fu-
ture time intervals have zero traffic.

2. Routes the current trafficbt in the same manner asOPT .

Note that runningOPT in step 1 at timet results in an optimal Max-Thresholdht

being computed. First, we show that the Max-Thresholdsht can only increase with time
t as we progress through the billing period.

Lemma 7. Let ht be the Max-Threshold of OPT on input〈b1, b2, · · · , bt, 0, 0, · · · 0〉.
Then, for all1 ≤ t ≤ M − 1, ht ≤ ht+1.
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Proof: Assumeht > ht+1. The cost of routing the traffic〈b1, b2, · · · , bt, 0, 0, · · · 0〉
with a Max-Threshold ofht is less than or equal to cost of routing the same traf-
fic with a Max-Threshold ofht+1. As bt+1 − ht < bt+1 − ht+1 the contribution in
the total cost of routing thet + 1th interval traffic above the Max-Threshold through
the AVG ISPs with a Max-Threshold ofht is less than or equal to the same with a
Max-Threshold ofht+1. Thus with a Max-Threshold ofht we can route the traffic
〈b1, b2, · · · , bt, bt+1, 0, 0, · · · 0〉 with the same or lower cost than with a Max-Threshold
of ht+1. This contradicts the fact that for no Max-Threshold ofh > ht+1 can we route
the traffic〈b1, b2, · · · , bt, bt+1, 0, 0, · · · 0〉 with the same or lower cost. Hence proved by
contradiction.�

Theorem 8. The competitive ratio of the deterministic online algorithm A is 2.

Proof: The total costCA of algorithmA equals the sum of the costCA,Avg incurred
in the AVG contracts and the costCA,Max incurred in the MAX contracts. Note that
the final thresholdhM of A equals the thresholdhOPT computed by the offline optimal
algorithmOPT . Also, by Lemma 7,hM ≥ ht, for all t ≤ M . Therefore,

CA,Max = COPT,Max ≤ COPT (1)

Let Ct
A,Avg be the cost incurred in AVG ISPs by algorithmA during the firstt time

intervals. LetCt
OPT be the total cost incurred by the optimal offline algorithmOPT

when provided an input of〈b1, b2, · · · , bt, 0, 0, · · · , 0〉. We prove by induction ont that
Ct

A,Avg ≤ Ct
OPT .

Base Case:Whent = 1, algorithmA runsOPT on the first input and behaves identical
to it. Therefore,

C1
A,Avg = C1

OPT,Avg ≤ C1
OPT

Inductive Case: Assume that the hypothesis is true untilt, i.e.,Ct
A,Avg ≤ Ct

OPT . As
Ct

OPT is the cost of the optimal offline solution for input〈b1, b2, · · · , bt, 0, 0, · · · , 0〉,
we have thatCt

OPT ≤ C ′ , whereC ′ is the cost of the solution for the same input
〈b1, b2, · · · , bt, 0, 0, · · · , 0〉 but using a Max-Threshold ofht+1 . Therefore, it follows
that

Ct
A,Avg ≤ C ′. (2)

The contribution in the cost ofCt+1

A,Avg and Ct+1

OPT of sending part of the data in the

t + 1th interval through the AVG ISPs is the same. This is because in both cases only
the data more thanht+1 is sent through the AVG ISPs. Adding this cost to both sides of
Equation 2, we getCt+1

A,Avg ≤ Ct+1

OPT . This completes the induction. Therefore,

CA,Avg = CM
A,Avg ≤ CM

OPT = COPT (3)

Thus, combining Equations 1 and 3,

CA = CA,Max + CA,Avg ≤ 2COPT .
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�

Theorem 9. The competitive ratio of 2 achieved by Algorithm A is the bestpossible for
any deterministic online algorithm.

Proof: We first prove that the Ski Rental problem [9] is a special caseof the bandwidth
cost minimization problem. Given a ski rental problem wherethe cost of renting a pair
of skis is1 and the cost of buying them isp, the optimal strategy when you skik times
is to buy skis in the beginning ifk ≥ p, and rent otherwise. Given an instance of the
ski rental problem, we create an instance of the traffic routing problem with one MAX
ISP with unit costp and one AVG ISP with unit costM , whereM ≥ k is the number
of intervals in the billing period. The input trafficbt = 1 unit, if 1 ≤ t ≤ k, and zero
for k < t ≤ M . The capacity of each ISP is 1 unit. Thus in an interval one canonly
send either 0 or 1 unit of traffic through an ISP, since traffic values are integral. By our
transformation, buying skis is the optimal strategy for original ski rental problem if and
only if the optimal solution for traffic routing problem is touse only the MAX ISP for
routing the entire traffic. Similarly, renting skis is optimal if and only if AVG ISP is used
to route the entire traffic in the optimal solution. Also the value of the optimal cost in
both problems is the same.

If for any ǫ > 0 if there exists a deterministic online algorithm with competitive
ratio of2 − ǫ we can use it to get a2 − ǫ competitive deterministic online algorithm for
the ski rental problem using the construction given above. This contradicts the fact that
ski rental problem has a lower bound [9, 10] on the competitive ratio of a deterministic
online algorithm of1 + ⌈p⌉−1

p
which−→ 2 asp −→ ∞. �

4.2. Optimal Randomized Online Algorithm

In this Section, we describe ane/(e − 1) competitive randomized online algorithm
ARand which

1. Picksz between 0 and 1 according to the probability density function p(z) = ez

e−1
.

2. Routes the traffic using the deterministic online algorithm Az.

If the time-ordered sequence of traffic demands isI = 〈b1, b2, · · · , bM 〉 then at a given
time intervalt, the deterministic online algorithmAz does the following:

1. Runs the offline algorithmOPT (z) of Section 3 on input〈b1, b2, · · · , bt, 0, 0, · · · , 0〉
but with the costs of all MAX ISPs multiplied byz.

2. Routes the current trafficbt in same manner asOPT (z).

Note thatA1 is the deterministic online algorithmA given in Section 4.1. Define
COPT (z) to be the cost of the optimal offline solution with the same input but with
the costs of all MAX ISPs multiplied byz. Let COPT,Avg(z)(resp.,COPT,Max(z))
be the contribution inCOPT (z) due to the AVG (resp., MAX) ISPs. Similarly define
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CAz ,Avg(resp.,CAz ,Max) to be the contribution inCAz , the total cost due to algorithm
Az, due to the AVG (resp., MAX) ISPs. Note thatCAz andCAz ,Max are charged by the
actual cost of the MAX ISPs butCOPT (z) andCOPT,Max(z) have a discounting factor
of z for the costs of the MAX ISPs. The proofs of the following two lemmas are similar
to the analogous proofs of Equations 1 and 3 in Theorem 8.

Lemma 10. zCAz ,Max = COPT,Max(z)

Proof: This is proved in the same fashion as Equation 1 in Theorem 8 where we showed
thatCA,Max = COPT,Max. The only difference is that inCOPT (z) the costs of the MAX
ISPs are multiplied byz and inAz they are not. The lemma follows.�

Lemma 11. CAz ,Avg ≤ COPT (z)

Proof: This proof is similar to the inductive proof given for Equation 3 in Theorem 8
where we showed thatCA,Avg ≤ COPT . �

Lemma 12. For 0 ≤ z ≤ 1, COPT (1) − COPT (z) ≥
∫

1

z
CAw,Maxdw

Proof: For anyv such that0 ≤ z ≤ v ≤ 1,

COPT (v) = COPT,Max(v) + COPT,Avg(v)

= vCAv,Max + COPT,Avg(v)

(using Lemma 10)

d(COPT (v)) = dv · CAv,Max + v · d(CAv ,Max)

+d(COPT,Avg(v)) (4)

Defineh(w) to be the Max-Threshold in the optimal offline solution with costCOPT (w)
when the cost of all MAX ISPs are multiplied byw. h(w) is a non-increasing function
of w. Also letCMaxw be the original cost of the most expensive MAX ISP that was used
in optimal offline solution with costCOPT (w) (or in algorithmAw with costCAw ). As
the actual cost of any MAX ISP used in the gap betweenh(v+dv) andh(v) would be at
mostCMaxv , the increase in cost of MAX ISPs when Max-Threshold is increased from
h(v + dv) to h(v) is at mostCMaxv · (h(v) − h(v + dv)). Thus,

−d(CAv,Max) = CAv,Max − CAv+dv,Max

≤ CMaxv · (h(v) − h(v + dv))

= −CMaxv · d(h(v)) (5)

The actual cost of any MAX ISP used in the gap betweenh(v) and h(v + dv) is at
leastCMaxv+dv

. Thus in the optimal solution when the cost of the MAX ISPs have been
multiplied byv decreasing the Max-Threshold fromh(v) to h(v+dv) decreases the cost
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due to the MAX ISPs by at leastvCMaxv+dv
∗ (h(v) − h(v + dv)). The corresponding

increase in the cost due to the AVG ISPs is at least the decrease in cost due to the MAX
ISPs, sinceCOPT (v) is the optimal cost. Thus,

d(COPT,Avg(v)) = COPT,Avg(v + dv)

−COPT,Avg(v)

≥ vCMaxv+dv

·(h(v) − h(v + dv))

= −vCMaxv+dv
d(h(v)) (6)

Substituting Equations 5, and 6 in Equation 4, we obtain

d(COPT (v)) ≥ dv · CAv,Max −

v(CMaxv+dv
− CMaxv)d(h(v))

= dv · CAv,Max

−v · d(CMaxv ) · d(h(v))

Integratingv from z to 1 and using the fact thatCOPT (v) is a continuous function and
that the integral of the product of two differentials is 0, wegetCOPT (1) − COPT (z) ≥
∫

1

z
CAv,Maxdv. �

Corollary 13. COPT (1) ≥
∫

1

0
CAw,Maxdw

Proof: Follows from Lemma 12 by settingz = 0.�

Theorem 14. The competitive ratio of the randomized online algorithmARand is e/(e−
1).

Proof: DefineP (z) =
∫ z

0
p(w)dw. Then

CAz = CAz,Max + CAz ,Avg

≤ CAz,Max + COPT (z)

(by Lemma 11)

≤ CAz,Max + COPT (1)

−

∫

1

z

CAw,Maxdw

(by Lemma 12)
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E[CARand
] =

∫

1

0

CAzp(z)dz

≤ COPT (1) +

∫

1

0

CAz,Maxp(z)dz

−

∫

1

0

p(z)(

∫

1

z

CAw,Maxdw)dz

= COPT +

∫

1

0

CAz,Maxp(z)dz

−

∫

1

0

CAw,Max(

∫ w

0

p(z)dz)dw

= COPT +
∫

1

0

(p(z) − P (z))CAz ,Maxdz

Competitve Ratio =
E[CARand

]

COPT
≤ 1 +

∫

1

0
(p(z) − P (z))CAz ,Maxdz

∫

1

0
CAz,Maxdz

(by Corollary 13)

Settingp(z) = ez

e−1
andP (z) = ez−1

e−1
, the RHS of the above equation is equals1 +

1/(e − 1) = e/(e − 1). �

Theorem 15. The competitive ratio ofe/(e − 1) achieved by AlgorithmARand is the
best possible for any randomized online algorithm.

Proof: As in Theorem 9, we use the fact that this problem is a generalization of the
ski rental problem. The ski rental problem has lower bound onthe competitive ratio of
a randomized online algorithm ofe′p/(e

′
p − 1) wheree′p = (1 + 1

p−1
)p whenp, the ratio

of the cost of buying to the cost of selling, is an integer. (The algorithm which achieves
the bound for the ski rental problem similar to the randomized online algorithm for the
snoopy caching problem [10].) Alsoe′p/(e

′
p − 1) < e/(e − 1) but tends toe/(e − 1) as

p tends to∞.
If for any ǫ > 0 if there exists ae/(e− 1)− ǫ competitive randomized algorithm for

this problem then by the construction in Theorem 9 we get ae/(e − 1) − ǫ competitive
randomized algorithm for the ski rental problem. A contradiction. �

5. Extensions

In this section, we consider two different extensions to ourresults. In Section 5.1
we consider the notion of Committed Information Rate (CIR) and in Section 5.2 we
consider95th percentile contracts.
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5.1. Committed Information Rate (CIR)

Committed Information Rate (CIR) represents the committedamount of billable traf-
fic that must be sent through an ISP. The CIR is paid for in advance, whether or not it is
used. Traffic sent over and above the CIR is called the burst rate and is charged for in pro-
portion to usage at a specified unit cost. Since the cost for the CIR is prepaid regardless
of usage, it can be assumed that traffic up to the CIR can be routed with an incremental
cost of0. Letx1 ≥ x2 ≥ · · · ≥ xM be the average traffic within each of theM 5-minute
intervals during the billing period, placed in descending order. For an AVG contract, the
bill for the month isCAV G ∗ (

∑

i xi/M − CIRAV G) if
∑

i xi/M ≥ CIRAV G, other-
wise it is0 , whereCAV G is the unit cost andCIRAV G is the CIR of the AVG ISP. For
a MAX contract, the bill for the month isCMAX ∗ (x1 −CIRMAX) if x1 ≥ CIRMAX ,
otherwise it is0, whereCMAX is the unit cost andCIRMAX is the CIR of the MAX ISP.
Similar we can postulate the cost function for a95th percentile contract that incorporates
CIR.

5.1.1. Offline algorithm
We derive an offline algorithm for routing through AVG and MAXISPs with CIR.

First, in Section 5.1.2, we consider routing through MAX ISPs in isolation. Then, in
Section 5.1.3, we consider routing in AVG ISPs in isolation.Finally, in Section 5.1.4,
we combine the two approaches to produce an offline optimal algorithm when we have
both MAX and AVG ISPs.

5.1.2. MAX ISPs with CIR
Assume that we are given contracts fromm MAX ISPs Maxi, 1 ≤ i ≤ m, with

unit costCMaxi
, capacityPMaxi

and CIRCIRMaxi
(≤ PMaxi

), such that for allj < i,
CMaxj

≤ CMaxi
. Further, assume that there are no AVG ISPs.

Lemma 16. In any optimal solution, thresholdtMaxi
> CIRMaxi

only if tMaxj
=

PMaxj
for all j < i, wherePMaxj

is the capacity of the ISPMaxj.

Proof: The proof is similar to the proof of Lemma 1.�

Lemma 17. There exists an optimal solution in whichMaxi is not used more than its
CIR in a time interval unless each ISPMaxj, j < i, has been used to its full capacity
of PMaxj

and all MAX ISPs have been used at least to their CIR.

Proof: The proof is similar to the proof of Lemma 2.�

Lemma 17 above gives us an optimal greedy algorithm for routing traffic through
MAX ISPs alone. First use the CIRs of all the MAX ISPs and then route the remaining
greedily by using cheaper ISPs to their full capacity beforeusing costlier ISPs. This
greedy algorithm also takes at mostO(m log m + M) time to calculate the minimum
cost of routing throughm MAX ISPs.
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5.1.3. AVG ISPs with CIR
Suppose we had only AVG ISPs and no MAX ISPs. We propose the following

greedy algorithm for routing traffic throughn AVG ISPs. Assume that we are given
contracts fromn AVG ISPsAvgi with CIR CIRAvgi

and capacityPAvgi
, 1 ≤ i ≤ n,

such thatCAvg1
< CAvg2

< · · · < CAvgn . Start with the costliest AVG ISP (i.e.,Avgn)
and iterate through the following steps in the decreasing order of cost, i.e., in the order
Avgn, Avgn−1, . . . , Avg1, till all the traffic is routed.

Step 1. Let xi, 1 ≤ i ≤ M , be the traffic that remains to be routed in time bucket
i. Let Avgk be the current ISP under consideration, i.e., traffic has already been
routed through ISPsAvgj , k < j ≤ n. In each time bucketi, all the traffic
(xi −

∑k−1

j=1
PAvgj

) that cannot be routed through cheaper ISPs due to capacity
constraints is routed through ISPAvgk.

Step 2. If ISP Avgk has not been utilized to its CIR after Step 1 above, then select the
time intervali with the maximum remaining traffic (i.e., maximum traffic that is
yet to be routed). If there is capacity left at time intervali in ISPAvgk, then route
an additional unit of traffic through ISPAvgk at that time interval. Repeatedly
perform this operation until either the CIR ofAvgk is exhausted or there is no
more traffic to route.

Theorem 18. The greedy algorithm given above routes traffic throughn AVG ISPs with
minimum cost.

Proof: Given any other solutionS, we prove that the cost ofS is at least the cost of
G, whereG is the solution produced by our greedy algorithm. This wouldimply that
our greedy solution is optimal. To this end, we transform solution S to solutionG using
a series of steps where traffic is rerouted in each stepwithout increasing the total cost.
Start with the costliest ISPAvgk where traffic is routed differently in the two solutionsS
andG. All the costlier ISPsAvgi, such thati > k, are not considered as traffic is routed
through these ISP’s in an identical fashion inS andG. There are 3 cases to consider.

1. If the total amount of traffic routed through ISPAvgk in the billing period is
more in solutionG than inS then one can conclude that the CIR has not yet been
reached forAvgk in solutionS. Hence, we can route more traffic throughAvgk in
solutionS till the solutionsS andG route the same amount of total traffic through
Avgk. Since the additional traffic is covered by the CIR, there is no additional cost
incurred inAvgk. Thus, this traffic rerouting cannot increase the cost of solution
S.

2. If the total amount of traffic routed through ISPAvgk is less in solutionG than in
S, one can conclude that the additional traffic inS is above and beyond the CIR
for Avgk. SolutionS can be modified to route this additional traffic that is being
paid for at the higher cost ofAvgk through other ISPsAvgi, i < k, that have
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lower costs. This traffic rerouting to modifyS cannot increase the cost of solution
S.

3. If the total amount of traffic routed through ISPAvgk is the same in solutions
G andS but the manner in which the traffic is distributed over the time intervals
is different, we can redistribute the traffic such that the traffic routed in all time
intervals through the ISPAvgk is the same in both solutions without increasing
the total cost as follows. Note that there exists a time interval t1 (resp.,t2) in
which more (resp., less) traffic is routed through ISPAvgk in solutionG than in
S. This implies that less (resp. more) traffic is routed in timeintervalt1 (resp.,t2)
in aggregate across ISPsAvg1, Avg2, . . . , Avgk−1 in solution G than inS. Let ki

(resp.,k′
i) denote the traffic routed through ISPk at timeti in solutionG (resp.,

S), wherei = 1, 2. Likewise, lethi (resp.,h′
i) denote the total traffic routed in

aggregate across ISP’sAvg1, Avg2, . . . , Avgk−1 at timeti in solutionG (resp.S),
wherei = 1, 2. From our discussion above,k1 > k′

1 andk2 < k′
2, which implies

thath1 < h′
1 andh2 > h′

2. Note that the greedy algorithm iteratively allots traffic
to ISPk in the time interval with the most remaining (i.e., unrouted) traffic, unless
the capacity constraints of ISPk are reached in that time interval. Note that there
is capacity remaining in ISPk at timet2 in G, sincek2 < k′

2 ≤ Pk. Therefore,
h2 cannot be larger thanh1 + 1, as otherwise the greedy algorithm would have
allotted additional traffic to ISPk at timet2 to reduce the larger remaining traffic
in that time slot . Sinceh2 > h′

2 and all values are integers, it follows that

h′
1 > h1 ≥ h2 − 1 ≥ h′

2 + 1 − 1 = h′
2.

From the inequality above we know thath′
1 > h′

2. Thus, there exists some ISP
Avgl, l < k, such that more traffic is routed through ISPAvgl in time t1 than in
time t2. Thus, for somex > 0, one can routex more units of traffic through ISP
Avgk andx less units of traffic throughAvgl in time intervalt1. And, in time
intervalt2 one can routex less units of traffic through ISPAvgk andx more units
of traffic throughAvgl. This transformation does not change the total cost. But, it
increases (resp., reduces) the traffic in ISPAvgk at timet1 (resp.,t2) in solution
S, bringing the traffic pattern that is routed through ISPAvgk in S closer to the
corresponding traffic pattern inG. By repeating this process, we can make the
traffic routed throughAvgk in solutionS equal to the traffic routed throughAvgk

in solutionG for all time intervals.

Following the three steps outlined above inductively, starting from the costliest ISP
and ending with the cheapest ISP, we can transform any solutionS to the greedy solution
G without increasing the cost. Hence, the greedy solutionG is optimal.�

The time taken for the above greedy algorithm to compute the solution can be de-
termined as follows. First, the ISP’s are sorted in descending order of their unit cost,
and the time intervals are sorted in the descending order of the traffic. The total time
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Figure 3: The structure of an optimal offline solution when the ISPs have a CIR

for the two sorts isO(M log M + n log n). Once the time intervals and the AVG ISPs
are sorted, the traffic that has to be sent through the most expensive remaining ISPAvgk

due to capacity constraints can be calculated in step 1 of thealgorithm inO(M) time.
Routing more traffic to fully utilize the CIR of the most expensive remaining ISPAvgk

in step 2 can also be computed inO(M + Tk) time, whereTk is the total amount of
traffic that is routed throughAvgk. Thus routing traffic throughn AVG ISPs with CIR
can be done inO(nM + T + M log M + n log n) time, whereT is the total amount of
traffic routed in the billing period.

5.1.4. MAX ISPs and AVG ISPs with CIR
The offline algorithm for routing traffic optimally throughm MAX ISPs andn AVG

ISPs, with both types of ISPs having CIR, can be visualized using Figure 3. First, a Max-
Thresholdh is derived. Next, traffic below thresholdh is routed through the MAX ISPs
using the greedy algorithm of Section 5.1.2 and the traffic above that threshold is routed
through the AVG ISPs using the greedy algorithm of Section 5.1.3. The main difference
between the offline algorithm for ISPs with CIR and the offlinealgorithm in Section 3
for ISPs without CIR is the greedy algorithm for routing traffic through AVG ISPs that is
described in Section 5.1.3, since the proofs of Lemmas 4 and 5still hold when ISPs have
CIR. Similar to the proof of Theorem 6 we can prove that the cost of the optimal offline
solution can be calculated inO(L(log m + nM) + T + n log n + m log m + M log M)
time.
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Theorem 19. The offline optimal solution (and its cost) for routing traffic in ISPs with
CIR can be computed inO(L(log m + nM) + T + n log n + m log m + M log M)
time, wherem is the number of MAX ISPs,n is the number of AVG ISPs,M is the total
number of intervals in the billing period,T is the total traffic routed during the billing
period, andL is the number of bits required to represent the maximum amount of traffic
sent in a time interval.

As in Section 4, it would be of interest to convert the offline optimal algorithm in
this section to an online algorithm for routing in AVG and MAXISPs with CIR. But,
devising online algorithms in this context is complicated by the presence of the CIR and
is a subject for future research.

5.2. 95th Percentile Contracts

Unlike AVG and MAX ISPs, we now show that including network contracts that
charge based on the95th percentile of the traffic renders finding the optimal offline
solution NP-hard. In fact, the problem of determining whether a given input can be
routed using only the free traffic (i.e., using only5% of the intervals for each ISP) of a
set of95th percentile ISPs is already NP-Hard.

Theorem 20. Finding whether one can route the entire traffic with zero cost in a system
consisting ofn 95th percentile ISPs is NP-Complete in the strong sense.

Proof: The proof involves a straight forward reduction from the BinCovering Problem
[5], which is known to be NP-complete in the strong sense. Consider an arbitrary Bin
Covering problem: We are givenN positive integers as the item sizesa1, a2, . . . , aN ,
a bin capacityC, andB number of bins. We are asked whether theseN numbers can
be partitioned intoB subsets each of which has sum at leastC. The above problem
instance for Bin Covering can be easily reduced to the following instance of the traffic
routing problem. GivenN 95th percentile ISPs with capacities equal toa1, a2, . . . , aN

can we route the following traffic pattern with zero cost. Forthe firstM/20−1 intervals
the traffic to be routed is

∑n
i=1

ai and for the nextB intervalsC amount of additional
traffic is to be routed. (M is chosen such thatM ≥ M/20 − 1 + B. ) Note thatM/20
intervals constitute5% of the time intervals in the billing period. Each ISP is filledto the
capacity for the firstM/20− 1 steps, and so each have only one additional time interval
to route for free. Allocating the additional traffic into that free time interval for each ISP
amounts to a solution for the original Bin Covering problem instance.�

Due to the fact that finding whether traffic can be routed with zero cost is NP-hard,
unlessP = NP , there cannot exist an approximation algorithm for the bandwidth cost
minimization problem with95th percentile ISPs that produces a solution that is within a
constant additive term of optimal.
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6. Conclusions

An important contribution of this paper is that it opens up the algorithmically rich
and practically important area of bandwidth cost optimization for CDNs and multihomed
enterprises using realistic contract models. More specifically, we provided an optimal
offline algorithm that routes traffic to minimize the total bandwidth cost incurred in ISPs
with AVG and MAX contracts. Also, we provided deterministicand randomized on-
line algorithms that have optimal competitive ratios. Finally, we established interesting
theoretical connections between bandwidth cost minimization and the well-studied buy-
versus-rent paradigm of the ski rental problem.

This paper is but a first step into this area of research, and many open questions
for future research remain. Our current algorithmic work does not incorporate CIRs in
an online setting. Devising near-optimal online algorithms under the right adversarial
model for AVG and MAX contracts with CIR is a problem of great importance for fu-
ture work. Further, devising a suitable definition of approximation and finding good
approximation algorithms for95th percentile contracts is another interesting avenue for
future investigation.

Finally, a critical avenue for future research is to introduce the notion of performance
and extend our model and algorithms to simultaneously optimize both cost and perfor-
mance. We believe that the current work provides a first step towards reaching this final
objective. In addition, it is important to study the behavior of our algorithms empiri-
cally by simulating them on realistic traffic traces and network contracts. Specifically, it
would be of interest to collect traffic traces from a large distributed CDN and empirically
study the bandwidth cost reduction that is possible by usingour algorithmic ideas. Any
such study must also incorporate the performance optimization criteria to ensure that
cost minimization does not adversely impact the performance of end-users.
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