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The random sequential adsorption of parallel (aligned) squares is studied by computer simulation.
A new precise value of the maximum (jamming) coverage is found: 6;=0.562009+0.000004. The
dynamics for times ¢ X 6000 agree with Swendsen’s prediction 6, —6(t¢)~c(Int)/t. Various two-
point correlation functions are measured, and the effects of the finite size and the discretization of

the adsorbing surface are also investigated.

I. INTRODUCTION

Random sequential adsorption (RSA) is a model for
the irreversible adsorption of objects on a surface. In the
simplest form of RSA, the objects have no interaction
other than a hard repulsion that prevents overlap be-
tween particles. An adsorption site is chosen at random,
and a new object is placed there only if it does not over-
lap any previously adsorbed object. A rejected object is
assumed to completely randomize its position before it
tries to adsorb again. The latter assumption makes the
model conceptually simple and absent of any parameters
except for the shape of the adsorbing object and, in finite
systems, the size and shape of the adsorbing surface.

RSA is a fundamental model of irreversible behavior
and is thus of broader interest than just for the study of
adsorption. RSA was first proposed as a model of ran-
dom packing in three dimensions (to describe the state of
a liquid) by Bernal,! and his interest stimulated much of
the early work. RSA is also used routinely to generate a
“random” configuration of particles to initialize a Monte
Carlo simulation (for systems of sufficiently low density).

In one-dimensional systems, RSA has been solved
analytically in both discrete®? and continuous cases.* In
higher dimensions asymptotic theoretical results have
been derived,” 7 and formal expansions exist® which pro-
duce uniformly accurate results after resummation.’
Computer simulations have been performed in two di-
mensions for the adsorption of disks,”!%!! parallel
squares,®1271® randomly oriented ellipses,'” and random-
ly oriented rectangles'® on a continuum surface, and
squares'® and more intricate shapes?>?! on a discrete lat-
tice have been investigated. Computer simulations on
aligned hypercubes in higher dimensions have also been
carried out.!> Some other recent papers that consider
various interesting aspects of the RSA problem are listed
in Refs. 22-25.

Here we are concerned with the problem of RSA of a
system of parallel squares (in which the edges of the
different squares are aligned parallel to each other), ad-
sorbing on a continuum two-dimensional surface. This
system is also called oriented squares, or aligned squares.
The interest in RSA of parallel squares originated with a
conjecture of Palasti?® that the maximum coverage 8, for
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squares in two dimensions is exactly the square of the
maximum coverage for segments in one dimension, 6‘,1 )

6,=(65")2~0.558 902 6504 , (1)
where
6(1”=f0we_2f(")dx=0.747 59792025338 , %)
and
x -
fo=["(1=e )y~ 'dy
=E,(x)+y+Inx

Here E(x) is the exponential integral function and y is
Euler’s gamma constant.”’” While early numerical work
tended to find agreement with (1),%!3 more precise mea-
surements of 6; showed (1) to underestimate the actual
value of 8, by about 0.5%.1%1415

Besides the question of the coverage of the jamming
limit, the dynamics are an important aspect of RSA.
Time ¢ is defined as the number of adsorption trials (suc-
cessful or not) per unit area, with the unit of area taken
to be equal to the area of a single adsorbing particle.
Swendsen'® has given theoretical arguments indicating
that for parallel squares the asymptotic time behavior of
the coverage as the jamming limit is approached should
be given by

0,—0(t)~c(lnz) /¢t , (3)

where c is a constant. Note 0( o )=8,. This behavior is
in contrast to that of disks, where 6(t) satisfies Feder’s
law,!!

0,—60(t)~c't 12, t—cw 4)

and randomly oriented rectangles'® and ellipses,!” where
6(1) satisfies

0;,—0(t)~c"t™F, t—o (5)

with p <1. The value of p depends on the shape of the
adsorbing particle.!”'®

Theoretical arguments in support of (4) have been
given by Swendsen!® and Pomeau,’ and extended by Hin-
richsen, Feder, and Jdssang,” and arguments in support
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of (5) have been given by Talbot, Tarjus, and Schaaf.!”
The reason that the behavior of parallel squares is
different from that of disks is that for parallel squares the
regions of the surface in which adsorption can occur at
the late states of the process remain as rather large rec-
tangles, while for disks they become very small triangle-
shaped regions.'® For randomly oriented rectangles and
ellipses, the kinetics is slowed further by orientational
constraints.

We note that parallel squares have also been studied
extensively in the context of a gas in equilibrium, using
virial expansions?®® and by Monte Carlo simulation.?’
However, it is well known that RSA is equivalent to equi-
librium systems only in the zero-density (or -coverage)
limit.® 3

Our motivation for reexamining the parallel-square
model stemmed from the fact that this model can be
simulated all the way to the jamming limit using a rela-
tively small amount of computer time. Hence, we were
able to collect data on this model that are considerably
more accurate than the data available for any other
currently studied RSA model in two (and higher) dimen-
sions. With these data we were able to study many as-
pects of the process in detail.

II. THE ALGORITHM

A. Adsorption of squares

We consider a surface of size 256 X256, where the unit
of length is equal to the edge of a single adsorbing square.
This surface is divided into 256 X 256 cells of unit area, so
that at most only one center of a square can fall within
each cell, as shown in Fig. 1. To adsorb a new square, a
cell is chosen at random, and, if the cell is empty, then x
and y coordinates are generated within the unit cell. The
adsorption of a new square centered at these coordinates
is accepted if there is no overlap with squares in neigh-

Z

FIG. 1. Three squares (black) adsorbed on a 5X5 section of
the surface. The surface section is shown divided into 25 “cells”
of unit area, as discussed in the text. The hatched regions
around each square show the “excluded area,” onto which the
adsorption of additional square centers is prohibited. The cen-
tral cell on the 5X5 surface is shown divided into a lattice of
nine rectangles, three of which are available for further adsorp-
tion of squares centers, and six of which are blocked.

boring cells. The overlap condition is simply |Ax | < and
|Ay| <1, where [ is the side of a square (here taken to be
unity). This part of the algorithm is similar to the
method of Akeda and Hori."

Eventually, there will be cells that are empty yet com-
pletely blocked from adsorption because of squares in
neighboring cells. (At jamming, the fraction of such
blocked cells is just 1—86;.) We developed an algorithm
that determines those blocked cells as follows: For each
cell, the eight surrounding nearest-neighbor and next-
nearest-neighbor cells are checked. Squares in any of
these eight cells will block out a region in the central cell
where there can be no adsorption, as shown in Fig. 1.
Squares in the nearest-neighbor cells will block out a re-
gion (in the central cell) to one side of a line (horizontal
or vertical), while those in the next-nearest-neighbor
(corner) cells will block out a corner region bounded by
vertical and horizontal lines. These vertical and horizon-
tal lines divide the central cell into a lattice of rectangles.
The program first determines all these lines and thus
defines the lattice, and then it determines which rec-
tangular regions within the lattice are blocked and which
are free for adsorption. If all the regions are blocked,
then the cell is marked as such, and adsorptions are no
longer attempted on these cells.

In the late stages of the program, when there are a rel-
atively small number of unblocked rectangular regions
left, those rectangles are put on a list (maximum length
256) and adsorption is carried out only in them. A given
rectangle is chosen with a probability proportional to its
area, and then a point is chosen randomly within that
area. The jamming limit is finally reached when there are
no more free rectangles left to adsorb a square.

B. Time dependence

In the initial stage of the algorithm, sites onto which
adsorptions are attempted are chosen randomly from the
entire surface of area 4 =256X256. In this initial stage,
the time is incremented by At =1/ 4 after each adsorp-
tion attempt. In the later stages of the algorithm, howev-
er, the sites onto which adsorptions are attempted are
chosen only from a subset of the area A, as described in
the preceding subsection. The time increment between
adsorptions for these later stages was calculated as

_ int[InR /In(1—p)]+1

t >
A A

(6)

where 3 is the fractional area of the surface in which ad-
sorptions are attempted, R is a uniformly distributed ran-
dom variable 0 <R =<1, and int[x] is the function whose
result is the integer part of x. Equation (6) is defined such
that P(Az)=pB(1—pB)4% =1 is the probability that the
time interval between two adsorption attempts will equal
At (where A At is the number of trials, and is an integer).
With this method of incrementing the time, the simula-
tion is exactly equivalent to a true RSA process, where
adsorption sites are chosen at random from the entire
surface of area A4 throughout the adsorption.
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C. Discussion

We found that jamming generally occurred by 7~=~23.
Had we continued with the naive approach of choosing
cells randomly (which was used in the early stages of the
program), we could not have reached the jamming limit
even once in the computing time available to us. A simu-
lation using only the simple adsorption procedure re-
quired several days of computer time to reach z=215,
This means that every cell was tried 21=32768 times,
yet there were still roughly eight adsorptions to go before
jamming. Several thousand (>2'®) days of computer
time would have been needed to reach the jamming limit
this way.

We note that Jodrey and Tory!® developed a related
procedure for simulating RSA of parallel squares to the
jamming limit. In their procedure, they created a linked
list to record the vertices of the graph that is formed by
all the rectangles in the system, and then they adsorbed
only in the free rectangles. After each adsorption, new
vertices were created. Periodic boundary conditions were
used, and the program was generalized for 1-4 dimen-
sions. While their method is efficient in that a square is
adsorbed after each attempt, the bookkeeping appears to
be rather time consuming. The same method was used
for the entire simulation. In contrast, our program used
different techniques at three distinct stages to improve
both speed and storage efficiency, with the time- and
memory-consuming adsorption in individual rectangles
done only at the end when the size of those rectangles is
very small. Jodrey and Tory adsorbed a total of just over
2 X 10° squares on a series of lattices as large as 100 X 100,
consuming =~27 h of IBM 370/158 central-processing-
unit time. Their result, 8, =0.562 1020.000 28, was the
most precise before the present work.

Hinrichson ez al.”!! have developed a procedure for
simulating RSA to the jamming limit for the case of
disks. In their procedure, they identify the Voronoi-
Dirichlet vertices, which are equidistant from each adja-
cent triplet of disks, and draw a circle about each of the
vertices with a radius so that the circle just touches the
three disks. If that radius is greater than the size of a
disk, then an additional disk can adsorb within the circle.
Evidently, they did not identify the actual triangle-
shaped adsorption space, but picked points randomly in
the circle that contained it-—yet this was sufficient to
reach the jamming limit in a reasonable amount of time.
Their final result was that 6,(disks)=0.546+0.002, and
they also verified that (4) is followed. This procedure is
(necessarily) rather intricate and time consuming, and the
largest surfaces they considered adsorbed =~2734 disks.
A total of 35 simulations were carried out, yielding a to-
tal of =95 700 adsorbed disks.

III. RESULTS AND DISCUSSION

A. Jamming limit coverage

To determine the value of 8;, R =44814 runs were
carried out on a 256 X256 surface, where the unit length
is the side of an adsorbing square. The x and y coordi-

nates of the cells within each unit region of the surface
were represented by a 31-bit integer, resulting in a
discretization of 23! X231 ~4.6 X 10!® points per unit area.
A total of over 1.65X10° squares were adsorbed. We
found

(N)=36831.81, 0=56.31 (7)

where IV is the number of adsorbed squares at the jam-
ming limit and o is the standard deviation in the sample
of R=44814 runs. The value of 6; then follows as
(N)/ A, where the area 4 =65 536, and the standard de-
viation of error in that estimate is (0 /A4)/V'R. Thus
our final result is

0;=0.5620090.000 004 , (8)

where the uncertainty represents one standard deviation.
By the law of large numbers we would expect, for sys-
tems of different A,

6,=(0,)*+f/VRA , 9

where R A is proportional to the total number of squares
that will adsorb in R runs, and f is a constant, indepen-
dent of R and A. Comparison of (9) with (8) yields
f=0.22. The error predicted by this formula is generally
consistent with the errors reported in other works. For
example, Feder’s work on parallel squares'! consisted of
R =5 runs on a surface of area 4 =5000. Equation (9)
predicts an uncertainty in 6; of 0.0014 for Feder’s data.
This is in rough agreement with the uncertainty of 0.002
reported by Feder.

B. Time dependence

At all stages of the program, the number of squares ad-
sorbed on the surface was stored whenever the time in-
creased by a factor of 2. These stored values were then
averaged over different runs and the standard deviation
calculated to get the final result. Part of the data collect-
ed for a system of area 256X 256 is presented in Table I.
To check Swendsen’s prediction,'® Eq. (3), we plot 6(¢)
versus (Inz)/t for ¢+ =128 (Fig. 2). It can be seen that
Swendsen’s prediction falls within one standard deviation
of the data for ¢ * 6000.

TABLE 1. Coverage as a function of time for a 256 X256 sys-
tem.

log,(t) 6,

—15 3.0517578X107°+0
—12 0.000244017 7+6.4X107°
—8 0.00387516+1.0x 1077
—4 0.0555175+1.3X107°
0 0.3297192+4.0X107¢
4 0.5120885+3.6X 107
8 0.5548600+3.9X 10~
12 0.5612550+4.0Xx10"¢
16 0.5619430+4.1X107°
20 0.562004 1+4.1X107°
24 0.562008 5+4.1 X107
28 0.562008 8+4.1X107°
31 0.562 008 8+4.1 X 10~
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In(t)/t

FIG. 2. Test of Swendsen’s asymptotic dynamics. The line
shown follows the equation 6(¢)=0.56201—0.378In(¢) /z.

C. Surface size and discreteness effects on 6,

The question arises of how the size and discretization
of the absorbing surface effects the jamming coverage of
the system. By “discretization of the surface” (=S?2), we
mean the number of lattice sites per unit area available to
the center of an adsorbing square on an empty lattice.
(There were 2°! X 23! sites per unit area in simulations dis-
cussed in the preceding two subsections). By “‘size of the
surface” (= 4 ), we mean the total area of the adsorbing
surface (256 X256 in the simulations of the preceding two
subsections). Blaisdell and Solomon!'? have investigated
this topic for aligned square RSA onto a surface with
hard boundary conditions. Their analysis is not applic-
able to our simulations due to our use of periodic bound-
ary conditions.

Discreteness effects have been studied previously for
one- and two-dimensional RSA. Mackenzie showed
analytically’! that for an infinite one-dimensional lattice
the jamming coverage goes as

0,(S)—6,()=0.2162S ~'4+0.03625 "2+ - - - , (10)

where S=1,2,3, ... is the number of lattice sites across
a particle. In Table II we list jamming coverages for sys-

TABLE II. Jamming coverage as a function of S for a
256 X256 system.

S 0,
2 0.747943+3.7X 1073
4 0.647927+2.2X107°
8 0.603 355+5.5x107°
16 0.582223+3.9X 1073
32 0.571916+2.7X 1073
64 0.567077+4.0X 107°
128 0.564 405+5.1X 1073
256 0.563074+5.2X 1077
512 0.562 647+3.1X 1077
1024 0.562346+3.3X 1077
4096 0.562 127+3.3X 1077
16384 0.562038+3.3 X107

2147483 648 0.562008 8+4.1 X107

tems of aligned squares at various discretizations. The
data were produced by simulations on a system of area
A =256X256. We found that the data fit quite well to
the equation

0,(S)—6,()=0.3155"14+0.1145 2 . (11)

Table IT and Eq. (11) imply that the discretization used to
determine (8) (the jamming coverage for a system with
S =231) is far more than adequate.

Nakamura!® also ran simulations to determine the
effects of discretization on the jamming limit coverage.
His results are in general agreement with (11). Evans*?
used a generalization of the Palasti conjecture!?2® to
discrete RSA to find the constants in (11), and found
0;(8)—0,()=0.3235S "'—0.007S "2.  However, the
Palasti conjecture is known to give the wrong result in
the limit S — .

We have collected some preliminary data on the effect
of surface size on 6;. The value of 6, was measured for
surfaces of area 2"X2", where n =2-10. The measure-
ments were made using an adsorbing surface with the
maximum discretization (S=23!). For 1X1 and 2X2
systems, the coverage is exactly 1. (The reader can verify
that a 2X2 system with periodic boundary conditions
will always achieve total coverage.) For the surface of
area 4 X4 we found 6;=0.562 305%0.000006. For each
surface of area 8 X8 and greater, the jamming coverage
was calculated to a standard deviation of less than
0.00002, and we found that these jamming coverages all
had overlap with (8), the jamming coverage for a
256X256 system. Additionally, we calculated the
coefficient f defined in (9), and found f=0.22 for all the
runs except n =2 (4X4), where f=0.09. Thus, quite ac-
curate values of 6, can evidently by measured using
simulations on a surface as small as 8 X8. In the next
subsection, we will show that this remarkable result is
due to the rapid damping of the two-point correlation
functions.

D. Two-point correlation functions

The two-point correlation function, G(r,a), is defined
as the probability of finding an adsorbed square centered
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in a neighborhood of (r,a), given that there is a square
centered at the origin. Here r is the radial coordinate
measured in lengths of the side of an adsorbing square,
and « is the angular coordinate defined in Fig. 3. G(r,a)
is normalized with the jamming limit coverage, so that at
jamming G(r,a)—1 as r— . Figure 3 shows the two-
point correlation function for squares at the jamming
limit. Note that 0<a=<w/4 and 0<r =< o0 covers all
space, due to the fourfold symmetry of the problem.
Values of r cosa =1 correspond to contact between two
squares, and r cosa=n +1 correspond to the minimum
distance between two square centers such that n squares
can be placed between the first two squares. The two-
point correlation functions diverge at rcosa=1, and
have local minima at » cosa =2 and 3. (The minimum at
3 could not be conclusively detected for a=mw/4.)

Each curve in Fig. 3 crosses the line G(r,a)=1 at
r cosa=1.5. Thus, there is a tendency of squares to form
more “holes” of width under 0.5 than would be formed if
the square centers were uniformly distributed. Addition-
ally, squares are somewhat discouraged from forming
holes of width slightly larger than 0.5. Notice that the
divergence of G(r,a) at contact occurs more rapidly as a
is decreased. Thus, if we know that a square center is go-
ing to fall within » cosa < 1.5 of another square center, it
is more likely that the two squares will achieve an orien-
tation with a small a than an orientation with a large a.
Given two squares separated by a ‘“hole” somewhat
larger than 0.5 (i.e., with r cosa somewhat greater than
1.5), the two squares are more likely to have a relative
orientation with large a than an orientation with small a.

Swendsen has stated!® that for =0 the divergence of

G(r,o)

o 1 L I

r cos(a)

FIG. 3. Two-point correlation functions. The inset in the
upper right shows how r and a are defined with respect to the
adsorbed square at the origin. The curves are, from bottom to
top, a=0, 7/16, w/8, 3w /16, and m/4. Each successive curve
is translated upward one unit.

TABLE III. Coefficients for Eq. (13).

a Cy C,

0 —1.97 —2.50
m/16 —0.05 —1.16
m/8 0.21 —0.84

3m/16 0.53 —0.53
/4 0.99 —0.13

the two-point correlation function at contact should be
the same as the divergence in one dimension:

G(r,0)=CIn(r —1), r—1 (12)
with C,=—0.8434.3! Our data are consistent with the
form

G(r,a)=Cy+Cln(r cosa—1) , (13)

for r cosa— 1, with values of Cy and C, given for various
a in Table III. In comparing (12) and (13) we note that
the constant term of (13) will eventually be overwhelmed
by the logarithmic term as r cosa—1, and (13) will ap-
proach (12). However, for a =0, the constant term in (13)
accounts for over 10% of the value of G(r,a) when r —1
is as small as 0.0005. Figure 4 shows the fit of the two-
point correlation function to (13) for a=0.

The two-point correlation-function data were collected
using shells of size 87 =L, and 8a= 5L; rad. When plot-
ting the data of Fig. 3, we simply placed each data point
at the midpoint of its respective shell. Thus the data for
the shell 1 <r <1.005 were plotted at »r =1.0025. The ex-
act position of the data point within 87 was not very im-
portant, due to the small size of &». In Fig. 4, however,
the positioning of the data point within the shell becomes
very important for r—1, due to the divergence of

G(r,0)

L 1 I 1 L

2
-7.0 -6.0 -5.0 -4.0 -3.0 -2.0

In(r-1)

FIG. 4. The @’s show the logarithmic divergence of the
correlation function at contact for a=0. The data shown are
for r —1=0.135. The line is a least-squares fit to the data, and
follows the equation G(r,a)=-—1.97—2.50In(r —1). The +
shows the data plotted at the midpoint of the shell for r, =1.
For r; 2 1.005 there is almost no difference between r, +8r /2
and r* of Eq. (16).
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In(r —1) at »=1. For example, the data for the shell
1 <r < 1.005 could naively be plotted anywhere in the re-
gion — o <In(r —1)< —5.30.

To determine the best value of r at which to plot each
data point, we assumed a form for G(r,a) across each
shell:

G(r,a)=K,;+K,ln(r cosa—1) , (14)

where K; and K, are arbitrary constants that may vary
from shell to shell. Our program stores data only on
G(r,a), the average of G(r,a) across each shell:

- r,+&r
_ fa+6 dotfr1 drr G(r,a)
G(r,a)= & 21 oa 1 7 For N (15)
f da drr
a r

where the integration limits are the upper and lower
bounds of the differential area element of interest. We
wish to find the value of r* at which G(r*,a)=G(r,a).
After making the change of variables z=r cosa—1, we

find that r* is determined by
1,210y — 1,2 __qlr +8ricosa—1
. [3z2°Inz—+z°+zInz z]rlmm‘1
"= 1,2 (r  +8r)cosa—1 s (16)
[72 +z]rlcosa71

with z*=r*cosa—1, and with r; the lower bound of the
shell. We used (16) to find the value of r* at which to
plot the data collected in the interval (#,, r; +&7). Only
the leftmost point in Fig. 4 had a value of r* significantly
different than the midpoint of its shell. Notice that K,
and K, of Eq. (14) drop out and do not appear in (16).

Expanding (16) about &r for the ‘first” shell,
1 <r cosa < 1+ 8, one finds
2
pr=—ty Or Br)esa 4 65py, 1)
cosa e 4e

which shows that to lowest order the data point should
be plotted a distance 67 /e from the inside of the shell at
ri=1/cosa. Expanding (16) in the limit of
(ricosa—1)/6r>>1 (i.e., for two squares far from con-
tact), one finds

P =r 150U ) e

so that in this limit it is valid to plot the data point in the
center of the radial interval.

We found it convenient to define a “box average” two-
point correlation function, G,,[7,a,6(¢)]. The box aver-
age correlation function is the probability of finding a
square center located in a neighborhood of a square
“box” of side length 2r centered at the origin, given that
there is an adsorbed square centered at the origin (see
Fig. 5). Again, G, is normalized against the jamming
limit coverage, so that Gy.[r,a,0(t)]—06(t)/6; as
r— oo. Note that with the above definition of G, r =1
corresponds to contract between two squares, and » =2
corresponds to the smallest distance between two squares
such that a third square can be placed between the two.
The box average correlation function has largely the

2 -
G, ™
——————
0 T T T T
o] 1 2 3 4 S

r

FIG. 5. The box average correlation function. The inset in
the upper right corner shows a unit square at the origin and a
neighborhood of a “box” of side length 2r. The curves are, from
bottom to top, 6(¢)/6,=0.25, 0.50, 0.65, 0.75, 0.85, 0.90, 0.95,
and 1.00.

same shape as the curves of Fig. 3. In Fig. 5 we have
plotted the box average correlation function at various
coverages. We note that places where the curves are
spread far apart represent regions where adsorption is
likely to occur for coverages between the coverage of the
two curves. Likewise, places where curves bunch togeth-
er represent regions where adsorption is unlikely. Hence,
adsorption at r=2 is extremely unlikely at coverages
over 36, while adsorption is much more likely at » =21
for these same coverages.

The data of Fig. 3—5 were generated on a surface of
area 256X256, with a discretization of 23!X23! lattice
sites per unit area. The data were collected for each
curve by averaging the individual radial distribution
functions of over 15X 10°® squares in RSA configurations.

Although all squares that adsorb in a RSA process are
in some sense identical to each other (in that each square
has the same size and shape and follows the same rules
for the failure or success of an adsorption), not all squares
exhibit the same behavior. In particular, we found that
squares that adsorbed late in the simulation were distin-
guishable (in a probabilistic sense) from squares that ad-
sorbed early in the simulation. In Fig. 6 we show the box
average correlation functions at the jamming limit for the
first square to absorb, the last square to adsorb, and also
for the square that adsorbed at a coverage of 36;. All the
correlation functions diverge at r =1; however, the corre-
lation function for the last square to adsorb exhibits a
much stronger divergence. Also, there is evidently a
discontinuity in G,, at » =2 for the last square to ad-
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Gbox (r)

FIG. 6. The box average correlation function at the jamming
limit for the last square to adsorb (bottom), the square to adsorb
at %0 ; (middle), and the first square to adsorb (top). Each suc-
cessive curve has been translated upward for clarity.

sorb, while there is a discontinuity only in the derivative
of Gy for the other squares. Note that we determined
the correlation functions for squares that adsorbed at 16,
and 16,, but these functions were so similar to the corre-
lation function for the first square to adsorb that we did
not include them in the figure.

The functions of Fig. 6 were generated from R =5200
runs on a 64 X 64 surface with a discretization of 2°! X 2!
lattice sites per unit area. The smaller surface was used
because of the large number of runs needed to collect
data of the sort presented in Fig. 6. The reason that more
runs were needed to collect the data of Fig. 6 than to col-
lect the data of Fig. 3-5 is that a jamming limit
configuration provides 6; 4 adsorbed squares on which to
collect data for Fig. 3—5, but the same configuration pro-
vides only one “first square to adsorb” on which to col-
lect data for Fig. 6.

IV. CONCLUSIONS

We have found that the RSA of parallel squares can be
simulated to the jamming limit using a reasonable
amount of computer time. This allowed us to calculate
6, to unprecedented accuracy, and to calculate radial dis-
tribution functions precisely. We were even-able to get
good data for the radial distribution functions of squares
that landed at specific coverages, even though attaining
such data required that an entire adsorption be simulated
to get data for only a single square.

Investigations were performed to discover the depen-
dence of 8; on the degree of discretization of the adsorb-
ing surface. A similarity was found between the effects of
discretizing the absorbing surface in one- and two-

dimensional RSA. Further investigations might consider
the effects of discretization on the dynamics of the ad-
sorption. The discretization of the surface will determine
the size of the smallest “hole” onto which a square can
adsorb. Thus, the approach to jamming should be more
rapid on a coarse lattice than on a fine lattice, due to the
absence of very small ““holes” on the coarse lattice. [Note
that Swendsen’s asymptotic dynamics (3) applies to a con-
tinuous surface, and predicts that the jamming limit will
only be reached in the limit ¢ — c0.]

Investigations were also performed to discover the
dependence of 6; on the size of the adsorbing surface.
When periodic boundary conditions are used, the jam-
ming limit coverage is found to be independent of surface
size for surfaces of area 2"X2" with n an integer greater
than 2. Further investigations might consider the effects
on 6, of adsorbing surface sizes other than 2"X2". We
do not expect 8; to vary for surfaces much larger than
8 X8, due to the rapid damping of the two-point correla-
tion functions. For smaller surfaces, however, we would
expect 8, to oscillate as the adsorbing surface area is in-
creased. To see this, consider a 1X1 system, in which
6;,=1. As the surface area A4 is increased, the coverage
will decrease according to 6;=1/4, until at 4 =2X2
exactly four squares always adsorb, and the jamming cov-
erage jumps to exactly 1. As we increase the surface area
again, the coverage will decrease according to 8;,=4/ A4
until 4 =3X3, at which point more than four squares
can adsorb. For A4 >3X3, the relationship between 6,
and A becomes more complicated.” The preceding argu-
ment is valid only for square surfaces.

Swendsen’s dynamics for long times were found to
agree well with our simulated data for times z R 6000.
Swendsen’s prediction of a logarithmic divergence for the
two-point correlation function at contact also agreed
with our data.

The two-point correlation functions along constant o
were shown to have similar shapes when G(r,a) is plot-
ted against r cosa for various a. It is possible that the
only difference between the curves for various a is the
rate at which the curves damp out. This similarity sug-
gests the use of the box average correlation function. The
large shell size of the box average correlation increases
the ease with which correlation-function data can be col-
lected.

Note added. While revising this paper, we received a
copy of unpublished work from V. Privman, J. S. Wang,
and P. Nielaba*® that has some overlap with the work
presented here. While their work deals primarily with
the issue of the time dependence of RSA on a discrete lat-
tice (i.e., small S), the authors also verified Swendsen’s
dynamics (3) for a continuous surface, although with less
precision than we have achieved here. Additionally, they
reported values of 8, for small S that are in good agree-
ment with the values we report in Table II.
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