Skip to main content
Other
The Contribution of ArsB to Arsenic Resistance in Campylobacter jejuni
PLoS ONE
  • Zhangqi Shen, Iowa State University
  • Jing Han, Iowa State University
  • Yang Wang, Iowa State University
  • Orhan Sahin, Iowa State University
  • Qijing Zhang, Iowa State University
Document Type
Article
Publication Version
Published Version
Publication Date
3-15-2013
DOI
10.1371/journal.pone.0058894
Abstract
Arsenic, a toxic metalloid, exists in the natural environment and its organic form is approved for use as a feed additive for animal production. As a major foodborne pathogen of animal origin,Campylobacter is exposed to arsenic selection pressure in the food animal production environments. Previous studies showed that Campylobacter isolates from poultry were highly resistant to arsenic compounds and a 4-gene operon (containing arsP, arsR, arsC, and acr3) was associated with arsenic resistance in Campylobacter. However, this 4-gene operon is only present in some Campylobacter isolates and other arsenic resistance mechanisms in C. jejunihave not been characterized. In this study, we determined the role of several putative arsenic resistance genes including arsB, arsC2, and arsR3 in arsenic resistance in C. jejuni and found that arsB, but not the other two genes, contributes to the resistance to arsenite and arsenate. Inactivation of arsB in C. jejuni resulted in 8- and 4-fold reduction in the MICs of arsenite and arsenate, respectively, and complementation of the arsB mutant restored the MIC of arsenite. Additionally, overexpression of arsB in C. jejuni 11168 resulted in a 16-fold increase in the MIC of arsenite. PCR analysis of C. jejuni isolates from different animals hosts indicated that arsBand acr3 (the 4-gene operon) are widely distributed in various C. jejuni strains, suggesting thatCampylobacter requires at least one of the two genes for adaptation to arsenic-containing environments. These results identify ArsB as an alternative mechanism for arsenic resistance inC. jejuni and provide new insights into the adaptive mechanisms of Campylobacter in animal food production environments.
Comments

This article is from PLoS ONE 8(3): e58894. doi:10.1371/journal.pone.0058894. Posted with permission.

Rights
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Copyright Owner
Shen et al
Language
en
File Format
application/pdf
Citation Information
Zhangqi Shen, Jing Han, Yang Wang, Orhan Sahin, et al.. "The Contribution of ArsB to Arsenic Resistance in Campylobacter jejuni" PLoS ONE Vol. 8 Iss. 3 (2013) p. e58894
Available at: http://works.bepress.com/qijing-zhang/21/