Skip to main content
Phase-field investigation of rod eutectic morphologies under geometrical confinement
Physical Review E
  • Melis Şerefoğlu, Iowa State University
  • Ralph E. Napolitano, Iowa State University
  • Mathis Plapp, École Polytechniqu
Document Type
Publication Date
Three-dimensional phase-field simulations are employed to investigate rod-type eutectic growth morphologies in confined geometry. Distinct steady-state solutions are found to depend on this confinement effect with the rod array basis vectors and their included angle (α) changing to accommodate the geometrical constraint. Specific morphologies are observed, including rods of circular cross sections, rods of distorted (elliptical) cross sections, rods of peanut-shaped cross-sections, and lamellar structures. The results show that, for a fixed value of α>10∘, the usual (triangular) arrays of circular rods are stable in a broad range of spacings, with a transition to the peanut-shaped cross sectioned rods occurring at large spacings (above 1.5 times the minimum undercooling spacing λm), and the advent of rod eliminations at low spacings. Furthermore, a transition from rod to lamellar structures is observed for α<10∘ for the phase fraction of 10.5% used in the present paper.

This article is from Physical Review E 84 (2011): 011614, doi:10.1103/PhysRevE.84.011614.

Copyright Owner
American Physical Society
File Format
Citation Information
Melis Şerefoğlu, Ralph E. Napolitano and Mathis Plapp. "Phase-field investigation of rod eutectic morphologies under geometrical confinement" Physical Review E Vol. 84 (2011) p. 011614
Available at: