Prior knowledge and new product and service introductions by entrepreneurial firms: the mediating role of technological innovation.

Patrick J. Murphy, DePaul University
Jintong Tang
Abstract: Most research on new product and service development by entrepreneurial firms takes an individual-level, pre-launch perspective or firm-level post-launch perspective. Our study examines two components of the new product and service introduction process: how entrepreneurs' prior knowledge underpins (1) firm technological innovation prior to the introduction of new products and services (pre-launch) and (2) post-launch viability of those new products and services. Our findings, based on a series of analyses of data from 158 entrepreneurial firms, show that formal technological innovation fully mediates the relation between prior knowledge and the introduction of viable new products and services.

*This study was supported by a faculty research leave award to the first author by Saint Louis University. An early version of this research was presented at the 2007 Babson College Entrepreneurship Research Conference in Madrid, Spain.

Jintong Tang (Ph.D., The University of Alabama) is an assistant professor of entrepreneurship and management at Saint Louis University. Her research interests include entrepreneurial orientation, alertness, affect, social skills, ethics, and innovation. She has published in various entrepreneurship and management journals such as *Entrepreneurship Theory and Practice*, *Journal of Business Venturing*, *Journal of Management*, *British Journal of Management*, etc.

Patrick J. Murphy (Ph.D., University of Illinois-Chicago) is associate professor of management at DePaul University. His research focuses mainly on the entrepreneurial discovery phenomenon and his work has appeared in leading journals such as *Entrepreneurship Theory and Practice* and *Academy of Management Perspectives*. Currently he is writing a book for Yale University Press that explores the underpinnings of mutiny in modern business organizations.
Prior Knowledge and New Product and Service Introductions by Entrepreneurial Firms: The Mediating Role of Technological Innovation

The introduction of innovative new products and services is critical for organizational survival and success (Damanpour, 1991). The process enables firms to increase market share and market value (Chaney & Devinney, 1992), improve performance (Roberts, 1999) and enhance survival (Banbury & Mitchell, 1995), and adapt to the market context in which they are embedded (Brown & Eisenhardt, 1995). The process has also been noted as instrumental to creating new markets (Burgelman, 1991) and raising visibility and legitimacy among customers and competitors (Schoonhoven, Eisenhardt, & Lyman, 1990). It is widely accepted that organizational knowledge is vital to the innovative aspects of new product and service development (Atuahene-Gima, 2003; Atuahene-Gima & Li, 2004; Deeds, DeCarolis, & Coombs, 1999; Katila, 2002; Katila & Ahuja, 2002; Keller, 2001). Firms accomplish innovation by translating internal knowledge and knowledge spillovers from other entities into new products or services (Katila, 2002). Among all the antecedents of innovation, previous research tends to focus on firm specialization (Kimberly & Evanisko, 1981), formalization (Burns & Stalker, 1994), centralization (Thompson, 1965), administrative intensity (Damanpour, 1987), slack resources (Rosner, 1968), and internal communication (Ross, 1974).

Within this broad area, entrepreneurial firms herald unique considerations about the emergence and existence of opportunities to create new products and services (Murphy, 2010; Shane & Venkataraman, 2000). The utter novelty of entrepreneurial venture offerings affords performance in competitive markets, which makes the identification of new opportunities essential (Ardichvili, Cardozo, & Ray, 2003). The extent to which entrepreneurial firms are able to develop and bring new products and services to market based on such opportunities is thus a basic success indicator (Shepherd & DeTienne, 2005). Because of the high relevance of
innovation, multiple streams of research examine innovation from a range of perspectives (Deeds et al., 1999; Greve, 2003; Murphy, 2010; Smith, Collins, & Clark, 2005). The most voluminous of these streams emphasizes the knowledge, skills, abilities, competencies, and other human performance characteristics that fall into the realm of human capital theory (Becker, 1964; Schultz, 1959).

In this paper, we strengthen and clarify the linkages between prior knowledge and opportunities for the development of new product and services (Corbett, 2007; Ko & Butler, 2006; Shepherd & DeTienne, 2005). Whereas new product and service offerings are important to entrepreneurial firm performance, our contribution addresses two gaps in this research area. First, previous research makes distinctions between administrative and technical innovations (Daft, 1978; Kimberly & Evanisko, 1981); radical and incremental innovations (Dewar & Dutton, 1986; Ettlie, Bridges, & O’Keefe, 1984; Nord & Tucker, 1987); initiation and implementation stages of the adoption of innovation (Marino, 1982; Zmud, 1982); diffusion and adoption of innovations (Kimberly, 1981); innovating and innovativeness (Van de Ven & Rogers, 1988). However, those studies view technological innovation and new product and service introduction interchangeably. The problem with this view is that the elements seem to occupy different stages of the entrepreneurial process when it comes to the practical matter of market entry (Edwards & Gordon, 1984). Because these elements contribute to the process in distinct ways, different firm characteristics influence each one and lead to different consequences for firms (Marino, 1982). Moreover, firm technological innovation tends to occupy a discrete part of a firm’s internal operational model, whereas new product or service development is generated internally as well as purchased externally (Damanpour, 1991). On these grounds, technological innovation and new product and service development are germane to firm-level
activities in terms of stage (e.g., invention; development; application) and source (e.g., internal; external) in different ways.

Second, research on the novelty and viability of new product and service introductions emphasizes external opportunities but makes calls for the examination of firm-centric phenomena based important unresolved issues (Atuahene-Gima & Li, 2004). For instance, whereas some new products and services stem from multiple firm technological innovations as a common source, others derive from just one distinct firm technological innovation (Shane, 2003). However, the research usually emphasizes individual-level underpinnings of new product and service offerings (e.g., creativity, human capital). In other words, the research does not emphasize firm-centric underpinnings, such as technological innovation policies and practices, to help explain the viability of new products and services. This shortcoming warrants concern because entrepreneurial firms invest significant resources in developing new technological innovations and improving their new products and services. Yet, failure rates in development initiatives are substantial, with approximately 33% of new products and services never being launched (Corbett, Neck, & DeTienne, 2007).

Examining the firm-level underpinnings of these conceptual issues promises implications for important practical aspects of entrepreneurship. Entrepreneurs can and do embed technological innovation into firm culture, resources, routines, and procedures. Sometimes, they house innovation in a research and development department. Such entrepreneurial firms combat the inertia of size and tradition and achieve innovation by putting special formal systems in place to promote, enable, and maintain innovative activities (Van de Ven, Polley, Garud, & Venkataraman, 1999: 201). For example, firm technological innovation is robust in actual firms that have flatter organizational structures, more horizontal communication, and distinct
innovation departments and processes (Kolodny, Liu, Stynne, & Denis, 1996). Firm-level technological innovation is thus distinctly important because entrepreneurial firm performance stems from the management of innovation (Covin & Slevin, 1989).

Following Shane (2000), we define technological innovation as work activities that concern new products, services, and production processes (Shane, 2000). Following Amason, Shrader, & Tompson (2006), we define new product and service introductions as new market offerings introduced by firms to meet external uses or needs in the market environment. Whereas technological innovations concern the generation of breakthrough ideas, new products and services are different in that they entail external shaping of the innovations toward application, market entry, competition, and viability.

In light of these definitions and the issues articulated in this introduction, our conceptual and empirical study examines the issues to extend existing theory about the knowledge-innovation linkage in entrepreneurship. We specifically address two principal research questions:

1. Are entrepreneurial firm technological innovations demonstrably distinct from new products and services introduced by those firms?

2. Do firm technological innovations mediate the linkage between entrepreneurs’ prior knowledge and firm new product and service introductions?

To address the first question, we review literatures on technological innovation and new product and service development and formulate arguments about the linkage and distinction between new products and services and the technological innovations that give rise to them. For the second question, we build on those arguments with respect to the role of prior knowledge and formulate a conceptual model of the relation between prior knowledge and new product and service introductions. The model casts firm technological innovation as a distinct and practical
step in the entrepreneurial process. Finally, we develop two hypotheses that assess the conceptual model using hierarchical regression and statistical tests for mediation.

Conceptual Background and Theoretic Review

Firm-level Technological Innovation and New Product and Service Introductions

The entrepreneurship literature has two research streams on innovation. The first stream examines innovation as a single insight and the second describes a process composed of multiple stages. According to the first stream, innovation is “fundamentally the introduction of something new” (Amason et al., 2006: 127). The stream also describes innovation as the commercialization of an invention (Myers & Marquis, 1969). More specifically, innovation can be a technology, strategy, or managerial practice a firm uses for the first time or a significant improvement to an existing process (Nord & Tucker, 1987).

According to the second stream, innovation is “a process that begins with an invention, proceeds, with the development of the invention, and results in the introduction of a new product, process or service to the marketplace” (Edwards & Gordon, 1984: 1). Here, innovation begins with the selection of an idea for development with the goal of commercialization and market entry. This stream also defines innovation as the process of identifying and utilizing opportunities to create new products, services, or work practices (Van de Ven, 1986). The process may also entail multiple stages. For example, Damanpour (1991) proposed two stages of initiation and implementation. The former consists of perceiving problems, gathering information, forming attitudes, and attaining resources, whereas the latter consists of modifications to innovations, early utilization, and the establishment of an organizational routine. This conceptualization reflects the long-held view that an invention and the subsequent
innovation that it makes possible are distinct from one another economically and sociologically (Kolodny et al., 1996; Schumpeter, 1939).

Entrepreneurial firms are distinct from small businesses due to the novelty of their products or services, endogenous innovation within the firm, and exogenous innovation (Katz & Green, 2008). From a process perspective, innovation thus entails two aspects: firm technological innovation and new product and service introductions. The former entails internal generation of the innovations or processes that lead to new products and services. By contrast, the latter refers to new products or services introduced to meet an external use or market need.

Three-dimensional printing (3DP) provides an illustration of the differences between a technological innovation and new product or service (Shane, 2000). Based on the single 3DP process, entrepreneurs are able to introduce a wide variety of wholly different new products and services to markets. Despite sharing the same 3DP process as a common source, those new products and services range from ceramic molds for casting metal parts, artificial bone material for weight bearing indications in surgery, to a chain of stores to make sculptures from photographs. Again, this result provides evidence for the notion that inventions and the innovation based on such inventions are different in important ways (Schumpeter, 1939).

Similarly, technologies like Wi-Fi and digital video formatting (e.g., Blu Ray) provide examples of the distinction between technological innovations and new products and services. In those cases, the sole innovations were invented in the context of firms (Wi-Fi has its origins in National Cash Register and AT&T; Blu-Ray emerged from internal projects by Sony and Philips) and are distinct from the many new products such as wireless headsets, routers, and optical media products based on them (Shapiro & Varian, 1999).
We argue that technological innovations are distinct from new product and service introductions on two basic premises. First, new product and service introductions indicate the commercial significance of a firm’s technological innovations. They do not affect firm survival and growth until the ideas inherent in them are introduced to the market. Technological innovations do not generate value for entrepreneurial firms until commercial viability is realized, a market is discovered, profit is generated, and continuous profit when facing market competition is sustained (Dimov, 2007). This argument holds that the elements of viability derive directly from products and services, not technological innovations. Second, a technological innovation can result in multiple new products and services (Shane, 2000) or, moreover, it may not lead to any new products or services. Further still, a new product or service based on the technological innovations may be developed but never commercialized (Schoonhoven et al., 1990). These arguments hold that there is a clear inflection point in firm operations that separates technological innovations from new products and services.

The distinction between these constructs is relevant and instrumental to firm entrepreneurship activity. Although the notion may seem clear conceptually, very little research assumes and almost no research explicitly describes this important difference. Moreover, no studies have offered evidence for examining it. Figure 1 illustrates firm technological innovation in this fully mediating role. In the next section, we review the research on prior knowledge and its effect on new product and service development and develop hypotheses based on this review to guide an empirical test of the model.

Insert Figure 1 about here

Prior Knowledge and New Product and Service Introductions

Prior knowledge refers to idiosyncratic information about a particular subject such as the knowledge that accumulates through work experience (Cooper, Gimeno, & Woo, 1994; Evans & Leighton, 1989) or education (Gimeno, Folta, Cooper, & Woo, 1997). Prior knowledge of markets entails possessing information about how particular markets operate (Shane, 2000). Such specific knowledge is procured via experience and heralds a more specific stock of information that can become tentative as a market evolves. Knowing how to serve markets means knowing how to meet consumer needs, not just knowing what those needs are (Shane, 2000). Knowledge of specific customer problems involves knowing what customers would prefer instead of other alternatives (Shane, 2000), and is instrumental to developing new products and services to which potential customers will respond positively. Human capital theory postulates that increased knowledge in a particular field allows individuals to become increasingly efficient and to focus on the key dimensions that contribute to the positive outcome of decisions (Weber, 1980). At bottom, the human capital perspective assumes that identifiable aspects of individuals, such as their prior knowledge, enable firm performance outcomes when firm membership consists of those individuals (Corbett, 2007; Shepherd & DeTienne, 2005).

Prior knowledge enhances new products and services for multiple reasons. First, since entrepreneurs’ prior knowledge accumulates over relatively long stretches of time, such as the knowledge gained from experience in an industry or formal education (Becker, 1964), it is considered more legitimate, reliable (March, 1991), elegant, and robust (Hutchins, 1983). Prior knowledge, as a resource, raises an entrepreneur’s familiarity with many different aspects of a business setting based on a history of professional activities and interactions with customers and competitors. Such familiarity, combined with the legitimacy and reliability of the knowledge,
allows an entrepreneur to perceive the subtle aspects of performance with a more informed schema for sensemaking.

Second, since the communication, sharing, and transfer of information are intense in entrepreneurial firms, prior knowledge is assimilated and integrated into venture operations. As a result, sensemaking (Delmar & Davidsson, 2000), strategic management decisions (Hitt, Bierman, Shimizu, & Kochhar, 2001), venture performance (Gimeno et al., 1997), and entrepreneurial discovery (Casson, 1995; Corbett, 2007; Shane, 2003) are enhanced. All of these outcomes promote the development of viable new products and services.

Third, the process of developing new products and services involves finding creative and unique ways to remedy inefficiencies in a market system. However, as firms focus on new knowledge and ideas, previous market and customer information are more difficult to access (Argote, 1999). This tradeoff makes entrepreneurs’ prior knowledge idiosyncratic and inimitable across firms (Murphy, 2010). Without a clear emphasis on technological innovation, firms must build directly on prior knowledge with new products and services that simultaneously adapt to the turbulent environment. The daunting managerial challenges associated with this prior knowledge and new product and service linkage process are long bemoaned (Schultz, 1959).

Finally, new product and service introductions do begin with unique combinations of prior knowledge types and require additional knowledge. The information required to make new product and service offerings attractive to the market requires specific knowledge about customer problems, how to respond to those problems, and the market itself (Shane, 2000). Entrepreneurs with such specific knowledge have access to information and use it to form beliefs about efficient resource use. Then, as they capitalize on new knowledge, their knowledge accumulates (Rao & Drazin, 2002). Thus, entrepreneurs use prior knowledge to shape an
opportunity into a viable market offering through a kind of learning process (Ardichvili et al., 2003; Corbett, 2007). From this perspective, entrepreneurs’ prior knowledge represents a valuable, rare, and difficult-to-imitate resource (Barney, 1991) that will bring viable market offerings to the entrepreneurial firms.

Hypothesis 1: Greater prior knowledge leads to more viable new product and service introductions by entrepreneurial firms.

Firm Technological Innovation as a Mediator

If we fully apply the process of innovation to the entrepreneurship context, the distinction between technological innovations and new product and service introduction is analogous to the distinction between ideas and opportunities (Dimov, 2007). Every opportunity has an initial idea as its “progeny” and that opportunity recognition is a creative process where initial insight develops gradually into a fully shaped idea for a new product or service. Thus, opportunity development moves beyond single-insight attribution. Similarly, as technological innovations precede the development of new products or services, there is temporal disparity between the two constructs. As technological innovations are not yet modified into market offerings that hold promise for the generation of value by an entrepreneurial venture, they serve as an intervening variable between prior knowledge and new product and service offerings. Prior knowledge affords the identification of opportunities in a market system, but firms introduce new products and services via the technological innovation stage. On these grounds, the relationship involves mediation.

Our hypothesis rests on several assumptions from prior research. First, prior knowledge affects the viability of new product and service introductions via absorptive capacity, which is the ability to recognize the value of new information, assimilate the new information, and apply the new information for technological innovation development (Cohen & Levinthal, 1990). The
ability to assess and capitalize on outside knowledge is largely a function of the level of prior knowledge, such as basic skills or knowledge of the most recent technological innovations in a given field. Prior knowledge increases the ability to put new knowledge into memory and recall and utilize it (Bower & Hilgard, 1981). Thus, more prior knowledge enables the extraction of knowledge from external sources (Cohen & Levinthal, 1990), the integration of acquired knowledge with technological innovations (Zahra & George, 2002), and the introduction of new products and services.

Second, entrepreneurs’ prior knowledge enhances problem-solving skills, which allows them to restructure “knowledge portfolios” and fully utilize knowledge assets (Galunic & Rodan, 1998). As a result, for instance, their understanding of technological innovations is broader and the ability to develop technological innovations is stronger (Zahra & George, 2002). As technological innovations are the foundation for new product and service introductions, a firm’s ability to offer more viable new products and services is enhanced when greater prior knowledge underlies the firm technological innovation process.

Third, with prior knowledge about markets, how to serve markets, and customer problems, the costs associated with searching for new products and services to meet the needs of the market are reduced (Katila, 2002). In addition, perception of the environment and how to respond to competitors and organize resources are all enhanced (Baum, Locke, & Smith, 2001). Hence, a more efficient way to expand to new technological areas is achieved; the ability to predict the nature of future technological advances is enhanced; and a better understanding of how to appropriately apply novel technological innovations in the new product and service development process is facilitated. On these grounds, an entrepreneur’s prior knowledge allows better understanding of how to apply technological innovations to new products and services.
Previous research merely implies a mediating role for technological innovation in the relationship between prior knowledge and new product/service offerings in ways that derive from market selection, how to serve the market, and knowledge of customer problems (Shane, 2003). We extend notions about prior knowledge’s importance to technological innovation and viable new product and service introductions (Shrader & Siegel, 2007) in the form of a fully mediated relation among these variables.

Hypothesis 2: Distinct firm technological innovations fully mediate the relation between prior knowledge and the number of new product and service introductions.

METHOD

Sample and Procedure

To generate evidence for testing our hypotheses, we undertook multiple empirical data collection procedures in order to procure an appropriate sample. First, we conducted face-to-face interviews and discussions with eight entrepreneurs in the Southeastern United States in order to guide construction of a survey. Each interview lasted from 40 minutes to an hour to ensure that items in our survey procedure were clear and readily interpretable.

We accessed entrepreneurs (defined as current owners or co-owners who participated in the establishment of their businesses) from three data sources. First, the names and addresses of 500 entrepreneurs were obtained from the *Reference USA* database. We selected those listed as owners (rather than managers) in the contact person category. These entrepreneurs were located in several Southeastern states and operated businesses in various industries. Surveys were then mailed out to all the entrepreneurs with postage-paid return envelopes. Of the 500 entrepreneurs contacted, 67 returned the surveys. Six of these respondents were eliminated because they were not active in the founding process. Five more respondents were eliminated because cover letters were mistakenly returned instead of surveys. Eventually, 56 usable surveys were generated from
the first source. Second, we surveyed entrepreneurs in the database of an entrepreneurship center at a Midwestern university via the center director. An online survey link was included in e-newsletters for two consecutive months. This source generated 62 responses. Nine cases were deleted due to missing information on key variables, yielding 53 complete surveys from the second source. Third, we contacted entrepreneurs on the distribution list maintained by the entrepreneurship center at another university located in the Midwest. The director of the development office contacted these entrepreneurs periodically in conjunction with the entrepreneurship center, and a survey link was included in one of these requests. After eliminating responses with missing values, we retained 49 usable surveys.

Results of \(t \)-test comparisons of the average firm size (number of current employees) and business tenure (years the respondent has been in the current business) of the three samples revealed no statistical difference \((p > .10) \). Similarly, there were no statistical differences in the mean responses for the research variables assessed in the study. With no discernable differences between the three samples, we combined them into one sample of 158 entrepreneurs. Approximately 80% of the sampled respondents were male; and 26.7% had graduate degrees or higher. Their firms employed an average number of 52 employees, and the average number of years of business experience of the entrepreneurs was 14.

Measures

We used established measures from prior research and undertook tests to provide evidence for examining their psychometric quality in our study.

Prior knowledge. The scale for *prior knowledge* was composed of three items following Shane (2000). These items were anchored on 5-point Likert scales ranging from 1 (strongly disagree) to 5 (strongly agree): (1) I have rich knowledge about markets such as supplier
relationships, sales techniques, capital equipment requirements; (2) I know how to serve markets; and (3) I am familiar with customer problems ($\alpha = .76$).

Technological innovation. Following previous research (Katila, 2002; Shane, 2000), we utilized a continuously valued measure for the mediator variable, *technological innovations*. This item asked respondents to provide a number to answer the question: “how many technological innovations has your firm developed in the past five years that could potentially lead to new products or services?” This item was followed immediately by the question that asked for the number of new products and services described below.

New product and service introductions. To operationalize *new product and service introductions*, we followed Katila (2002) and asked the respondents to provide a number to answer the question: “based on the technological innovations that your firm has developed in the past five years, how many new products or services has your firm introduced?” This measure of new product and service offerings has been found to be robust over a wide variety of research settings (Damanpour, 1991; Smith et al., 2005).

Control variables. Demographic (such as age, gender and education), firm-level (such as firm size and firm age), and industry level variables were controlled to diminish any unobserved heterogeneity attributable to them and to partial out any potential confounding effects on various indices of innovation-related outcomes. *Age* was measured with 5 categories: (1) < 25; (2) 25-34; (3) 35-44; (4) 45-54; and (5) > 55 years old. *Gender* was measured with a dummy variable (female = 0; male = 1). *Education* was coded as “1” for “less than high school degree;” “2” for “high school graduate;” “3” for “some college;” “4” for “4-year college graduate;” and “5” for “some graduate study beyond 4-year college degree.”
Firm size was measured by the number of current employees in the firm. As the raw number of employees was skewed (skewness = 4.66), we recoded this variable based on a natural log transformation of the scores. As a result, the skewness statistic of the distribution of these scores was 1.08 and avoided a violation of parametric analysis assumptions. We measured firm age by asking the entrepreneurs to provide the year when their business was established. Finally, industry was controlled because whether ventures are operating in high technology or low technology industries can influence firm new product and service offerings (Thornhill, 2006). To control for industry, the survey listed 17 categories of industries following North American Industrial Classification (NAIC) code. Next, we categorized the 17 industries as high or low-technology by employing Thornhill’s (2006) algorithm, which was developed based on the standardized scores for R&D intensity and the percentage of knowledge workers in each industry. High-technology industries (e.g., professional, scientific, technical services, manufacturing, mining) were coded as 1, and low-technology industries (e.g., construction, transportation and warehousing) were coded as 0.

ANALYSIS AND RESULTS

To promote the validity of our analysis and results, we undertook several rigorous tests of assumptions regarding multicollinearity among independent variables, outliers in the distribution of variable scores, and common method variance. We made these checks before testing our hypotheses to ensure our test statistics were appropriate for our sample data. As we report in what follows, we executed these tests using standard authoritative methodologies.

Tests for Multicollinearity and Outliers

We executed multiple analyses to test for multicollinearity and outliers. None of the variance inflation scores exceeded 1.94 and all condition index scores were less than 26.55.
Each of these statistics falls well within acceptable ranges (Fox, 1997; Neter, Kutner, Nachtsheim, & Wasserman, 1996), suggesting multicollinearity was not a threat to the validity of our main analyses. To assess the threat from outlier scores, we calculated leverage values and DfBetas. These analyses found that no leverage scores exceeded .13 and no standardized DfBetas exceeded an absolute value of .76. Again, these scores are well within accepted ranges (Neter et al., 1996; Tabachnik & Fidell, 2007) and suggest no outliers.

Tests for Common Method Variance

To check for the presence of common method variance, we entered all of our study variables into an exploratory factor analysis procedure using the principal axis factoring method (Podsakoff, MacKenzie, Lee, & Podsakoff’s, 2003). Next, we examined the unrotated factor solution to determine the number of factors that were necessary to account for all variance. Three factors emerged with eigenvalues exceeding 1.0, with the first one explaining 24.97% of variance. Therefore, it appears no single factor was dominant and that common method variance was not a threat to findings of our empirical analysis.

As the tests for multicollinearity, outliers, and common method variance indicated no threat to our statistical methods, we deemed our data sample to be appropriate for hypothesis testing.

Tests of Hypotheses

Table 1 reports the means, standard deviations, and correlations of all variables. Overall, the correlations among the independent and dependent variables were as expected.

Insert Table 1 about here

We used a hierarchical regression analysis to test our hypotheses. Table 2 reports the results. The number of new product and service offerings and technological innovations were entered as the dependent variables. Hypothesis 1 held that prior knowledge leads to more viable new product and service offerings. As shown in Model 4 of Table 2, prior knowledge was positively and significantly related to the number of new product and service offerings ($\beta = .19, p < .05$), which offers support for the first hypothesis. Adding the prior knowledge variable explained an additional 3% of the variance for new product and service offerings.

Our second hypothesis holds that technological innovations mediate the effect of prior knowledge on the number of new product and service offerings. To test for mediation, we adopted the standard procedure of Baron and Kenny (1986). According to the logic of this procedure, mediation is suggested if (1) the independent variable is a significant predictor of both the dependent variable and the mediator, (2) the mediator is a significant predictor of the dependent variable, and (3) the effects of the independent variable on the dependent variable are reduced when the mediating variable is added to the regression equation. Full mediation is indicated if the effect of the independent variable is no longer significant when the mediating variable is added, whereas partial mediation is suggested if the effect of the independent variable is reduced but still significant. Both kinds of mediation are thus discernable via the same analysis.

Our results show that technological innovation is a full mediator of the relation between prior knowledge and number of new product and service offerings. This result provides
support for our second hypothesis. Specifically, as shown in Model 4 of Table 2 (and as described above) prior knowledge is significantly related to the dependent variable (number of new product and service offerings). Further, as Model 2 in Table 2 shows, prior knowledge is significantly related to the mediator (technological innovations; $\beta = .30, p < .001$). As required by Step 1 of Baron and Kenny’s (1986) procedure, the independent variable (prior knowledge) is significantly related both to the dependent measure and to the proposed mediator. The second step requires that the proposed mediator be significantly related to the dependent variable. As shown in Model 5 of Table 2, technological innovation is significantly related to the number of new product and service offerings ($\beta = .27, p < .01$). This result fulfills the requirement of Step 2. Finally, when prior knowledge and technological innovation are both included in the regression equation, the result offers clear support for full mediation. As shown in Model 5 of Table 2, the effect of prior knowledge on the number of new product and service offerings is eliminated when technological innovation is added (β is reduced from .19, $p < .05$ to .11, n.s.). As such, this rigorous test of our data provide evidence that technological innovations fully mediate the relation between entrepreneurs’ prior knowledge and firms’ number of new product and service offerings.

Although our results meet formal mediation criteria (Baron & Kenny, 1986), smaller samples can complicate the evaluation of direct relations between independent and dependent variables (Shrout & Bolger, 2002). In order to analyze the data as rigorously as possible, we undertook Sobel tests to examine the statistical significance of the indirect effects of prior knowledge on the number of new product and service offerings through technological innovation (MacKinnon & Dwyer, 1993; Sobel, 1982). Sobel tests calculate the magnitude of the unstandardized indirect effect and its associated standard error. The ratio of the indirect effect
over its standard error is the Sobel statistic, which is then compared to a z-score distribution to
determine the significance of the indirect effect. In our data, the Sobel test (2.51, \(p < .01 \))
indicates the indirect effect of prior knowledge on the dependent measure is in the anticipated
direction and significant, which provides additional evidence for the validity of our results
concerning our second hypothesis.

DISCUSSION

New product and service offering has received much research attention as an important
factor of entrepreneurial firm performance. However, several significant gaps germane to theory
and practice have stymied further development of this important topic. For example, current
research has sometimes used the terms technological innovations and new product and service
introductions interchangeably, whereas in fact they represent different stages in the innovation
process. In addition, by emphasizing individual characteristics in innovation research has under-
estimated how internal, firm-level processes influence new product and service introductions.
Our research questions were designed to examine if technological innovations are not only
distinct from new product and service introductions, but whether they mediate the impact of
prior knowledge on firm new product and service offerings. We explained that while
technological innovations concern the generation of breakthrough ideas, new product and service
development entails the continuous shaping and development of these breakthrough innovations
vis-à-vis external elements. Our survey of 158 entrepreneurial firms found that prior knowledge
influences new product and service introductions and that technological innovations fully
mediate this linkage. The contribution of our study strengthens some existing conceptual links in
entrepreneurship research on the relation between knowledge and innovation (Damanpour,
Our findings offer three general conclusions. First, our findings clarify the structure of firm innovation by distinguishing technological innovations from new product and service introductions. Following the research stream that treats innovation as a process, we proposed that innovation begins with an invention and ends with a new product or service introduced into the market (Edwards & Gordon, 1984). Such a process view of innovation is consistent with Schumpeter’s description, cited above: “The making of the invention and the carrying out of the corresponding innovation are, economically and sociologically, two entirely different things” (1939: 85). According to this long held perspective on innovation, technological innovations and new product and service introductions represent different firm-level stages of practical importance. Technological innovations derive from insights and ideas, which serve as foundations for new products or services. New products or services, in turn, represent the implementation of commercialization into a market setting. Thus, new product and service introductions are distinct from technological innovations because: (1) technological innovations cannot influence firm performance until the ideas have been put into use and introduced to the market; and (2) a technological innovation may lead to multiple new products or services or alternatively, the new product or service developed based on the technological innovation are never introduced to the market.

We reinforce the notion that it is important to distinguish these two constructs very clearly because different firm aspects influence them and each one leads to different consequences (Marino, 1982). Although firm technological innovation can be an ongoing activity and span the entire new product and service development process within the firm, the new product or service can be either internally generated from these technological innovations or purchased from outside the firm and thus not related to the firm technological innovation.
(Damanpour, 1991). Our study provides evidence that this occurs in a particular context that is firm-level and internal.

Second, our study shows theoretic links between entrepreneurship and other areas of management regarding the relationship between knowledge and innovation (Damanpour, 1991). A large body of research indicates that knowledge plays an important role in organizational innovation (Atuahene-Gima, 2003; Atuahene-Gima & Li, 2004; Deeds et al., 1999; Katila, 2002; Katila & Ahuja, 2002; Keller, 2001). Applying this research in the entrepreneurship context and focusing on entrepreneurs’ prior knowledge (rather than organizational knowledge) clarify the critical role that entrepreneurs play as the driving force behind innovation in firms and the introduction of new products and services. Integrating the extensive body of theory and findings in the organizational context into ongoing research in the field of entrepreneurship contributes to the development of closer conceptual links between these diverse fields.

Third, our study clarifies the combination of individual prior knowledge with firm-level aspects, thus responding to calls for more comprehensive frameworks of opportunity identification (Murphy, 2010). Clarifying the mechanisms through which entrepreneurs influence new product and service introductions is an essential task for the field of entrepreneurship (Baron & Tang, in press). Much research on new product and service offerings focuses on either the effects of individual level characteristics or organizational characteristics (centralization, formalization, slack resources). However, those approaches do not effectively capture joint influences of pre-existing knowledge bases and firm-level technological innovation development. In our study, we show strong empirical support for “middle-step technological innovations” as mediating the relation between entrepreneurs’ prior knowledge and the number
of new market offerings, which lends credence to recent pronouncements that opportunities are more than just “single-insight” phenomena (Dimov, 2007).

Theoretic and Practical Implications

Our study offers several implications for theory. First, unlike a financial capital perspective, a human capital perspective does not necessarily hold that greater amounts of capital are always better. For example, sometimes too much experience can mitigate an entrepreneur’s ability to see and appreciate utterly novel venture ideas. Beyond a certain threshold, prior knowledge depreciation can reduce the positive effects due to forgetting, lost records, and turnover (Katila, 2002). The research is mixed due to the need for advancement in the modest application of human capital theory in entrepreneurial contexts (Dimov & Shepherd, 2005). Future research can examine whether prior knowledge is beneficial to entrepreneurial outcomes (such as new product and service offerings) up to a distinct inflection point, and whether any further gains in prior knowledge after that point may be actually detrimental to the viability or number of new product and service offerings.

Second, innovation is a process that encompasses the initiation and implementation stages (Damanpour, 1991). As such, future studies should examine how firms innovate over time; how present-day firms employ prior knowledge and technological innovations developed at different points to create future products and services. Some scholars note that firms can and do build on recent technological innovations to enhance new product and service introductions because old ones become obsolete over time and no longer meet the needs of the market (Eisenhardt, 1989; Thompson, 1967). Still others have indicated that older and established technological innovations are more reliable and valuable for firms. Moreover, many technological innovations are fusions or novel combinations of ideas discovered at temporally
disparate points (Fleming, 2001). To address these contradictory accounts, longitudinal designs may allow investigation of how prior knowledge shapes new product and service introductions through past technological innovations.

Third, as noted above, the current literature depicts types of new products and services along a continuum to indicate how discrepant an offering or process is compared to existing ones (Gaglio, 2004; Germain, 1996; Mascitelli, 2000; Shepherd & DeTienne, 2005). For instance, based on the work of Mascitelli (2000), Gaglio (2004) suggests distinctions made in terms of imitative, substitute, incremental, evolutionary, radical, revolutionary and discontinuous. Future research based on our study will illuminate the continuum and the differing determinants of these different types of new products. Further, recent research has developed a typology of new product and service innovativeness based on alertness and systematic search (Tang & Khan, 2007). Future research along the lines of our study can clarify the role of other important factors such as alertness (Tang, Kacmar, & Busenitz, in press) and systematic search (Fiet, 2002) with respect to their influence on the novelty of new products and services.

One additional theoretic implication concerns the creation of new products and services for organizations as studied in the knowledge management literature (Schulze & Hoegl, 2006). In this area, innovation is sometimes identified with harnessing new knowledge (Nonaka & Takeuchi, 1995). However, it has been noted that new technological knowledge coevolves with new product and service development in firms as a way to innovate and respond to market needs (Schulz & Hoegl, 2006). In entrepreneurship research, by contrast, the linkage between prior knowledge and firm capability to generate new knowledge is unclear. Thus, future entrepreneurship studies should focus on the effects of prior knowledge on firm-level new
knowledge generation (not just individual-level factors) in the development of technological innovations and new product and service introductions.

Our findings offer several practical implications for the management of entrepreneurial ventures. Whereas few would doubt the notion that innovation activity predicts the release of new products and services firms, our study puts this notion into context and highlights some limits of the relationship. Our findings show that prior knowledge is more strongly associated with technological innovation than with new product and service development. Thus, using human capital to select new employees for entrepreneurial ventures is appropriate for filling internal technological innovation positions. In other words, as noted earlier, the ancillary process of developing innovations into new products and services interfaces with knowledge present in the market environment (Damanpour, 1991). Knowledge deriving from the external market shapes and develops technological innovations in ways that the prior knowledge of firm employees cannot. Therefore, entrepreneurs selecting employees based on prior knowledge should limit the application of that knowledge to pre-market innovations and institute beta or market testing in order to inform the shaping innovations into products and services.

A mediating role of technological innovation suggests that successful introductions of new products and services in entrepreneurial firms may require careful management and utilization of technological innovation processes. It is particularly important for entrepreneurial firms to realize the utility of firm-level technological innovations because they invest significant human and financial resources in developing new products and services when entering a new market, yet the liability of smallness and newness (Aldrich & Auster, 1986; Freeman, Carroll, & Hannan, 1983) tends to hinder the potential success of a new product or service. However, as mentioned earlier, some new products and services stem from multiple firm technological
innovations as a common source, while others derive from just one distinct firm technological innovation (Shane, 2003). Thus, it is more beneficial and cost-effective for entrepreneurial firms to focus their limited resources on developing multiple new products and services from just one distinct firm technological innovation.

Another practical implication of our study concerns teams and the structure of entrepreneurial firms. As the new product and service development process spans multiple areas of a firm, our findings suggest that it is useful for specific teams and structural features to be devoted to internal innovation activity whereas others are devoted to externally oriented market offering development. This management practice will yield more viable new products and services, but it can be a challenge to entrepreneurial ventures with informal, organic structures. If the team responsible for new product development is involved in externally oriented market research activity, concurrent involvement in internal technological innovation can hinder the viability of eventual new products and services. Building on arguments stemming from Kaolodny et al. (1996) and Van de Ven et al. (1999), our study offers evidence that an operational structure reflecting sharp differences between internal technological development and the external aspects of new product and service development may be vital to entrepreneurial ventures.

Finally, our study illustrates the importance of coordination and organization design in entrepreneurial management settings. Technological innovations not ready for application frequently require significant investments of resources before even preliminary external exposure. In turn, nascent versions of new products require careful exposure to external market elements and outside research before formal launch. We posit that the internal firm boundary between these two modes and its ramifications for entrepreneurial firm design and operations
deserve greater attention. For entrepreneurial venture managers, our study provides justification for management decisions that acknowledge a full mediating role of technological innovation in the link between prior knowledge and new product and service development.

Limitations

Our findings are best regarded in light of a few limitations. The first one involves the fact that the variables of focal interest were assessed through a single survey. This raises mild concern about common method variance and resulting inflated correlations. To evaluate the potential of such threats, we conducted various tests to check for the presence of multicollinearity, outlier, and common method variance. Our results indicated no significant problems for our study, but future work could minimize these potential problems by designing and administering a survey from multiple sources. As well, two primary variables (technological innovations, new product and service introductions) were measured with single-item scales. Although these measures replicated previous empirical research, future studies could improve measurement by generating and validating multiple-item scales.

A second limitation concerns how intra-firm innovation activities influence new product and service introductions. We focus on technological innovations generated within the firm. However, some firms develop new products and services based on the technological innovations from outside the firm or industry (Damanpour, 1991; Katila, 2002). Do adopted technological innovations lead to more viable new product or service introductions than internally generated innovations? If firms generate their own technological innovations, can they also rely on externally ones in light of relevant transaction costs? Future research based on our study could investigate the effects of internally versus adopted generated technological innovations.
Third, as noted above, mechanisms other than technological innovations can influence new product and service introductions. These mechanisms hinge on absorptive capacity, new knowledge creation capability, novelty of offerings, and speed to market. Although these mechanisms have been considered in past research (Atuahene-Gima, 2003; Schoonhoven et al., 1990; Zahra & George, 2002), their effects on prior knowledge and new product and service introductions is worth direct investigation. Whereas we took initial steps toward such an investigation in our study, the more specific processes and linkages beg future research questions based on the implications of our research.
REFERENCES

34

Table 1
Means, Standard Deviations, and Correlations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>s.d.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Entrepreneur age</td>
<td>3.34</td>
<td>1.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Gender</td>
<td>.81</td>
<td>.41</td>
<td>-.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Education</td>
<td>4.28</td>
<td>.86</td>
<td>-.16*</td>
<td></td>
<td></td>
<td>.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Firm size a</td>
<td>.97</td>
<td>.70</td>
<td>.39**</td>
<td>-.02</td>
<td></td>
<td>.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Firm age</td>
<td>10.24</td>
<td>10.38</td>
<td>.58**</td>
<td>-.07</td>
<td>-.17*</td>
<td>.53**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Industry</td>
<td>.18</td>
<td>.39</td>
<td>-.02</td>
<td>.02</td>
<td>.01</td>
<td>.06</td>
<td>-.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Prior knowledge</td>
<td>3.89</td>
<td>.69</td>
<td>.27**</td>
<td>-.02</td>
<td>-.15*</td>
<td>.17*</td>
<td>.32**</td>
<td>-.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Technological Innovation</td>
<td>1.62</td>
<td>1.32</td>
<td>.29**</td>
<td>-.01</td>
<td>.11</td>
<td>.18*</td>
<td>.18*</td>
<td>.00</td>
<td>.36**</td>
<td></td>
</tr>
<tr>
<td>9. Number of new product and service introductions a</td>
<td>1.71</td>
<td>2.03</td>
<td>.13</td>
<td>.07</td>
<td>.08</td>
<td>.14</td>
<td>.09</td>
<td>.03</td>
<td>.19*</td>
<td>.35**</td>
</tr>
</tbody>
</table>

* p < .05 ** p < .01 a Logarithm
Table 2
Results of Regression Analysis Predicting New Product and Service Introductions b

<table>
<thead>
<tr>
<th>Variables</th>
<th>Technological Innovation</th>
<th>Number of new product and service introductions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
</tr>
<tr>
<td>Entrepreneur age</td>
<td>.25*</td>
<td>.22*</td>
</tr>
<tr>
<td>Gender</td>
<td>-.02</td>
<td>-.00</td>
</tr>
<tr>
<td>Education</td>
<td>.13</td>
<td>.15*</td>
</tr>
<tr>
<td>Firm size a</td>
<td>.07</td>
<td>.06</td>
</tr>
<tr>
<td>Firm age</td>
<td>.02</td>
<td>-.05</td>
</tr>
<tr>
<td>Industry</td>
<td>.02</td>
<td>.02</td>
</tr>
<tr>
<td>Prior knowledge</td>
<td>.30***</td>
<td></td>
</tr>
<tr>
<td>Technological Innovation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*R² * Adjusted R² * ∆R² * ∆F

<table>
<thead>
<tr>
<th>R²</th>
<th>Adjusted R²</th>
<th>∆R²</th>
<th>∆F</th>
</tr>
</thead>
<tbody>
<tr>
<td>.10</td>
<td>.06</td>
<td>.10</td>
<td>2.69*</td>
</tr>
<tr>
<td>.18</td>
<td>.14</td>
<td>.08</td>
<td>14.74***</td>
</tr>
<tr>
<td>.04</td>
<td>.00</td>
<td>.04</td>
<td>1.01</td>
</tr>
<tr>
<td>.07</td>
<td>.03</td>
<td>.03</td>
<td>5.38*</td>
</tr>
<tr>
<td>.14</td>
<td>.09</td>
<td>.07</td>
<td>11.04**</td>
</tr>
</tbody>
</table>

* p < .05 ** p < .01 *** p < .001
a Logarithm b Standardized regression coefficients are displayed
Figure 1
Prior Knowledge and New Product and Service Offerings Mediated by Firm Technological Innovation

Prior Knowledge

Markets
How to Serve Markets
Customer Problems

Firm Technological Innovation
research and development, formal teams and structural elements, incentives, policies

New Product and Service Offerings

New Products
New Services