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Abstract

Content-based page sharing is a technique often used in
virtualized environments to reduce server memory re-
quirements. Many systems have been proposed to cap-
ture the benefits of page sharing. However, there have
been few analyses of page sharing in general, both con-
sidering its real-world utility and typical sources of shar-
ing potential. We provide insight into this issue through
an exploration and analysis of memory traces captured
from real user machines and controlled virtual machines.
First, we observe that absolute sharing levels (exclud-
ing zero pages) generally remain under 15%, contrast-
ing with prior work that has often reported savings of
30% or more. Second, we find that sharing within in-
dividual machines often accounts for nearly all (>90%)
of the sharing potential within a set of machines, with
inter-machine sharing contributing only a small amount.
Moreover, even small differences between machines sig-
nificantly reduce what little inter-machine sharing might
otherwise be possible. Third, we find that OS features
like address space layout randomization can further di-
minish sharing potential. These findings both temper ex-
pectations of real-world sharing gains and suggest that
sharing efforts may be equally effective if employed
within the operating system of a single machine, rather
than exclusively targeting groups of virtual machines.

1 Introduction

Many modern computing services are hosted in large-
scale data centers, where many separate applications are
served simultaneously on thousands of machines. In the
Infrastructure-as-a-Service model (IaaS), exemplified by
services such as Amazon EC2, data center operators rent
machine resources to customers, who then operate their
own applications on their rented machines.

To facilitate servicing multiple customers on single
servers, providers have turned to virtualization, in which

multiple virtual machines (VMs) operate independently
but are collocated on a single physical server. In such a
model, memory efficiency is a key consideration, as it is
often the bottleneck resource that determines the num-
ber of customers that providers can service on individual
physical servers. Most virtualized systems simply par-
tition available physical memory between VMs. This
results in a hard cap of the number of customer VMs
possible per machine based on the amount of memory
consumed by each VM. If each customer can be serviced
using only a small amount of memory, more customers
can potentially be handled on a given server, resulting in
greater utilization and lower hardware costs.

One technique for improving memory efficiency
in virtualized systems is content-based page sharing
(CBPS). In CBPS, duplicate blocks of memory (or
‘pages’) are collapsed into a single physical copy, with
all duplicate virtual pages pointing back to the single
physical page. This adjustment means that unneeded
physical pages can be freed, lowering the memory foot-
print of the application or OS.

This form of memory deduplication has been experi-
mented with in many virtualization platforms, and many
of these systems have reported achieving impressive sav-
ings from sharing. For example, Difference Engine [6]
reported absolute memory savings of 50% across three
VMs (using page-level sharing), while VMware [19] re-
ported savings as high as 40% across ten VMs.

These results are encouraging and appear to suggest
that sharing can be used to great effect in real sys-
tems. However, there have been few studies of the
real-world potential of page sharing across a variety
of environments—i.e., in practice, how much sharing
should we really expect to achieve? Other important is-
sues have also received little scrutiny, such as the primary
origin of sharing. Finally, there are some relevant ques-
tions about practices that may reduce sharing potential,
such as randomizing or modifying memory contents for
the sake of security. Practical investigation of these is-
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sues is complicated by several factors, such as the need
to tightly control experiments for comparison with other
systems and the difficulty of gathering data from real-
world machines. As a result, many systems have fo-
cused on comparing performance on benchmark work-
loads, which may not reflect real savings in practice.

In this paper, we conduct an empirical investigation of
these questions about page sharing, under the assumption
that all potential page sharing can be captured. This as-
sumption is important because it separates the issue of
evaluating a particular sharing system from evaluating
the potential of page sharing itself. We conduct our in-
vestigation both on a set of memory traces captured from
real-world users and on traces generated from a wide as-
sortment of virtual machines.

Our major finding is that sharing tends to be signifi-
cantly more modest (on the order of one half, or some-
times even less) than what might be expected from the
literature. We also identify several interesting proper-
ties of page sharing, which both temper the expectations
of sharing and may suggest alternative ways in which it
should be deployed; these points are summarized below:

1. Self-sharing. We separate sharing into two essen-
tial categories: self-sharing (memory duplication within
a single OS), and inter-VM sharing (memory duplication
across multiple VMs). We find that in most cases, a sig-
nificant majority (80% or more) of the sharing potential
comes from self-sharing alone. This finding has impor-
tant implications for the deployment of sharing systems.
For instance, individual OS kernels may be nearly as
well-suited to implementing sharing as conventional vir-
tualized systems. Furthermore, such a shift would allow
non-virtualized systems to take advantage of sharing.

2. Inter-VM sharing. Inter-VM sharing tends to be
small, and effectively zero when the VMs are running
heterogenous platforms. Sharing across VMs is more
significant across a homogeneous platform, but even fa-
vorable conditions (e.g., cloned VMs) often derive a mi-
nority of savings (40% or less) from inter-VM sharing.

3. Sources of sharing. We provide a case study on the
origins of sharing in a desktop environment by instru-
menting the Linux kernel. Our system-aware memory
tracing tool reveals how shared pages are used by pro-
grams – we find that the largest sharing source originates
from GUI applications and related display libraries.

4. Security features and sharing. We find that OS se-
curity features, and address space layout randomization
(ASLR) in particular, can reduce sharing by as much as
20%. Moreover, these features can reduce sharing across
systems even when a high degree of homogeneity is im-
posed, such as in a virtual desktop environment.

In Section 2, we present background on sharing and
motivation for why more careful study is needed. We de-
tail our sharing model in Section 3 and describe our data

and experimental results in Section 4. Our case studies
on sharing sources and ASLR are presented in Sections 5
and 6, respectively. Finally, we mention related work in
Section 7 and summarize our conclusions in Section 8.

2 Background and Motivation

Content-based page sharing has been targeted mostly at
the hypervisor level within virtualized systems. In a vir-
tualized system employing page sharing, the hypervisor
(which has a global view of physical memory across all
virtual machines) identifies sharable pages itself, then
shares them without any input or cooperation from the
virtual machine whose pages are being shared. In doing
so, the primary aim is to capture sharing between VMs
that are highly similar, significantly reducing the mem-
ory footprint of such VMs. This process is illustrated in
Figure 1, in which six VM-level pages are serviced by
only four physical pages.

Physical RAM
VM 1 Pages VM 2 Pages

A

D

B
C

Hypervisor
Mapping

B
C
A

A
D
C

...

...

Hypervisor
Mapping

... ...

Figure 1: Page sharing between two VMs. The content of a
page is indicated by its color/label.

Designing systems that can efficiently capture and ex-
ploit sharable pages has been the subject of a large vol-
ume of recent work. These efforts include both research
systems ([6], [12], [17], [21]) as well as commercially
available hypervisors ([2], [19]). Many of these sys-
tems report that 40% or more of a server’s memory can
be freed using page sharing techniques. These numbers
are typically produced by grouping together several vir-
tual machines on a host and reporting the total number
of pages which could be freed due to sharing. How-
ever, this approach of simply tallying the total memory
freed due to sharing does not offer any insights into how
much memory is shared internally to each VM versus
how much is shared between VMs.

During our investigations into improving page sharing
in virtual environments, we uncovered a rarely discussed
issue, namely that a large portion of the sharing found
in virtualized environments is actually just internal to
each VM. As a motivating example, we consider a sim-
ple benchmark used by other sharing systems ([6], [12])
– compiling the Linux kernel. Using two VMs booted
from an identical Ubuntu 10.10 64-bit image, each with
1.5 GB memory, we compile the 2.6.32 kernel in each
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Figure 2: Sharing during kernel compilations in two identical
Ubuntu VMs with and without zero pages.

(varying the minor version slightly to prevent caching
of identical temporary files), and capture several mem-
ory snapshots spaced throughout each compile. We then
consider each pair of snapshots across VMs and calculate
the average internal sharing and average sharing across
VMs. Figure 2 illustrates the total amount of sharing we
found and the breakdown between internal “self-sharing”
and inter-VM sharing. Excluding zero pages, we see that
on average, 436 MB of the total memory could be shared,
but of this, two-thirds (67%) was due to self-shared pages
within individual VMs, with only the remaining third due
to sharing between VMs. If we add in zero pages (which
add only a single page to inter-VM sharing), the percent-
age of internal sharing rises to over three-quarters (77%).

This result runs counter to previous studies which have
suggested that most page sharing is due to duplicated
memory regions such as OS libraries that are common
across multiple machines. Even in the previous example,
in which the component VMs were identical and run-
ning nearly identical workloads, the majority of shared
pages were sharable within isolated VMs. This has im-
plications both for how memory sharing is managed,
e.g., placing more VMs together may not significantly
increase sharing levels, and how memory sharing is im-
plemented, e.g., sharing within a single OS may be just
as effective as attempting to do it across multiple VMs.

3 Types of Sharing

Let V be a virtual machine with a physical memory al-
lotment m. For a given page size s, V has an array of m/s
pages PV = {p1, p2, . . . , pm/s}. Two pages pi and p j are
sharable if their contents are byte-for-byte identical. For
a given page p with k copies (including p), we can save
k−1 pages by eliminating these duplicates and replacing
them with references to the single copy p.

Let UNIQUE(PV ) be the set of unique pages in PV .
Since this is the minimum number of pages needed to
represent the memory of V , the self-sharing of V is the
set of duplicate pages in PV , given by

Ssel f (V ) = PV −UNIQUE(PV )

Informally, self-sharing is simply the sharing that can
be captured within a single virtual machine.

We can easily generalize this model to multiple VMs.
Let G be the global set of VMs V1 through Vk with cor-
responding page arrays PV1 through PVk . The global page
array is given by simply appending each component ar-
ray: PG = {PV1 ,PV2 , . . . ,PVk}. We can then calculate
UNIQUE(PG) and Ssel f (G) as before. The inter-VM
sharing of G is the total set of sharable pages in G that
cannot be captured by self-sharing alone, given by

Sinter(G) = Ssel f (G)− ∑
V∈G

Ssel f (V )

Informally, inter-VM sharing represents the sharing
benefits that can be realized only by collocating the vir-
tual machines in G. For a single machine V , Sinter(V )
is always zero, since all sharing is self-sharing. In gen-
eral, if Sinter(G) = 0, then the VMs in G have no memory
overlap—thus, no additional sharing can be captured by
considering all VMs at once versus each VM in isolation.

P P P

Machine A Machine B Machine C

Total Self-Sharing:
6 pages

P P P
Self-Sharing:

2 pages
Self-Sharing:

2 pages
Self-Sharing:

2 pages

Q Q Q

Figure 3: Sharing within single machines (self-sharing).

VM A

Shared Machine (using virtualization)
VM B VM C

P P P P P P Q Q Q

Self + Inter-VM Sharing:
7 pages

Figure 4: Inter-VM sharing between multiple machines.

We illustrate the difference between self-sharing and
inter-VM sharing with a simple example, illustrated in
Figures 3 and 4. Consider three machines A, B, and C
that have sharable memory contents as shown in the fig-
ure: machines A and B both have three copies of page
P and machine C has three copies of a different page Q.
When we consider the machines individually, each can
reduce its three pages down to one using self-sharing, for
a total of six pages saved (two pages per machine). How-
ever, if A, B, and C are virtual machines residing on the
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same physical host, as shown in Figure 4, the hypervi-
sor may share a single copy of P globally for both VMs
A and B—freeing one additional page compared to the
self-sharing case. However, the shared page Q sees no
benefit because the page is distinct only to VM C. In to-
tal, grouping the virtual machines together only results in
an increase of one shared page which could not be found
using self-sharing alone.

3.1 Sharing Properties
The model above illustrates how sharing can occur both
within a single physical (or virtual) machine and between
multiple virtual machines. Thus, we stress that while
inter-VM sharing is only applicable to virtualized sys-
tems, self-sharing is just as possible in conventional sys-
tems. This distinction is important because most related
work on sharing has focused heavily on virtual machines
– this implicitly asserts that inter-VM sharing is the pri-
mary component of sharing.

Based on our sharing model, we can reason about
when each type of sharing is likely to be more impor-
tant. If individual machines have mostly unique pages,
but there are many such machines (with some overlap),
then hypervisor-level sharing – inter-VM sharing – is
clearly favored. For example, if the memory of VM A
is comprised of 10 distinct pages, and the memory of
VM B is comprised of the same set of 10 pages, then
inter-VM sharing can save 10 total pages (a 50% sav-
ings), while individually A and B could not achieve any
savings via self-sharing. However, as the amount of self-
sharing (duplicates within a single machine) rises, the
relative importance of inter-VM sharing is likely to fall
significantly. For example, if we take A and B and simply
triple their memory contents (3 copies each of 10 distinct
pages), then inter-VM sharing still provides the same 10
pages, but self-sharing provides 20 pages each, for a total
of 40 pages – a 67% savings on top of which inter-VM
sharing provides a modest 17% savings. In general, the
potential of inter-VM sharing is bounded by the number
of machines involved. This is because, for a given page
p, inter-VM sharing can only save (at most) one page
per machine. All other sharing involving p will be cap-
tured by self-sharing, and this amount of sharing is only
bounded by the total number of pages available: k addi-
tional copies of p can add up to k shared pages (if they
are all within the same machine). Inter-VM sharing is
only likely to be more significant than self-sharing when
there are many VMs with minimal internal redundancy.

3.2 Calculating Sharing
Our model is idealized in that real systems usually can-
not actually capture all possible sharing. Some sharing

opportunities may be short lived due to changing mem-
ory contents, and may either be missed by the system
or passed over intentionally to reduce overhead. New
systems are constantly attempting to identify both the
largest and safest (long-lived) possible sharing opportu-
nities, but we would like to sidestep this issue and simply
tally all possibilities. Since proposing a deployable sys-
tem is outside the scope of this work, we use a simple,
heavyweight, but effective method of calculating shar-
ing: scanning and snapshotting. Scanning refers to sim-
ply sequentially reading memory contents, hashing each
page of memory, and outputting the list of hashes to be
checked for duplicates. Since duplicate pages have dupli-
cate hashes, checking for equality is trivial. Snapshotting
refers to pausing the VM while scanning, which prevents
memory from changing while looking for duplicates.

Scanning is used by some commercial systems such
as VMware[19]—however, in order to prevent excessive
overhead, scans can only be performed at moderately-
spaced intervals (generally on the order of minutes), and
may miss sharing due to changing memory. Since we
are not concerned with efficiency, we simply suspend the
VM, scan the memory snapshot, then resume. From the
VM’s perspective, this reduces the scan time to zero, so
we can (in theory) perform scans as rapidly as desired.
A second benefit of this approach is that since we read
from the raw binary contents of memory, we can divide
it into pages of any desired size.

One notable extension of the standard content-based
sharing approach (proposed in [6]) is the use of small
deltas between memory. This allows sharing pages even
when they differ by a small amount, as opposed to re-
stricting to when pages are exactly identical. We note
that this type of sharing can be approximated by consid-
ering pages of smaller and smaller sizes, although de-
creasing the page size is only practical to a point, after
which the overhead of handling an increasing number of
pages becomes excessive.

Finally, our measurements of sharing explicitly ignore
pages filled completely with zeroes. Zero pages are plen-
tiful in many scenarios because the operating system and
applications may zero out pages for future use; however,
for the same reason, they are usually regarded as poor
candidates for sharing. The intuition is straightforward
– zero pages are plentiful but not likely to remain zero
pages for long. Satori (being more concerned with shar-
ing duration than most other projects) reported confirma-
tion of this [12], and reported 20 times as much sharing
from zero pages as from nonzero pages, but also reported
that this page sharing was quite short lived. In our inves-
tigations, we adhere to the notion that zero pages are not
a highly useful form of sharing, and disregard them in
our experiments. This is important to note because in-
cluding zero pages tends to greatly exaggerate results.
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4 Evaluation

In this section, we present a study of sharing in actual
machines and VMs. We pay particular attention to self-
sharing versus inter-VM sharing in these systems, as well
as exploring the effect of changing the underlying system
(e.g., operating system version or application setup).

4.1 Data Collection
Our memory traces come from two sources – one set of
traces captured from real-world machines, and a second
set of traces generated from synthetic experiments. This
both gives a holistic picture of real-world sharing poten-
tial and allows us to explore a wide set of systems.

Real-world memory traces. Our real-world mem-
ory traces come courtesy of the Memory Buddies
project [21], which deployed a memory tracer onto a va-
riety of UMass departmental machines and made these
traces publicly available [11]. We focus on a set of traces
gathered over a weeklong period from seven machines.
The seven machines included four MacBooks (used by
individual users) running similar versions of Mac OS X
and three Linux servers running a variety of server tasks
(web, mail, ssh, etc). The MacBooks each had 2 GB
of RAM, and the Linux servers had 1, 4, and 8 GB of
RAM. These are all production machines handling ac-
tual user workloads. Each machine produced a memory
trace every thirty minutes during the time it was powered
on (150 to 350 traces per machine), resulting in roughly
1700 traces in all. Each trace is comprised of one hash
value per physical page (4 KB of memory).

Generated memory traces. To supplement our real-
world traces, we configured a set of custom virtual ma-
chines. We produce a memory trace from a VM by sus-
pending the VM, then reading the resulting binary mem-
ory image to create the hash list. This has the advantage
(versus running a VM-based tracing tool) of having no
impact on memory within the VM during tracing. Fur-
thermore, since we can access the full binary contents
of memory, we can use any sharing granularity desired.
Sequential traces are produced by a series of suspend-
resume cycles, and resetting the VM to a previous snap-
shot allows resetting memory to an exact previous state
to evaluate the impact of a subsequent action or work-
load. We configured 10 distinct VMs, each with 1.5 GB
physical memory:

• Linux: Ubuntu 10.04 and 10.10, and CentOS 5.3
(no GUI for CentOS). These distributions were cho-
sen to be representative of typical desktop apt and
server rpm based distributions. We consider both
32-bit and 64-bit versions (6 VMs total).
• Windows: Windows XP (x86) and Windows 7 x86

and x64 (3 VMs total).

• Mac: Mac OS X 10.6 Server (Snow Leopard). The
server version is used due to virtualization restric-
tions, but is very similar to the desktop version.

For each of the 10 VMs, we use three application se-
tups for capturing memory traces:

• No applications: The VM is freshly booted, but is
not running any further software.
• Server applications: The VM runs a typical LAMP

stack: Apache 2, PHP 5, and MySQL 5. The work-
load consists of issuing a series of MySQL queries
and serving a mix of static and dynamic pages.
• Desktop applications: The VM runs a typical set

of desktop applications: web browser (Firefox), of-
fice applications (OpenOffice), email client, media
player, etc. The workload consists of opening sev-
eral web pages and office documents (text docu-
ment, spreadsheet, etc.) and playing a media file.

For each pair of VM and application setup, the VM
is booted, the applications are loaded and the workload
executed, then a memory snapshot is captured. This re-
sulted in 28 traces total (no desktop traces for CentOS
due to the lack of an installed GUI).

4.2 Sharing in Real-World Traces
We examined the real-world traces to determine if self-
sharing comprised a substantial portion of total sharing.
Since sharing can change substantially over time, we pro-
cessed each set of sequential traces (for each of the seven
host machines) and calculated the min, max, and average
potential sharing over the weeklong recording period.

As discussed previously in Section 3.2, we exclude
zero pages from all presented results, including both
sharing percentages and absolute sharing. While we be-
lieve this decision more accurately reflects useful shar-
ing, including zero pages in our results would have only
a modest impact – for example, in nearly all cases, shar-
ing from zero pages in our real-world traces comprises
less than 5% of the total memory.

4.2.1 Self-Sharing

When we consider each machine individually, the shar-
ing observed is entirely self-sharing. The amount of self-
sharing in each machine is shown in Figure 5, both as a
percentage of machine memory and as absolute sharing
in MB. We see a modest, but not insignificant, level of
self-sharing present in most of the machines – on aver-
age, about 14% of the total memory in any machine was
sharable at any time. This demonstrates that a significant
amount of duplicate memory is present even in isolated
(non-virtualized) machines. Another interesting feature
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Figure 5: Self-sharing in the real-world memory traces, with
absolute shares (in MB) noted.

is a difference of up to an order of magnitude between the
minimum and maximum sharing observed, demonstrat-
ing the volatility of sharing over time. Since the average
is much closer to the minimum than the maximum, this
suggests brief periods of very high sharing potential sur-
rounded by long periods of much lower sharing potential.
Finally, we observe that the sharing variation is greater in
the Macintosh machines than in the Linux machines – we
speculate that this may be due to the fact that the desktop
machines see a much wider range of applications com-
pared to the servers which have a fixed purpose.

4.2.2 Inter-VM Sharing

Next, we consider the inter-VM sharing between pairs
of machines represented in the real-world traces. For a
given pair of machines (M1,M2), we wish to calculate
both the self-sharing and inter-VM sharing between these
machines. However, since there are hundreds of traces
from each machine to select for (M1,M2), evaluating ev-
ery possible trace pairing is infeasible. Thus, we simply
randomly select several hundred pairs of traces from M1
and M2, then calculate the min, max, and average inter-
VM sharing for (M1,M2) using this set. We perform this
procedure for every possible (M1,M2) pair – since there
are 7 machines, there are 21 total machine pairings.

The results for all Mac/Mac machine pairings are
shown in Figure 6 – for all other pairings, including both
Mac/Linux and Linux/Linux pairings, the inter-VM shar-
ing observed was negligible (always under 1% of the to-
tal memory and usually under 0.1%). Even in the case
of Mac/Mac pairings, as seen in Figure 6, the average
inter-VM sharing is strikingly low, comprising only 2 to
3 percent of the total memory. Furthermore, even consid-
ering two traces selected for the greatest possible inter-
VM sharing, this sharing never exceeded 6% of the total.

In the cases of greatest average inter-VM sharing, the
machines involved showed average self-sharing in the 10
to 15 percent range. This means that even in the observed
cases most favorable to inter-VM sharing, this sharing
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Figure 6: Inter-VM sharing between real-world machine pairs,
with maximum absolute shares (in MB) noted.

still only accounted for a mere 20% of the total sharing
potential, with the other 80% attributable to self sharing.
In the case of other pairings (which displayed effectively
no inter-VM sharing), the memory gained from collocat-
ing only these machines would be negligible.

Considering more than 2 machines together naturally
increases inter-sharing. However, we find the trends to
be similar even when considering larger machine tuples.
For example, if we consider traces from all 7 machines
at once, we find a typical total sharing around 15% –
however, over 90% of this sharing is solely attributable
to self-sharing, with less than 10% being added by inter-
VM sharing. In other words, even collocating all seven of
these machines for the purpose of memory sharing would
save very little – almost all possible sharing could be
captured simply by having each machine eliminate du-
plicates within its own memory.

These results suggest that page sharing systems should
not exclusively be directed at hypervisor-level systems
such as Xen and VMware, but could also have worth-
while benefits when implemented in a commodity oper-
ating system such as Windows or Linux. Doing so would
enable regular home users to reap the benefits of page
sharing, and would allow virtual machines to maintain
closer control over their memory usage. Moreover, we
find that the added benefit from focusing sharing on vir-
tualized systems may be substantially less than expected.

4.3 Platform Homogeneity
A set of VMs with a homogeneous underlying platform
will have more sharing potential than a set of heteroge-
nous machines, but the degree of homogeneity can vary
widely. For example, a Windows 7 system may be quite
different from an Ubuntu Linux system, but fairly simi-
lar to a Windows XP system. We can also consider fac-
tors such as architecture – for example, are Windows 7
x86 and Windows XP x86 closer or further apart than
Windows 7 x86 and Windows 7 x64? As another exam-
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ple, are the operating systems or user applications more
important to compare with regards to sharing? We in-
vestigate these questions using our virtual machines and
memory traces generated as detailed in Section 4.1.

4.3.1 Self-Sharing

As with our real-world traces, we first investigate the
self-sharing present in our VMs. For each of the three
application setups, the amount of self-sharing present in
each VM is shown in Figure 7. The most notable fea-
ture seen is that the sharing in Mac OS X and Windows
XP is much greater than in Windows 7 or any of the
Linux VMs. This suggests that these systems tend to-
wards a higher degree of internal memory redundancy,
and may see greater benefit from harnessing this redun-
dancy. Additionally, we see that in these cases, sharing
does not substantially increase from the ‘no-app’ case
when adding applications – this indicates that the base
system is providing the bulk of the self-sharing, with
only slight increases from the user-level applications.

Another interesting feature seen is that the base sys-
tem sharing in both versions of Ubuntu decreases signif-
icantly when switching from a 32-bit system to a 64-bit
system. Presumably, this indicates a lower level of re-
dundancy in the 64-bit system libraries than in their 32-
bit counterparts. Sharing in both versions of CentOS is
quite low – we believe (based on observations discussed
in Section 5) that this is largely due to the lack of a GUI.

4.3.2 Inter-VM Sharing

We next consider sharing between pairs of VMs. For ev-
ery possible pairing, we calculate both the self-sharing
and inter-VM sharing for each of the three application
setups. While the complete results for all pairings are
omitted for brevity, a representative sample is shown in
Figures 8 and 9. Figure 8 shows the absolute inter-VM
sharing for each of the selected pairings, while Figure 9
shows the relative importance of inter-VM sharing com-
pared to self-sharing in each pairing.
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Figure 8: Inter-VM sharing between VM pairs.
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Figure 9: Self-sharing over total sharing among VM pairs.

Major OS mixes. Our first major observation is that
inter-VM sharing is negligible in all mixes of major OSes
(Mac OS X, Windows, or Linux). In all cases, these pair-
ings closely resemble the mac/win7-64 pair as seen
in Figure 8 – there is essentially no inter-VM sharing
in the base systems, and only a very small amount in
the application setups. What little application sharing is
present is likely due to shared resource files, hence why
the sharing is significantly larger in the desktop case than
the server case. Even with a common application setup,
however, the inter-VM sharing represents only a minor
fraction of the total sharing – less than 10%, with the rest
attributable to self-sharing alone, as seen in Figure 9.

OS version mixes. Our second observation is that
with different versions of a common major platform
(e.g., Ubuntu 10.04 vs 10.10), sharing is significantly re-
duced in the base system, but is not strongly reduced in
the case of common applications. The best example of
this is seen in the win7-32/winxp pairing – although
there is almost no inter-VM sharing in the base system
(< 5%), the amount of inter-VM sharing increases signif-
icantly in the application setups (roughly 40% inter-VM
sharing in the desktop case). This is due to the fact that
many of the applications themselves (e.g., OpenOffice)
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run the same version on these systems, adding a signifi-
cant amount of sharing. This behavior is also seen in the
various Ubuntu pairings – mixing versions significantly
degrades inter-VM sharing in the base system (e.g., 75%
self-sharing between Ubuntu 10.04 and 10.10 32-bit), but
these cases still show significant application sharing.

Architecture mixes. Overall, we see similar behav-
ior when changing OS architecture (32-bit to 64-bit or
vice versa) as when changing the OS version. However,
changing the architecture is still significantly less disrup-
tive than changing the major OS version, which com-
pletely eliminates most sharing.

The one notable case in which we see an architecture-
specific behavior is when pairing the two 64-bit Ubuntu
versions (ub04-64/ub10-64). In this case, almost all
sharing in the base systems is due to inter-VM sharing
(80%) rather than self-sharing – this is likely due to the
fact that both of these systems displayed minimal self-
sharing themselves, as seen previously in Figure 7.

Application types. In all cases (except CentOS,
which did not run a GUI), we see that sharing was sub-
stantially higher in the GUI desktop applications than in
the server applications. This may be partially due sim-
ply to the higher memory footprint of our desktop appli-
cations, but is also likely due to the tendency of GUI-
related libraries to increase memory redundancy. We ex-
plore this tendency in Section 5.

4.4 Variable-Sized Hashing

Sharing is typically done on a page-by-page basis (that is,
only sharing at the granularity of an entire page). How-
ever, one can also share on a different granularity, trading
off between sharing potential and efficiency – a smaller
granularity increases overhead, but is capable of sharing
smaller chunks of memory. Since operating systems al-
locate memory on a per-page basis, it is most natural to
consider even multiples (0.5, 2, 4) of the base 4 KB page
size. Again, however, there is no requirement to share us-
ing these granularities. Thus, we examined several of our
traces with sharing granularities varying from 0.4 to 2.4
in intervals of 0.1. The results for a typical trace (taken
from an Ubuntu VM) are shown in Figure 10.

As expected, sharing increases modestly as the gran-
ularity increases. We also note the significant peaks at
0.5, 1, and 2 hashes per page (the evenly-dividing set-
tings). The greatest ratio of sharable memory to hashes
per page (a proxy for processing overhead) is still at the
standard 1-page granularity. This is in line with other
reported results [21] that have suggested modest but di-
minishing returns from increasing the sharing granular-
ity. Furthermore, these results confirm that the only rea-
sonable granularities evenly divide the page size, as other
granularities significantly reduce possible sharing.
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Figure 10: Self-sharing with variable hashing sizes.

5 Sources of Self-Sharing

Our previous results demonstrate the importance of self-
sharing, but do not explain where this self-sharing orig-
inates. The root of self-sharing – internal redundancy –
presumably only exists by accident. However, we have
seen that that redundancy is common in all systems stud-
ied. To shed light on what causes redundancy, we have
conducted a case study on Linux desktop applications.

5.1 An Extended Memory Tracer
Since identifying the source of sharing requires more in-
formation than basic memory traces, we extended the
memory tracer (a kernel module) used to collect our real-
world Linux traces. The original tracer simply walks
through each page of memory and calculates a hash
based on the page contents. For pages in use by ac-
tive processes, our extended tracer also collects two ad-
ditional pieces of information:

• The content type of the page – either a specific
part of a regular program address space (e.g., stack,
heap), or a mapped page of a shared library.

• The process(es) using the page. For a shared library
page, there may be any number of processes using
the page. For other pages, there will only be one
process using the page.

For example, two pages might give the following
(omitting the memory content hash values):

[libc-2.12.so 000b6000 r-xp]: sshd apache2
[heap]: mysqld

The first is a specific page of libc, in use by SSH
and Apache. The second is a page in the MySQL heap.
Using this extended information, we can calculate not
only the amount of sharing possible, but which processes
or libraries are actually involved in the sharing.
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Figure 11: Sharing by content as a percentage of total sharing.
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Figure 12: Sharing by process as a percentage of total sharing.

5.2 Case Study: Desktop Applications

A growing trend in virtualized desktop systems is the
use of thin clients that communicate with homogeneous
server-side VMs. To explore this potentially lucrative
source of sharing, we conduct a case study of desktop
applications in an Ubuntu VM. We examine sharing op-
portunities by page type, then discuss some of the main
applications which exhibit high levels of sharing.

The primary page types we examine are stack pages,
heap pages, and shared library pages. The results for
each of these, as well as for a few individual shared li-
braries, are shown in Figure 11 (excluding zero pages as
before). Note that these results are not additive, since
multiple page types (e.g., a stack page and a heap page)
may have the same content, which causes both to be in-
cluded in the same chunk of sharing.

We see that the largest single source of sharing is heap
pages, which are involved in over 50% of all sharing
within the VM. Library pages are close behind, involved
in 43% of all sharing. Stack pages, in contrast, are rela-
tively minor, at less than 5% involvement. Of the shared
libraries, the single library involved in the most sharing
is libxul, the user interface library used by Firefox.
Other libraries, such as libc, are used more widely, but
were involved in substantially less sharing overall.

We also looked at sharing involvement by process
rather than content. Selected processes are shown in Fig-
ure 12 (note that these results are again not additive, since
multiple processes may be using a single page). The sin-
gle most important process to sharing was Firefox, which
was involved in nearly half of all sharing – this is un-
derstandable given the importance of libxul to shar-
ing seen in Figure 11. However, we also see substan-
tial sharing in other GUI applications such as OpenOf-
fice (38%) as well as system-wide GUI processes such
as the X server (31%) and all Gnome-related processes
(also 31%). In contrast, headless applications such as
SSH (6%) were involved in much less sharing.

The importance of GUI applications to sharing is fur-
ther reinforced when we examine the most widely shared
individual pages (i.e., those pages with the most copies).
Every one of the top six shared pages, which alone are
responsible for almost 10 MB of sharing, are used by
Firefox, Xorg, or both. The single most shared page,
with 597 distinct copies (2.3 MB shared) was a heap page
used by Xorg. These situations are likely byproducts of
repeatedly allocating and freeing a particular data struc-
ture, since copies may include old pages that have yet to
be reclaimed by the OS as well as pages currently in use.

6 Memory Security and Sharing

Operating system designers are constantly seeking new
ways to harden their systems against attackers and re-
duce exploit opportunities. One common attack vec-
tor involves overwriting memory contents (e.g., a buffer
overflow attack), particularly when the overwritten mem-
ory is at a known address, such as a key library function.
To harden systems against these kind of attacks, mod-
ern operating systems employ a technique known as ad-
dress space layout randomization, or ASLR, in which
the location of key libraries and program assets (e.g., the
heap) in memory are randomized. This randomization is
designed to prevent attackers from making use of known
addresses (e.g., in corrupting targeted data). For the ex-
ample address space shown in Figure 13a, two possible
randomizations are shown in Figures 13b and 13c.

While ASLR is exclusively a security measure, since
it modifies the contents of memory, it has the potential
to affect the level of page sharing possible. Two VMs
that may be running identical software may have differ-
ent memory contents if ASLR is enabled, resulting in
less possible sharing. For example, the randomized ad-
dress spaces shown in Figures 13b and 13c may share
less than if they were not randomized (and hence equal to
Figure 13a). We conduct a study on the impact of ASLR
on sharing potential by evaluating multiple implementa-
tions across several operating systems.

9



stack

shared library

heap

code

shared library

stack

shared library

heap
code

shared library

stack

shared library

heap

code

shared library

(a) (b) (c)

Figure 13: A non-randomized address space (a) and two exam-
ples of the address space after randomization (b and c).

6.1 Current ASLR Support

While ASLR adoption has been gradual and the level of
support varies among operating systems, most popular
OSes have at least rudimentary support and are mov-
ing towards more complete instrumentation. Most im-
plementations allow for enabling or disabling random-
ization, which we exercise in studying its impact. We
selected four implementations for study – two in Linux,
one in Windows 7, and one in Mac OS X Lion.

Linux. The Linux kernel first introduced ASLR sup-
port in 2005, and modern versions randomize the major
components of a process (library locations, stack, heap,
code) [8]. The ability to toggle system-wide ASLR is
provided via the /proc interface, as well as an inter-
mediate setting in which heap randomization is not used,
but all other randomizations are.

PaX. An alternate implementation of ASLR for Linux
is provided by PaX [13], which is a patch for the main-
line Linux kernel aimed at improving overall security.
A PaX-enabled kernel is used by several ‘hardened’ dis-
tributions of Linux aimed at maximizing security, and
can also be deployed in most normal distributions. The
ASLR implementation in PaX provides several features
not provided by the standard Linux implementation, such
as randomization within the kernel itself [7].

Windows. Microsoft introduced ASLR support in
Windows Vista and continued in Windows 7, providing
randomization of the stack, heap, DLLs, and so forth
[20]. ASLR is enabled on a per-application basis, and
is opt-in by default. While most system-provided appli-
cations within Windows enable ASLR, third-party appli-
cation support has been slow [16]. However, Microsoft
recently released a utility [5] that provides the ability to
forcibly enable or disable ASLR for particular processes.
In our tests, we encountered no ill effects from enabling
it for applications that do not opt-in by default.

Mac OS X. Apple first introduced a simplistic form of
ASLR in Mac OS X 10.6 (Snow Leopard), and support
was expanded in 10.7 (Lion) [9]. Unfortunately, there
is presently no straightforward way to disable random-

ization within Lion – the only known method [10] relies
on setting a particular POSIX flag during process cre-
ation. To leverage this, we write a script that simply sets
this flag, then spawns the target application (which runs
without randomization).

6.2 Evaluating ASLR’s Sharing Impact

For each of the four ASLR implementations, we wish
both to identify whether randomization has an impact on
sharing, and if so, to determine the extent of this impact.
To do this, we simulate a scenario in which many VMs
are booted from an identical base image. This is a lucra-
tive scenario both for virtualization and for page sharing,
and represents a case in which users are likely to care
about fine-tuning sharing potential. We run this scenario
for each of the three host operating systems – Ubuntu
10.10 64-bit (for both the standard Ubuntu kernel and
a patched PaX kernel, both version 2.6.32), Windows 7
64-bit, and Mac OS X 10.7.

For a single OS, our test procedure (using a single
VM) is as follows. First, we globally disable ASLR, us-
ing one of the tools mentioned in the previous section
(note that in the case of Mac OS X, we cannot disable
system randomization). We then reboot the VM to re-
set memory to a reliable state. Then, we populate the
VM’s memory by opening a predefined list of applica-
tions (web browser, text editor, office software, music
player, etc.) using a shell script or batch file. After let-
ting the contents of memory settle, we capture this ‘non-
randomized’ memory snapshot. We then globally enable
ASLR, reboot, and then repeat the snapshot procedure
again to obtain a ‘randomized’ snapshot.

To simulate booting multiple VMs from the same im-
age, we repeat this four times, resulting in a set of four
randomized snapshots and a set of four nonrandomized
snapshots. Since the only substantive difference between
the sets is whether randomization is used, any signifi-
cant reduction in sharing in the randomized snapshot set
should be due to ASLR – furthermore, the use of mul-
tiple snapshots averages any other memory differences
that occur between reboots.

The results, as a percentage reduction in sharing, are
shown in Figure 14. The total sharing reduction is fur-
ther broken down into self-sharing and inter-VM shar-
ing – note that these are not additive, since they do not
contribute equally to the total sharing. We see a mod-
est, but noticeable reduction in sharing across all imple-
mentations. The largest reduction is seen in Windows
7, in which total sharing was reduced by 13% (in line
with [18], which reported a 16% reduction in Windows
7). Total sharing in Mac OS X was reduced by only 3% –
however, as noted above, randomization was not disabled
for the system itself, and hence this result is conservative.
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Figure 14: Reduction in page sharing observed with a variety
of ASLR implementations.

Overall sharing in Linux was reduced by 10% using the
stock kernel, while the PaX-patched kernel reduced shar-
ing by a slightly higher 12%.

The results of the sharing breakdown are somewhat
more surprising. In the case of Linux, ASLR reduced
sharing both within single systems and across systems.
However, in the case of Windows, the entire reduction
was due to inter-VM sharing – individual systems shared
the same amount regardless of randomization. This sug-
gests that in a non-virtualized environment, sharing in
Windows is not impacted at all by ASLR. Oddly, we
observe the opposite behavior in Mac OS X – here, all
reductions were due to self-sharing, with no reduction
observed in sharing across systems. One reason for this
may be the relative amount of self-sharing – as we ob-
served in Section 4.3.1, self-sharing in Mac OS X was
much higher than in Windows 7.

7 Related Work

One of the first systems implementing page sharing was
the Disco virtual machine monitor (VMM) [3], which
proposed sharing identical code pages (typically read-
only) between virtual machines, as well using as a shared
copy-on-write disk to share disk contents between VMs.
For sharing memory, the original technique of content-
based page sharing was introduced in VMware ESX
Server [19]. CBPS has received significant attention be-
cause it requires no assistance from the guest operating
system, and thus can be performed transparently within
the virtualization layer.

The original virtual-machine centric nature of most
page sharing work has persisted past the original
VMware and Disco papers, and provides an important
motivational basis of most page sharing systems today.
One possible reason for this (besides simple precedent
set by earlier papers) is that it seems intuitive that groups
of virtualized systems could provide significant gains
that cannot be realized within a single operating system.

In contrast to this focus, we argue that page sharing need
not be targeted exclusively at virtualized environments.

Several systems have built on the core CBPS idea to
further exploit potential savings. The Potemkin VMM
[17], which was originally built on Xen, makes heavy
use of page sharing by creating new virtual machines as
clones of an existing VM image. The clones are then able
to store only differences from the base image rather than
allocating their own dedicated memory space, in effect
replacing a memory partition with a single base image
and a set of memory deltas. This is an example of a spe-
cial type of virtualized environment which is undoubt-
edly well suited to page sharing, since a new VM is (by
definition) initially able to share 100% of its pages with
the base VM. We explore several setups of this type and
find that it is the exception to our general observation that
self-sharing from individual virtual machines comprises
the vast majority of sharing in groups of machines.

Another extension of the base CBPS technique has
been sub-page sharing, in which full memory pages are
broken down into pieces to allow for finer grained shar-
ing. This technique was applied both in Difference
Engine [6] (based on Xen) and Memory Buddies [21]
(based on ESX Server). Difference Engine also went a
step further and considered storing small ‘patches’ be-
tween memory, rather than just uniform sub-page shar-
ing. Additionally, Difference Engine employed com-
pression of non-shared VM memory to increase overall
memory efficiency. However, they reported that the ma-
jority of sharing benefits were attributable to the basic
page sharing paradigm rather than additional enhance-
ments. Intelligent collocation of multiple VMs to opti-
mizing sharing was explored using memory fingerprints
in [21] and hierarchical tree models in [15].

A system for sharing memory in massively parallel ap-
plications using a distributed hash table was proposed in
[22]. This work also considers the distinction between
inter-node and intra-node sharing in parallel applications
(in which inter-VM sharing is relatively more signifi-
cant). We complement this work by focusing on sharing
in general purpose, single-node virtualized systems.

The Satori [12] system took a different approach to
sharing altogether and argued that most potential sharing
lasts only a few seconds rather than at least a few min-
utes. A typical CBPS approach involving periodically
scanning memory is insufficient for capturing this type
of sharing, since scans cannot be performed on the gran-
ularity of a few seconds for performance reasons. Satori
implemented sharing by watching for identical regions of
memory when read from disk – this is also the approach
that was integrated into Xen. However, the downside to
this approach is that it requires modifications to the guest
operating systems themselves. This represents a trade
off between transparent sharing requiring guest modifi-
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cations (the Satori/Xen approach) and oblivious sharing
requiring no such modifications (the VMware approach).

Recent versions of the Linux kernel include sharing
functionality via the KSM kernel module [1], which uses
a scanning approach similar to that of VMware. While
originally developed for sharing within the Linux KVM
virtualization infrastructure, KSM can also be used for
sharing within a nonvirtualized Linux system. An evalu-
ation of KSM in a virtualized setting is given in [4]. The
Singleton system [14], also based on KSM, focused on
optimizing caching for low overhead deduplication.

8 Conclusion

Page sharing presents an opportunity to increase mem-
ory efficiency, but understanding the dynamics affecting
page sharing are important to maximizing its benefits.
We present an investigation and analysis into the sources
of page sharing, and find that in many cases, the majority
of sharing potential is attributable to redundancy within
single machines (self-sharing) rather than between mul-
tiple machines (inter-VM sharing). This suggests (1) that
sharing may be effectively exploited at the level of a sin-
gle VM rather than a hypervisor, and (2) that sharing
need not be restricted to virtualized systems at all.

For sharing across VMs, we investigate several appli-
cation platforms and find that operating system homo-
geneity is the most important component of inter-VM
sharing, with application, architecture, and version ho-
mogeneity of lesser (but still significant) importance. In
particular, we see effectively no sharing between differ-
ent base platforms – e.g., between a Windows and Linux
system. Inter-VM sharing is still present, but greatly re-
duced, by changing the version of the base system.

We also conduct a case study of self-sharing within
the Linux kernel and find that GUI applications and as-
sociated system libraries are the clearest source of self-
sharing potential. We leave porting our tracing tool to
non-Linux systems as future work to investigate whether
similar trends will hold in other operating systems. Fi-
nally, we explore the impact of address space layout ran-
domization on sharing potential. We find that in all major
systems, this feature has a measurable negative impact on
sharing potential. We are continuing to explore the fac-
tors behind both favorable and unfavorable sharing sce-
narios, and believe that understanding these issues will
enable more efficient memory usage in both virtualized
and nonvirtualized systems.
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