Skip to main content
Article
S-Nitrosylation of STIM1 by Neuronal Nitric Oxide Synthase Inhibits Store-Operated Ca2 + Entry
Journal of Molecular Biology
  • Le Gui, Schulich School of Medicine & Dentistry
  • Jinhui Zhu, Schulich School of Medicine & Dentistry
  • Xiangru Lu, Schulich School of Medicine & Dentistry
  • Stephen M. Sims, Schulich School of Medicine & Dentistry
  • Wei Yang Lu, Schulich School of Medicine & Dentistry
  • Peter B. Stathopulos, Schulich School of Medicine & Dentistry
  • Qingping Feng, Schulich School of Medicine & Dentistry
Document Type
Article
Publication Date
6-8-2018
URL with Digital Object Identifier
10.1016/j.jmb.2018.04.028
Abstract

Store-operated Ca2 + entry (SOCE) mediated by stromal interacting molecule-1 (STIM1) and Orai1 represents a major route of Ca2 + entry in mammalian cells and is initiated by STIM1 oligomerization in the endoplasmic or sarcoplasmic reticulum. However, the effects of nitric oxide (NO) on STIM1 function are unknown. Neuronal NO synthase is located in the sarcoplasmic reticulum of cardiomyocytes. Here, we show that STIM1 is susceptible to S-nitrosylation. Neuronal NO synthase deficiency or inhibition enhanced Ca2 + release-activated Ca2 + channel current (ICRAC) and SOCE in cardiomyocytes. Consistently, NO donor S-nitrosoglutathione inhibited STIM1 puncta formation and ICRAC in HEK293 cells, but this effect was absent in cells expressing the Cys49Ser/Cys56Ser STIM1 double mutant. Furthermore, NO donors caused Cys49- and Cys56-specific structural changes associated with reduced protein backbone mobility, increased thermal stability and suppressed Ca2+ depletion-dependent oligomerization of the luminal Ca2 +-sensing region of STIM1. Collectively, our data show that S-nitrosylation of STIM1 suppresses oligomerization via enhanced luminal domain stability and rigidity and inhibits SOCE in cardiomyocytes.

Citation Information
Le Gui, Jinhui Zhu, Xiangru Lu, Stephen M. Sims, et al.. "S-Nitrosylation of STIM1 by Neuronal Nitric Oxide Synthase Inhibits Store-Operated Ca2 + Entry" Journal of Molecular Biology Vol. 430 Iss. 12 (2018) p. 1773 - 1785
Available at: http://works.bepress.com/qingping-feng/35/