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ABSTRACT 

The evolution of dendritic morphology is simulated for a binary alloy using a two-dimensional 
cellular automaton growth algorithm. Solute diffusion is modeled with an alternate-direction implicit 
finite difference technique. Interface curvature and kinetic anisotropy are implemented through 
configurational terms which are incorporated into the growth potential used by the automaton. The 
weighting of the anisotropy term is explored and shown to be essential for overcoming grid-induced 
anisotropy, permitting more realistic development of dendritic morphologies. Dendritic structures 
are generated for both uniform and directional cooling conditions. 

INTRODUCTION 

Virtually every microstructural feature in a cast alloy component is related to the interface 
morphology present during solidification. Conventional solidification theory, describing dendrite 
tip kinetics and mushy zone phenomena, provides a means for estimating overall microstructural 
parameters for an alloy solidified under steady-state conditions. Microstructural prediction for actual 
components, which are finite in size and complex in geometry, requires a description of the evolution 
of the interface morphology under transient conditions and geometrical constraint and an 
understanding of how the structure propagates through the mold. Any useful simulation tool must 
be equipped to handle these circumstances within the limits of computational feasibility. 

Solidification involves the growth of a solid phase into a liquid phase, where the growth is 
controlled by the continuity of thermal and solutal fields along with energetic conditions at the 
interface. A major problem encountered in solidification modeling, however, is that the controlling 
phenomena operate at different size scales. Depending upon the goal of a particular model, the 
mechanisms which must be addressed in the modeling of a solidification process may vary 
considerably. In general, the issues involved can be divided into two classes. At the macroscopic 
level, the transport of heat and solute govern the conditions which are present at the advancing 
interface. These are handled with the appropriate differential equations which can be discretized and 
solved using various techniques. At the microscopic level, the response of the interface to the 
instantaneous conditions must be described. This includes the motion of the interface and the 
associated redistribution of heat and solute. In recent years, various phase-field1

"
6 and cellular 

automaton (CA)7
•
14 models have been used to simulate many features of dendritic solidification. 

Phase-field methods involve describing the interface with one or more order parameters which 
may vary continuously between two constant values, indicating the respective phases. The energy 
or entropy of the system is described in Cahn-Hilliard fashion using a double-well potential with 
minima associated with the solid and liquid values of the order parameters. The evolution of the 
continuous phase-field is governed by the dissipation of energy or by the production of entropy. 
These methods have been used to successfully model many aspects of dendritic solidification at the 
microscopic leveL t-6 The technique is computationally limited, however, by the requirement ofan 
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interface which is both very thin and well resolved. In some cases, this limitation does not permit 
the implementation of realistic conditions. 

Cellular automata are discrete lattice, rule-based growth algorithms developed to study the 
evolution of self-organizing systems of identical components. The utility of these methods is only 
beginning to be appreciated, and the use of automata for solidification modeling has been limited. 
The CA technique was first applied to the phenomenon of dendritic crystal growth in 1985 by 
Packard.7 This model produced equiaxed dendritic shapes in two dimensions for a pure substance 
by considering heat flow, interface curvature, and latent heat generation. Brown and Spittle8 

simulated the formation of dendritic grain structures in a pure metal by assuming an initial 
distribution of nuclei and using a Monte-Carlo algorithm for further nucleation and growth. Growth 
was based on minimization of energy, which included a bulk term for each phase and an interfacial 
term. By varying the boundary conditions, the qualitative effects of melt superheat and mold 
temperature on the columnar to equiaxed transition, were reproduced. In a subsequent model, which 
was a direct extension of the original Packard model, the evolution of dendrite morphology in an 
initially uniformly undercooled pure metal was simulated.9 Rappaz and Gandin have modeled the 
formation of grain structures during solidification by using a CA growth algorithm based on a 
prescribed growth relationship governing the dendrite tip kinetics, where the velocity is an explicit 
function of the temperature. Thus, by assuming that all growth is fully dendritic, the growth of the 
dendrite envelope is modeled by tracking only the tips. The CA for growth is coupled to a finite 
element (FE) thermal calculation which allows for the liberation of heat based on a solid fraction
temperature function, truncated at the temperature of the dendrite tip. The temperature at each tip 
is obtained from the FE calculation and used by theCA algorithm to update the shape of the solid. 
By incorporating various aspects of nucleation and fluid flow, several features of solidification 
structures have been modeled quantitatively.to.ts 

In previous work by the authors, a cellular automaton approach has been used to mimic 
morphological instability and to simulate dendritic solidification structures for a range of directional 
growth conditions. 16

'
17 Additionally, it has been shown that anisotropic configurational parameters 

are necessary to produce stable dendritic morphologies.17 The objective of the current work is to 
advance this approach by exploring the effects of a configurational term for kinetic anisotropy. 

MODEL DESCRIPTION 

The simulation domain is a square mesh where each cell is assigned a value for temperature, 
composition, and phase. Temperature and composition are continuous field variables while the 
phase is a discrete binary variable. The overall operation of the model involves coupling the 
evolution of the temperature and solute field with the motion of the phase boundary. The solute 
field is updated using an alternate-direction-implicit finite-difference (ADI-FD) method with 
periodic lateral boundaries. For the simulations presented here, the thermal field is specified as 
either directional or uniform. The uniform conditions are implemented by imposing a fixed cooling 
rate on a field of uniform temperature. Conditions for directional solidification are implemented by 
employing a uniform temperature gradient and a constant isotherm velocity. In the directional case, 
the simulation frame is permitted to move in order to follow the front over distances much greater 
than the domain itself. 

The morphology of the solid is evolved using a CA technique which is intended to simulate the 
morphological evolution of an advancing solidification front by including the relevant physical 
factors such as temperature, composition, and interface curvature. The contribution from each is 
incorporated into a growth function which can be applied to every cell within the domain. Each cell 
i~, thus, free to grow as the local conditions allow, and no explicit distinction is made for dendrite 
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tips or other features. The morphology is updated by comparing random numbers to a growth 
probability p( <I>), where <I> is a growth potential computed from the local temperature, composition, 
and morphology. This method naturally imparts a random noise component to the structure, 
facilitating the fluctuations necessary to initiate morphological changes. The function p, which is 
essentially a velocity function, must be bounded by zero and one and should vary monotonically 
with the growth potential, <j>. The following function is chosen: 

p = 1 - exp[-(~)'lK] 
K 

(1) 

where K and T) can be used to control the shape of the function over the potential domain. The 
defining characteristics of the model, therefore, are the formulation of the potential <1> and the 
description of the constants T) and K, in terms of the physical properties of the alloy . 

For a site at position (ij), the growth potential at time k is defined as the kinetic undercooling: 

(2) 

where ll T is the total undercooling, and the subscripts C and R indicate compositional and curvature 
related contributions, respectively. With knowledge of the phase diagram, llTc at any cell can be 
calculated based on the local temperature and composition. With a configurational term for ll T R• 

(2) becomes: 

(3) 

where Tm is the melting temperature, m is the liquidus slope, C/ is the solute concentration, T/ is 
the temperature, and S/ is the configuration of the neighborhood about cell (ij) at time k. The 
configurational contribution to undercooling is computed as: 

(a. H + a. H + n.)~ 
fl.S ~ = r ' ' · · '"' 

v llz 
(4) 

where r is the Gibbs-Thompson coefficient, ~ and ~ are modeling constants, and llz is the grid 
resolution. The H; values are contributions due to interfacial curvature (i=r) and anisotropy (i=a), 
weighted by the coefficients a., and a.., respectively. In terms of the first and second nearest 
neighbors, these can be expressed as follows. 

H, = 2 * [w(2 -e,) + (I -w)(2 -e,)] (5) 

H. (e, -2)o(e,,e,) + (e, -e,)[e, - 2H '(e, -2)] 

where w is a weight factor between 0 and 1, E; is the number of solid ilh nearest neighbors, o is the 
Kronecker delta, and H' is the Heavyside function. 

At this point, we have a method for moving the interface based on the local value of <j>, which 
can be computed from the field variables and solid morphology. To determine the kinetic resistance 
imparted by (1), we evaluate dp/d<j> at a characteristic undercooling ofK. 

dp 
d<l> I. 

= _,_ = ,, 
exp(l) 

(6) 

Generally, the velocity of an interface is related to the kinetic undercooling through a proportionality 
constant: 

103 



v Ml::.T (7) 

where, 

l::.s -Q 
M = J v _L exp(-) 

0 
RT RT 

J0 is vibrational frequency, vis atomic volume, Q is activation energy for diffusion, R is the gas 
constant, and l::.sr is the entropy associated with solidification. 18 In the model, the velocity is given 
by the product of the growth probability, the time step frequency, and the cell size of the grid: 

IJ.z 
V = p- = pV (8) l::.t ... 

where V max is the limiting velocity. Combining (6) and (7): 

Ml::.T 
p = --

v ... 
Considering (1) and (8), 11' can be computed by relating the differentials: 

,_dp_ dp M 
, - d<j> - d(l::.T) v ... 

(9) 

(10) 

We now have a technique for calculating the value of p at each cell, based on the relevant 
physical parameters. To update the solid morphology, a random number (O!>r!> 1) is generated for 
each cell at each time step for comparison with p. If P/ > rii\ the cell is set to solid. The 
composition is then set to IcC/, and the excess solute (1-k)Ciik is distributed among the available 
neighboring cells. 

MODELING RESULTS 

All results presented in this section were obtained using input parameters associated with Al-
4.5 wt% Cu. The effect of the anisotropic contribution was explored by examining the growth of a 
single seed in the center of a uniform melt which is cooled at a constant rate. The grid resolution 
for these calculations is 1.5x10"5 m. The initial seed is circular in shape, with a diameter of3.0x10-4 
m. The effect of H, on the evolution of growth shape from the seed is shown for three different 
values ofH, in Figure 1. In Figure 1a, the value ofH, is not sufficient to overcome the anisotropy 
introduced by the grid, which dictates the initial square growth shape. For this shape, diffusive 
effects at the comers promote rapid growth and the shape evolves as shown. In Figure 1 b, the value 
of H. is high enough to result in an initial growth shape with { 11} interfaces. Once again, the 
comers grow rapidly and the shape evolves into a dendritic structure with side branches. In Figure 
1c, the value ofH. is, again, high enough to promote {11} interfaces in the initial growth shape. As 
the shape evolves, however, it becomes clear that H, is so high that other orientations have been 
almost completely suppressed, resulting in unnatural structures. A more advanced stage of 
morphological evolution for the intermediate value ofH, is shown in Figure 2. 

In the case of directional growth, the effect of the anisotropy parameter is equally important. 
Figure 3 shows the initial structural evolution during directional growth, using three different values 
for H,. For H,=0.1, the anisotropy imparted by the grid promotes {01} interfaces. This suppresses 
the development of curved cell tips. Cell fronts remain relatively flat until the undercooling becomes 
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ectional growth, using three different values 
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high enough to overcome the 
grid effect. This results in an 
abrupt and unnatural transition 
in morphology during the 
evolution of the dendritic front, 
as shown in Figure 3a .. For 
H. =0.3, the structure is no longer 
dominated by {01} interfaces, 
and it evolves smoothly into a 
dendritic front, as shown in 
Figure 3b. When H. is increased 
further to a value of 0.5, as in 
Figure 3c, the { 11} interfaces 
dominate the structure, resulting 
in pointed dendrite tips. Figure 4 
shows the near-steady-state 
morphology resulting from 
directional growth using the 
intermediate value of H •. 

CONCLUSIONS 

The anisotropy imparted by the 
. Figure I. A comparison between simulated growth morphologies for a 

gnd has a significant effect on circular seed in a uniform melt: (a) Hs=O.l, (b) Hs=0.3, (c) Hs=0.5. 
the resulting morphology. The Domain = 3 x 3 mm. Mesh = 200 x 200. 

Figure 2. Later stage of growth for the simulation shown in 
Figure 1 b. Domain = 6 x 6 mm. Mesh = 400 x 400. 
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incorporation of kinetic anisotropy, even 
through a simple configurational term, is 
essential for the simulation of realistic 
dendritic patterns using a cellular automaton 
approach. 
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