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Abstract

In real-life elections, vote-counting is often imperfect. We analyze the consequences

of such imperfections in plurality and runoff rule voting games. We call a strategy

profile a robust equilibrium if it is an equilibrium for a small, but positive miscount

probability.

All robust equilibria of plurality voting games satisfy Duverger’s Law: In any robust

equilibrium, exactly two candidates receive a positive number of votes. Moreover,

robustness (only) rules out a victory of the Condorcet loser.

All robust equilibria under runoff rule satisfy Duverger’s Hypothesis: First round

votes are (almost always) dispersed over more than two alternatives. Robustness has

strong implications for equilibrium outcomes under runoff rule: For large parts of the

parameter space, the robust equilibrium outcome is unique.

Keywords: strategic voting, plurality rule, runoff rule, Duverger’s Law and Hypothesis

JEL code: D720.

∗Corresponding author: Mattias Polborn, Department of Economics, University of Illinois, Urbana, IL,

61801; email: polborn@uiuc.edu



1 Introduction

In real-life elections, vote-counting is often imperfect. The best indication of this fact is that,

when an election outcome is close, the candidate who is behind in the first count often asks for

a recount. In a substantial fraction of recounts, the initial result is actually overturned, and

even if the winner does not change, vote totals generally change after a recount. Moreover,

it is plausible that even recounts are often not perfect in the sense that it is not guaranteed

that every vote is counted in the way that the corresponding voter intended to cast it.

In this paper we investigate the implications of a vote counting technology that is im-

perfect, but very close to perfect, on the equilibrium of voting games with three candidates.

Specifically, we consider a setup in which each ballot is counted as an “undervote” (i.e., a

vote for no candidate) with probability ε > 0, while it is counted correctly with probability

1 − ε. We call ε the miscount probability. A strategy profile s is a robust equilibrium if

there is a ε > 0 such that s is an equilibrium whenever ε < ε. We focus on two of the most

commonly studied types of non-binary voting games, namely plurality rule games and runoff

rule games.

Robustness is very similar in spirit to Selten’s Trembling Hand Perfection. The aspects

in which the two concepts differ are the following: First, the ‘trembles’ (miscounts) that we

consider do not correspond to a player casting his vote for a wrong candidate. Instead they

simply nullify a player’s ballot. Second, our miscounts are not committed by the players

themselves but are a characteristic of the vote counting technology. Thus, unlike in the

case of Selten’s trembles, the distribution of our miscounts does not depend on the players’

identities. The chance that a ballot is lost is the same for each player.

Modeling perturbations in voting games in this way has several important advantages.

The first advantage is that it has a very natural interpretation. Experience from close

elections show that vote totals often change after a recount (and even then it is not clear

that the last result is necessarily the “correct” one in an absolute sense). Second, the fact

that the miscount probability is the same for all ballots is very convenient from a technical

point of view, and this is the main advantage relative to classical trembling hand perfection.

Third, and related to the second point, our way of modeling perturbations in voting games

as arising from an imperfect vote counting technology produces sharper predictions in terms

of reducing the set of possible outcomes than classical trembling hand perfection.
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Our main results can be summarized as follows: Under plurality rule, an equilibrium is

robust if and only if it satisfies Duverger’s Law, that is, if all votes are concentrated on exactly

two candidates. Moreover, voters vote “sincerely” for one of the two relevant candidates; that

is, each voter votes for the candidate he prefers from among the two candidates who receive

a positive number of votes. While robustness has strong implications for the structure of

equilibrium voting behavior under plurality rule, it does not narrow down the set of possible

equilibrium outcomes very much. Since votes can be distributed on any pair of candidates,

the only candidate who can be excluded as possible winner of the election is the Condorcet

loser (whenever one exists).

In runoff rule voting games, robustness generates (under very weak assumptions on the

preference distribution) equilibria consistent with “Duverger’s Hypothesis”, which states

that first round votes in a runoff system are typically dispersed over more than just two

candidates. In terms of reducing the set of robust equilibrium outcomes, robustness is more

powerful under runoff rule than under plurality rule. In fact, the robust equilbrium outcome

is often unique, both in the case where a Condorcet winner exists and where it does not exist.

If in a setting with a transitive majority ordering the outcome is unique, then this outcome

must be the Condorcet winner. If the outcome is unique in a setting where no Condorcet

winner exists then it must be the candidate with the smallest set of voters who rank that

candidate lowest.

The remainder of this paper is organized as follows. In the following subsection we

provide a short overview of the related literature. In Section 2 we describe the environment

(voters, preferences, set of candidates). We also introduce some notation and terminology

that we use throughout the paper. In Section 3, we first provide a description of our plurality

rule voting games and a definition of the concept of robustness for plurality voting games.

After doing so we provide an exact characterization of the robust equilibrium set of plurality

voting games. Runoff voting games are analyzed in Section 4. Since runoff games are not

static, we first discuss how the robustness concept is to be adapted to such games before

providing a (partial) characterization of the set of robust equilibria. Section 5 discusses

possible extensions of our work and provides some concluding remarks.
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1.1 Related literature

Our paper contributes to the literature on multicandidate voting games. Unfortunately, the

analysis of voting games faces the problem that they usually have multiple equilibria. More-

over, different Nash equilibria typically lead to different outcomes (i.e., election winners).

The only case in which this problem is easily overcome is in voting games with just two

alternatives, or more generally, voting games with a binary agenda in which at every stage

only two alternatives are voted on. It is well known that such games are dominance solvable

(see Moulin (1979)). Moreover, the unique undominated equilbrium outcome of such games

is the sophisticated outcome as defined by Farquharson (1969). Binary agendas apply to

the analysis of voting in legislative settings, but in elections with three or more candidates,

weak dominance arguments lose their power and, typically, any candidate can be supported

as outcome of an equilibrium in undominated strategies.

Plurality and runoff voting games with complete information. There are only few

papers that consider complete information plurality or runoff voting games as we do here.

Dhillon and Lockwood (2004) show that the class of plurality voting games that is dominance

solvable is rather small. Sinopoli (2000) applies the classical equilibrium refinement concepts

of trembling hand perfection and stability to such games and arrives at the conclusion that

neither of the two refinements has much bite in terms of reducing the set of equilibrium

outcomes.

Feddersen (1993), Niemi and Frank (1981) and Messner and Polborn (2007) use (varia-

tions of) the concept of coalition-proof equilibrium as a way to model coordination among

voters. While coalition-proofness rules out many “unreasonable” equilibria in plurality vot-

ing games,1 both Feddersen (1993) and Messner and Polborn (2007) show that there is the

drawback that, for some constellations of voter preferences, coalition-proof equilibria may

not exist.

More commonly, the difficulties that a strategic analysis of voting creates are circum-

vented by assuming sincere voting. Sincere voting means that players vote for the candidate

whom they would like most to be the winner, even if this candidate has no chance to win.

Very often therefore some voters’ interests would be better served if they voted for another

candidate.

1Messner and Polborn (2007) consider also runoff voting games.
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Plurality and runoff voting games with incomplete information. Palfrey (1989) is

the first paper to propose a model that delivers equilibria consistent with Duverger’s Law.

He considers a plurality voting game where voters’ preference types are private information

and shows that, in every symmetric strategy profile, the probability that a vote for one of

the two candidates with the largest expected vote shares will influence the outcome becomes

infinitely large relative to the probability that a vote for a candidate with a smaller expected

vote share will make a difference as the electorate grows larger and larger. Consequently, in

large elections all votes have to be concentrated on two candidates only.

Myerson (2002), building on Myerson (1998) and Myerson (2000), models voting as a

Poisson game where players are uncertain both about the number of voters who participate

in the election and about the preferences of the participating players. He shows that large

best rewarding scoring rule voting games (like plurality voting games) always admit equilibria

in which only two candidates seriously compete for victory. In contrast, large voting games

with “worst punishment” scoring rules (like negative voting) do not admit such equilibria.

Our paper shares the general idea to overcome the difficulties generated by the fact that

voting games are highly non-generic games through the introduction of a stochastic element

with both Palfrey (1989) and Myerson (2002). While we do not assume directly that players

are uncertain about the number of other players and/or their payoffs, such uncertainty arises

in our model as a consequence of the imperfect vote counting technology, because uncertainty

about whose votes will be counted has the same effect as uncertainty about who will take

part in the election.

The main difference between our approach and the ones of Palfrey (1989) and Myerson

(2002) is that our approach offers a rather simple way to calculate the pivot probabilities and

their relative orders of magnitude, and does not require the assumption of a large electorate.

The simplicity of our model is particularly useful in the context of the more complex runoff

voting games that have not been considered by either Palfrey (1989) or Myerson (2002).

In addition, the imperfect vote counting technology in our model provides a very natural

interpretation for the distributional assumptions with which we work.

A somewhat different approach to the analysis of large plurality voting games is taken

in a recent paper by Myatt (2007). He considers a situation where voters can choose among

two alternatives, A and B say, that they both prefer over the status quo (C say). The status

quo will be replaced by A if A collects a large enough consensus in the elections. If instead
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neither of the two alternatives reaches a sufficiently large share of the votes the status quo

prevails. Thus if the electorate is divided (some rank A highest, others B) then voters face

a coordination problem. Myatt (2007) studies this coordination problem applying global

games techniques. In particular, he analyzes how the incentive to vote strategically (i.e. to

vote for the less preferred one among A and B) depends on the parameters of the game.

Apart from the global games tools Myatt (2007) differs from our paper in a number of

other dimensions. Most importantly, Myatt (2007) does not consider runoff voting games

but only plurality voting games. Moreover, in his model with three alternatives he allows

only for three preference types: A � B � C, B � A � C and C � A ∼ B. The only

restriction that we impose on preferences is that we require them to be strict.

Similar restrictions on preferences are also imposed in Martinelli (2002), who considers a

model where a majority of the voters have a common interest but disagree on which candidate

among A and B to support due to private information; the remaining voters instead all agree

that candidate C is best for them. Given these assumptions, under plurality rule there arises

a tension between efficient aggregation of information and the need of coordination: If the

majority voters express their private information through their votes and thus split between

A and B then they risk that the minority candidate C will carry the victory. This tension

does not arise under runoff rule which thus yields a higher expected payoff to the majority

voters.

Myerson and Weber (1993) propose a semi-strategic approach to the analysis of plurality

voting games that assumes that all voters choose optimally given a vector of ‘pivot probabili-

ties’ that describes for every pair of candidates the probability that those two candidates will

tie for the first place.2 The pivot probabilities are assumed to satisfy an ‘ordering condition’:

If the number of votes candidate i gets is less than the number of votes for candidate j, then,

for any other candidate h, the pivot probability between candidates i and h is only at most

ε times the pivot probability between candidates j and h (where ε is very small). Myerson

and Weber (1993) show that their model allows for equilibria that are not consistent with

Duverger’s Law.

Also in our model voters choose on the basis of pivot probabilities that satisfy the above

ordering condition. But unlike in Myerson and Weber (1993) the pivot probabilities depend

on the voting behavior of the other voters and thus vary across players. In Section 3.3 we

2This method has subsequently also been applied to runoff voting games; see Cox (1997).
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discuss in detail why this feature is crucial for our results.

Duverger’s Law and Duverger’s Hypothesis in models with strategic candidacy.

Our paper is also related to a strand of the literature that studies under what conditions

Duverger’s Law and Duverger’s Hypothesis obtain in the context of models with candidate

entry and/or endogeneous platform choice (see for instance, Castanheira (2003), Morelli

(2004) and Callander (2005)).

2 The Setup

A group of N voters chooses between the elements of the set C = {C1, C2, C3}, which we, for

concreteness, refer to as (citizen) candidates.3 All voters are expected utility maximizers. We

write un(Ci) for the utility that voter n assigns to candidate Ci. The assumption of expected

utility maximization is needed in order to have well defined preferences over lotteries defined

on C. However, our main arguments throughout the paper do not rely on the cardinal

properties of the individuals’ utility functions. Almost all of our results depend only on the

ordinal aspects of the agents’ preferences.

We also assume that no individual is indifferent between any two candidates.

Assumption 1. un(Ci) 6= un(Cj) for all n ∈ {1, . . . , N} and all distinct pairs of alternatives

Ci, Cj ∈ C.

For any pair (i, j), i 6= j, Nij denotes the set of players who like Ci best and rank

Cj second. We refer to the set Nij as the ij-preference group and to elements of Nij as

ij−types. The number of voters belonging to group Nij is denoted by nij (i.e. nij = #Nij).

The following definition introduces concepts and notations.

Definition 1 (Core supporters/opponents, sympathizers and winning margin).

i) The set Ni = ∪j 6=iNij is the set of core supporters of candidate Ci; the number of

core supporters of Ci is denoted by ni (i.e. ni =
∑

j 6=i nij).

3Several of our results generalize in a straightforward way to settings with more than three candidates.

We mention such extension possibilities in the discussion of the respective results.
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ii) The set Li = Njk ∪ Nkj, k, j 6= i, is the set of core opponents of candidate Ci; the

number of core opponents of Ci is denoted by li (i.e. li = njk + nkj).

iii) Σij = {n : un(Ci) > un(Cj)} is the set of sympathizers of candidate Ci against

candidate Cj; we write σij for the number of elements of Σij.

iv) ∆ij = max{σij − σji, 0} is the Condorcet margin of candidate Ci against candidate

Cj. If ∆ij > 0 we say that candidate Ci Condorcet dominates candidate Cj. In this

case we also write Ci � Cj.

In order to exclude some notationally cumbersome and substantively rather uninteresting

cases, we assume that no candidate’s core support constitutes an absolute majority of the

electorate, i.e., we require that ni < (N + 1)/2 for all i.

We analyze plurality rule and runoff rule voting games when the vote counting technology

is imperfect and each ballot is counted correctly with probability 1− ε, while it is subject to

a miscount with probability ε > 0. We thus refer to ε as the miscount probability, which we

assume to be known by all players. If a vote is miscounted, it is mistakenly considered an

undervote. That is, miscounted votes are tabulated as a votes for “none of the candidates”,

not as votes for some other candidate. While the latter is of course another conceivable error,

experience from actual recounts shows that undercounting is, in practice, the much more

frequent error. For example, in the famous Florida recounts of the 2000 U.S. presidential

election, most of the controversy was whether ballots that were initially discarded because

they were perceived as having either no recorded vote, or a vote for two or more candidates,

should be counted as votes for one of the candidates if the voter’s intention could be inferred

by looking at the ballot more closely.

Our assumption of an independently and identically distributed undercount risk helps

to simplify the analysis, as we do not need to specify relative probabilities with which a

miscounted vote is counted for each of the other candidates. We conjecture that our main

results would be unaffected if, instead, miscounted votes were assigned to all candidates in

equal proportions.
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3 Plurality Rule

3.1 Description of the Game

Under plurality rule, each voter casts a single ballot for one of the available candidates.

Thus, each player’s set of (pure) strategies equals the set of candidates. A generic (pure)

strategy of player n is denoted by sn. For strategy profiles we write s. We refer to s also as

vote profile. The set of players who vote for candidate Ci is denoted by Vi(s), and we write

vi(s) = #Vi(s) for the number of votes intended to be in favor of Ci.

The winner of the election is the candidate with the highest number of effectively counted

votes, where ties are broken by uniform randomization. The number of effectively counted

votes for candidate Ci in vote profile s is a binomially distributed random variable with mean

(1− ε)vi(s).

3.2 Robustness

The set of equilibrium outcomes of a perturbed plurality voting game depends on the mis-

count probability which, in practice, is positive but small. We therefore focus our attention

in the following on vote profiles that constitute equilibria of voting games with small, but

strictly positive, miscount probabilities. We refer to such strategy profiles as robust equilibria.

Definition 2 (Robust equilibria). A profile s ∈ CN is robust (or a robust equilibrium) if

there exists a ε > 0 such that for any ε ∈ (0, ε), s is a Nash equilibrium of the ε-perturbated

version of the plurality voting game.

A few remarks on this concept are in order. Robustness can be seen as a refinement

concept similar in spirit to trembling hand perfection (henceforth, THP). THP constrains

players to play fully mixed strategies (so that each player makes mistakes with positive

probability and votes for another candidate than the one he intended to). In contrast,

allowing for miscounts in our model has essentially the same effects as extending players’

strategy sets by the action “abstention”, and to require all voters to play that strategy with

probability ε.

From a technical point of view, the particularly simple structure of the miscount tech-

nology makes our robustness concept easy to handle. However, as explained in more detail
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below, the more important advantage that robustness offers over THP is that it has stronger

implications in narrowing down the set of possible equilibrium outcome in the voting games

that we consider.

Our way of modeling perturbations is also consistent with other interpretations. In

particular, it naturally fits with the following costly voting model. Voters either cast a

ballot in favor of one of the candidates or they abstain. The cost of casting a ballot is

stochastic and depends on the voters’ private state. With probability 1− ε a voter is in the

zero cost state while with probability ε the high cost state realizes (e.g. illness on the election

day). If the voting cost in the latter state is high enough to offset any possible benefits from

voting, then abstaining is the strictly dominant strategy for all voters who happen to be in

this state. In contrast, for all individuals for whom voting is costless, abstaining is a strictly

dominated strategy.

In the following, we say that the candidate who receives the most votes in s is the

“winner” of the election. This is a slight abuse of terminology because miscounts may have

the effect that some other candidate wins the election in the sense that he receives the most

votes that were effectively counted. However, for ε small, this probability is very small.

3.3 Results

In any unperturbed plurality voting game, each player has at least one weakly dominated

strategy, namely to vote for his least preferred candidate. It is well known that THP rules

out that such strategies are played in equilibrium. The same holds true for our robustness

concept. Allowing for miscounts implies that each candidate has a strictly positive chance to

win the elections. Moreover, each candidate’s winning probability is the larger the more votes

he receives. Thus, voting for one’s least preferred candidate is strictly dominated by voting

for one’s most preferred candidate. Consequently, there are no robust equilibria in which

any player votes for his lowest-ranked candidate. Lemma 1 summarizes these observations.

Lemma 1. In any perturbed plurality voting game, voting for Ci is a strictly dominated

strategy for all core opponents of Ci. Thus, a voting profile in which some voter votes for

his least preferred candidate cannot be a robust equilibrium.

Proof. Omitted.
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In unperturbed voting games, (even iterated) elimination of weakly dominated strategies

only rules out that candidates are supported by their core opponents. Dhillon and Lockwood

(2002) show that a further round of elimination is possible in a three candidate race if and

only if at least 2/3 of the voters agree on who is the worst candidate. In that case, the

candidate ranked lowest by more than 2/3 of the voters receives less than 1/3 of the vote

and thus cannot win. Therefore, everyone knows that a vote for this candidate is wasted,

which effectively reduces the three candidate race to one with two viable candidates, and

this game is dominance solvable.

Which additional implications can be derived in our framework? Remember that since in

an ε-perturbed game each vote is counted with probability 1−ε there is a positive probability

that the candidates who are in the second and third place in the voting intentions actually

end up winning the election. However, provided that ε is small, the probability that the

third placed candidate wins is actually much smaller than the probability that the second

placed candidate wins. Formally, ‘much smaller’ means that the winning probability of the

third placed candidate is a term of higher order (in ε) than the probability that the second

placed candidate wins.

In a sense, a vote for a candidate who is not among the top two candidates (according

to vote intentions) is wasted. For example, if a citizen prefers the candidate with the most

votes over the runner-up, he should vote for the leader, because his vote is much more likely

to be pivotal in a decision between the two candidates who receive the most vote intentions

than in a decision involving any other candidate. We thus have the following result.

Lemma 2. Let s ∈ CN be such that vi(s) ≥ vj(s) > vk(s) > 0. Then s is not a robust

equilibrium.

Proof. See Appendix.

Note that Lemma 2 relies on the assumption that each voter’s ballot is counted with

the same probability. If, instead, the probability of a miscount were to vary across voters,

then the winning chances of the second and third ranked candidates would depend on the

composition of their respective electorates, and this would complicate matters.

The next question is whether there are any robust equilibria with two candidates tying

for second place (vi > vj = vk). Intuitively, this is also very unlikely. For such a constellation

to be robust, it would have to be true that every voter for candidate Cj prefers Cj over Ci
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(otherwise, in any perturbed game switching the vote to candidate Ci is optimal), and Ci

over Ck (otherwise, switching the vote to candidate Ck is optimal). An analogous argument

applies to all those who vote for Ck. Thus, a first necessary condition for vi > vj = vk to

arise in equilibrium is that nji = nki. In addition, if Vj = Nji and Vk = Nki, then voters of

type jk and kj (i.e., candidate Ci’s core opponents) would have to vote for Ci. Since Lemma

1 excludes this behavior, it follows that a second necessary condition for vi > vj = vk to

arise in equilibrium is that Li = ∅.

Finally, consider the possibility of a three-way tie between all candidates. In such a case,

each candidate would have to get all votes from his core supporters (otherwise, a deviation

to a voter’s most preferred candidate would break the tie in favor of that candidate). Thus,

a necessary condition for a robust equilibrium with a three-way tie is that all candidates

have equally strong core supports. In addition, it must be true that every voter prefers a

uniform lottery over all three candidates to having the candidate whom he ranks second for

sure.

In summary, the conditions on the preference distribution under which robust equilibria

with vote “dispersion” can arise under plurality rule are rather extreme.

Proposition 1. Suppose that nij > 0 for all (distinct) pairs (i, j). Moreover, assume that

either

i) mini ni < maxi ni or that

ii) there exists one individual who prefers having his second ranked candidate for sure over

a uniform lottery over all three candidates.

A voting profile s∗ is robust if and only if the following conditions are satisfied.

a) Exactly two candidates receive a positive number of votes.

b) If vk(s∗) = 0, then Vi(s
∗) = Σij, for i, j 6= k. That is, each player chooses “sincerely”

between those two candidates who receive a positive number of votes.

Proof. See Appendix.

Proposition 1 has two interesting implications. First, the Condorcet loser can never be

a robust equilibrium outcome. Remember that iterated elimination of weakly dominated
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strategies generally does not support this conclusion.4 Second, it shows that plurality rule

has a tendency to generate equilibria in which all votes are concentrated on two candidates.

This is, of course, Duverger’s law, a well known stylized fact of political systems operating

under plurality rule. Note again that only applying iterated elimination of weakly dominated

strategies is not sufficient to generate this result.

Second, Proposition 1 extends in a straightforward way to the case of more than three

candidates (with minor adjustments to the conditions used to exclude equilibria with more

than two active candidates).5 The reason is that the main driving force — namely that a

voter is much more likely to be pivotal between the two top-scorers than between any other

pair of candidates — applies irrespective of the total number of candidates.

The intuition for Proposition 1 is similar to the one in Palfrey (1989), where a given num-

ber of actual voters are drawn from some known preference distribution of the population.

For the limit case of very many voters, he shows that there can only be equilibria in which

just two candidates receive a positive measure of votes. While the details of Palfrey’s and

our model are different, in both models the probability of a tie between the top vote-getter

and the runner-up is relatively much larger than the probability of a tie between any other

pair of candidates.

Myerson and Weber (1993) also analyze the effects of trembling in plurality elections.

They define the concept of a ‘voting equilibrium’ as a strategy profile in which every voter

acts optimally, given some vector q of “pivot probabilities” that contain, for every pair of

candidates, the probability that these two candidates tie for the first place. The vector q

is specified exogenously and, assumed to satisfy an ‘ordering condition’: If candidate Ci

receives fewer votes than candidate Cj, then, for any other candidate Ck, the pivot proba-

bility between candidates Ci and Ck is only at most ε times the pivot probability between

candidates Cj and Ck (where ε is very small). The error process in our model generates this

property endogenously.

Myerson and Weber give the following example of a voting equilibrium in which three

candidates (A, B and C) receive a positive number of votes. 30 percent of the electorate

4Dhillon and Lockwood (2002) show that, if none of the candidates is ranked last by at least 2/3 of

the electorate, then iterated elimination of weakly dominated strategies does not allow for elimination of a

candidate, and when votes are split among three candidates, the Condorcet loser can win the election.
5The exact conditions that need to be satisfied in the case with more than three candidates are spelled

out in the remark after the proof of Proposition 1 in the Appendix.
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are of type 1 (A � B � C), another 30 percent are of type 2 (B � A � C), and 40 percent

are of type 3 (C � A ∼ B). Consider a pivot vector of qAB = 0, qAC = 1/2 and qBC = 1/2,

i.e., conditional on a tie occurring, the probability that it is between candidates A and C,

and between B and C is 1/2 each, and the probability that the tie is between A and B is

zero.6 Given these probabilities, it is an equilibrium for each preference group to vote for

their preferred candidate, so that candidate C wins under plurality rule, although he is the

Condorcet loser.7

Myerson and Weber interpret this result as refuting Palfrey’s (1989) result (derived in a

slightly different setting) that states that small uncertainty in the voting process is sufficient

to generate Duverger’s law. It also seems to contradict our result. However, their example

relies on the assumption that the vector of pivot probabilities is the same for all voters, no

matter how these voters are supposed to vote in equilibrium. This assumption is crucial for

any equilibrium involving 3 or more relevant candidates and not satisfied in our model that

models an error process to generate the pivot probabilities endogenously.

To see this, note that any voter should act optimally given his own pivot probability

vector, i.e. what is the probability that this voter’s vote is pivotal, given the other voters’

actions? In fact, for any finite voting population and given Myerson and Weber’s ordering

assumption, the vector of pivot probabilities in the given voting profile is (qAB = 0, qAC =

0, qBC = 1) for a type 1 voter, because there are more votes from other voters for candidate

B than for candidate A. Hence, a type 1 voter would benefit from deviating to voting for

candidate B. Similarly, the pivot probability vector for a type 2 voter, given that there are

more votes of other voters for candidate A than for B, is (qAB = 0, qAC = 1, qBC = 0), and

so type 2 voters would also deviate from this strategy profile.

6There are multiple pivot vectors which work, depending on the cardinal utility that types get from their

first and second candidate.
7This result is robust to small changes in the proportion of type 1/type 2 voters. This works as follows:

If there are more type 1 than type 2 voters, then all type 2 and some type 1 voters vote for B, while the

rest of the type 1 voters vote for A, so that the number of votes for A and B is equal. This is supported by

a q vector that has qAC < qBC (which is possible, since Myerson and Weber’s ordering condition imposes

no restrictions on the pivot probabilities when A and B receive the same number of votes). These pivot

probabilities make type 1 voters indifferent between voting for A and voting for B, and hence willing to

randomize.
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4 Runoff Rule

4.1 Description of the Game

Under runoff rule, there are potentially two rounds of elections. In the first round, a candidate

is elected if he achieves an absolute majority of all votes. If there is no such candidate, then

the two candidates who received the most votes in the first round face off against each other

in a runoff, and the overall winner is the candidate who gets more votes in the runoff round.

Just as in the case of the plurality voting games we assume that any possible ties – both in

the first and second round – are broken by uniform randomization.

In this two stage game, a strategy of player n is a pair sn = (s1
n, s

2
n), where s1

n ∈ C
represents the vote which the player casts in the first round election while s2

n ∈ {C1, C2} ×
{C1, C3}×{C2, C3} describes his plans for the runoff round, where voting can be conditioned

on the pair of candidates that competes in the runoff. In order to highlight this we write

s2
n(ij) for the component of s2

n which corresponds to a runoff between candidates Ci and Cj.
8

Strategy profiles are denoted by s. We write V 1
i (s) and v1

i (s), respectively for the set and

number of voters who cast their first round ballot for candidate Ci in strategy profile s.

Perturbations of the runoff voting game and the robustness concept that we apply to such

games are defined just like in the case of plurality voting games. In particular, a perturbed

runoff voting game is a runoff game where the vote count in both stages is subject to errors.9

The probability with which a ballot is lost due to a miscount is identical (and independent)

across ballots. Notice that this also means that miscounts are independently distributed

across voting stages. A vote profile s is robust (or a robust equilibrium) if there is an ε > 0

such that s is a Nash equilibrium in all ε-perturbed games with ε ∈ (0, ε). As argued above,

our robustness concept is closely related to THP. In the context of runoff voting games,

robustness can be interpreted more specifically as ‘counterpart’ of agent normal form THP.

8In principle, we could allow for strategies that condition on first round actions in a more complex way.

However, as Lemma 3 below implies, the restriction is without loss of generality since voting behavior in the

second round must be sincere in any robust equilibrium.
9Given the possibility of miscounts in the first round we need to be careful about whether a candidate

needs an absolute majority of all votes that are effectively counted, or an absolute majority of all votes

casted. Mainly for technical and expositional convenience, we have decided to adopt the second assumption.

However, our results are relatively robust to changing this assumption.
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Under runoff rule, there are potentially two rounds of elections, so that keeping track of

the number of miscounts that are necessary for victories of the various candidates is somewhat

more complex than in static plurality voting games. In the interest of a compact exposition,

it is useful to introduce some further notation and terminology. If s is a vote profile in

which candidate Cj does not obtain an absolute majority of all first round votes, then we

write Tji(s) for the minimal number of miscounts that are necessary in order to trigger a

victory of candidate Cj through a second round election against candidate Ci. Moreover,

Tj(s) = mini 6=j Tji(s) denotes the minimal number of miscounts that are necessary in order

for candidate j to win. We refer to Tji(s) as the ji-miscount margin at s; Tj(s) instead

is the miscount margin of candidate Cj at s. A t-configuration of miscounts (or simply,

t−configuration) is a specific distribution of t miscounts over the voters’ ballots.

4.2 Results

Our first observation is that the runoff round is a binary election. In unperturbed binary

voting games voting for the less preferred candidate is a weakly dominated strategy. In the

perturbed game with the possibility of miscounts, this dominance relation becomes strict.

Lemma 3. In any robust equilibrium the voting behavior in the second round elections is

sincere.

In particular, Lemma 3 implies that a Condorcet loser cannot win the election in the

second round.

In contrast to the second round, (iterated) dominance arguments do not restrict first-

round behavior very much under runoff rule. Unlike under plurality rule, even voting for

one’s least preferred candidate may be an (iteratively) undominated strategy, as Example 1

below shows. The reason for this is that, under runoff rule, there are two possible motives

to vote for a given candidate in the first stage. First, like under plurality rule, a player

might want to vote for the candidate because he likes him (at least better than the most

likely alternative). Second, and without parallel under plurality rule, a voter might support

a candidate in the first round because that candidate is “easy to beat” by his preferred

candidate in the runoff. These two motives are often in conflict with each other, and this

is the fundamental reason for why the analysis of robust equilibrium behavior is much more

involved under runoff rule than under plurality rule.
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Example 1. Consider the voter preferences given in Table 1. The number in the top row

indicates the size of each preference group. Boxes indicate the first round voting behavior of

individuals of the different preference types (for instance, individuals of the first preference

group vote for candidate C1).

34 1 1 32 32 1

C1 C1 C2 C2 C3 C3

C2 C3 C1 C3 C1 C2

C3 C2 C3 C1 C2 C1

Table 1: The individual in N13 optimally votes for his least preferred candidate

In the voting profile in Table 1, all players, except for the only 13-type voter, vote for

their most preferred candidate. Given this behavior of the other voters, the unique optimal

strategy for the player in N13 is to vote for his least preferred candidate, C2: A vote for C2

secures a second round election between C1 and C2, which is won by C1 (remember that all

players vote sincerely in the second round). Instead, voting for C1 or C3 would trigger, with

probability 1/2, a runoff between C1 and C3 which would be won by C3.

Thus, dominance arguments alone impose very few restrictions on first round voting be-

havior in runoff games. However, as the following results in this section show, our robustness

concept has substantially more bite, and allows us to derive two types of results. The first

one concerns the structure of the vote distribution and shows that in a robust equilibrium,

all candidates must receive a positive number of votes (Proposition 2 ). The second type of

results relate to the identity of the election winner. These are more complex (and therefore

not useful to summarize here), but they also often narrow the set of possible equilibrium

election winners relative to plurality rule, both in the case that a Condorcet winner exists

and in the case that none exists.

We start by next turning to robust equilibria in which the election is decided in the first

round (if there are no miscounts). Lemma 4 shows that a first round winner cannot receive

any votes from voters who prefer the losing candidate with the smallest miscount margin to

the winner.

Lemma 4. Let s∗ be a robust profile of the runoff voting game such that v1
i (s∗) ≥ (N +1)/2.
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i) Tj(s
∗) < Tk(s∗) implies V i

1 (s∗) = Σij.

ii) Suppose that Tj(s
∗) = Tk(s∗) and ∆jk > 0. Then, V 1

i (s∗) ∩ Σji = ∅. Moreover, Ci is

either a Condorcet winner or Σji = Nji = (N − 1)/2.

Proof. See Appendix.

Just as under plurality rule, the winner (Ci) gets exactly all the votes of those players

who rank him above the runner up (Cj). In both cases, the underlying intuition for the

result is as follows: The chance that Ci’s first round victory is upset by miscounts in favor

of Cj decreases with the number of votes for Ci. Thus all voters who rank Ci above Cj have

an incentive to vote for Ci, and voters who prefer Cj over Ci should not vote for Ci.

Lemma 4 implies that a first round winner (Ci) can be elected only by players who prefer

him over the candidate who is most likely to benefit from miscounts (Cj). Thus, it must be

the case that Ci Condorcet dominates Cj. This in turn implies that a Condorcet loser (in

case there is one) can never win outright in the first round. Since we also know (by Lemma 3)

that a Condorcet loser cannot win in the runoff round either, we obtain the following result.

Corollary 1. Runoff voting games do not admit robust equilibria in which the Condorcet

loser wins the election.

Even in situations where the election is decided in the first round, one important difference

between plurality rule and runoff rule lies in the behavior of voters who do not vote for the

winner. Under plurality rule, the ballots of those players must be concentrated on the runner

up. One of our main results, Proposition 2 below, shows that this is no longer true under

runoff rule: In fact, in the first round under runoff rule, all candidates must receive some

votes.

However, before we can develop this result, we need to analyze whether there can be

equilibria in which the election is won by Ci in the first round if Ci is not a Condorcet

winner. Note that there are two cases when this situation can arise: Either, there is a

Condorcet cycle, or Ci is the middle candidate in a transitive Condorcet ranking (i.e., the

one who is neither the Condorcet winner nor the Condorcet loser). By Lemma 4 we know

that, if candidate Ci wins outright then he Condorcet-dominates the runner-up (i.e., the

candidate with the smallest miscount margin). Moreover, by Lemma 4, Ci gets exactly the
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votes of all players who rank him above the runner-up. However, Lemma 4 is silent about

the distribution of the remaining votes among Cj and Ck.

Lemma 5 fills this gap. It shows that if Cj is the runner-up in a profile in which Ci wins

outright, then among the players in Σji = Nji ∪Njk ∪Nkj, exactly those in Nji vote for Cj.

Lemma 5. Let s∗ be a robust profile such that v1
i (s∗) ≥ (N + 1)/2 and Tj(s

∗) < Tk(s∗).

If ∆ki > 0 then V 1
j (s∗) = Nji and V 1

k (s∗) = Li = Njk ∪ Nkj. Moreover, nji > σij/2 ≥
(N + 1)/4 > li + 1.

Proof. See Appendix.

The intuition for Lemma 5 is as follows. Because Ci is neither a Condorcet winner nor

a Condorcet loser, and Ci Condorcet-dominates Cj, Ci must be dominated by Ck. Since Ci

gets the largest number of votes it follows that any runoff election that involves Ci is more

likely than a runoff among Cj and Ck. Since Ck wins a runoff against Ci it must be the

case that the ki-miscount margin is strictly smaller than the jk- and kj-margin. Therefore

Cj can be the runner-up only if Tji(s
∗) < Tki(s

∗). But in order to satisfy this condition, Cj

must receive sufficiently more votes than Ck in the first round, in order to compensate for

Ck’s advantage against Ci. Specifically, it must be the case that v1
j (s∗)− v1

k(s∗) > ∆ij.

Now consider the effects of shifting a vote from Cj to Ck. Doing so reduces the gap be-

tween v1
j and v1

k by two, and the ki−margin also decreases by two. Miscount configurations

that contain exactly Tki(s
∗) − 2 miscounts and yield Ck as outcome in the post-deviation

situation, can contain only miscounts of first round votes. Thus, in the pre-deviation situa-

tion, where such configurations must have led to a ij-runoff, they cannot have produced Cj

as winner. For any other miscount configuration that comprises no more than Tki(s
∗) − 2

miscounts there can be no change in the outcome. To see this, note that both before and

after the deviation all such configurations either end with an outright win of Ci or lead to a

runoff between Ci and Cj. The deviation neither affects the votes that determine whether or

not there is a second round election (i.e. Ci’s first round votes) nor the votes that determine

who wins the second round. But then the deviation cannot change the outcome distribution

for the miscount configurations under consideration either.

Thus, the deviation’s only relevant effect is a replacement of candidate Ci by candidate

Ck. Hence, whether or not a voter who does not vote for Ci in s∗, votes for Cj only depends

on how he ranks Ci relative to Ck. By Lemma 4 we already know that Cj and Ck together
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obtain exactly the votes of all players in Σji and so it follows that V 1
j (s∗) = Σji ∩ Σik =

Nji, V
1
k (s∗) = Σji ∩ Σki = Li = Njk ∪ Nkj. Finally, combining this observation with the

requirement that v1
j (s∗) − v1

k(s∗) > ∆ji yields the conditions 2nji > σij ≥ (N + 1)/2 and

li + 1 < (N + 1)/4 in Lemma 5.

Lemma 5 shows that the conditions under which there may be robust equilibria in which

a candidate who is not a Condorcet winner wins the elections in the first round are very

restrictive. First, such a candidate must have few core opponents (less than a quarter of the

population). Second, the candidate whom he Condorcet-dominates must have many core

supporters who in their majority rank the election winner second. It is easy to see that the

second condition can never hold when players’ preferences are single peaked with respect to

a linear ordering of the candidates and the Condorcet winner is in the central position. In

that case, all core supporters of the Condorcet loser rank the Condorcet winner above the

third candidate. Also, if there is a Condorcet cycle, the first of these conditions can be met

at most by the candidate with the smallest core support. To see this, note that if there

were two candidates with fewer core opponents than 1/4 of the population, then the third

candidate must have more than half of the population as core opponents; but then, he must

be a Condorcet loser.

Lemma 5 also shows that equilibria in which a candidate who is neither the Condorcet

winner nor the Condorcet loser wins the election in the first round, must typically (and,

in contrast to plurality rule) be characterized by “vote dispersion”: All three candidates

receive a positive number of votes. The following Proposition 2 shows that vote dispersion is

a feature of all robust equilibria, provided that all candidates do have some core opponents.

Proposition 2 (Duverger’s Hypothesis). Assume that nij > 0 for all (distinct) pairs (i, j).

If either of the following two conditions holds then in every robust equilibrium each candidate

receives a strictly positive number of first round votes.

i) The Condorcet ranking is not transitive.

ii) Candidate i is the Condorcet winner, and his winning margins σij − σji and σik − σki

are both strictly larger than one.

Proof. See Appendix.
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It is easy to see that, if there is a Condorcet cycle (i.e., if the first condition in Proposi-

tion 2 holds), then all three candidates must receive some first round votes. If, by contra-

diction, first-round votes were concentrated on just two candidates, then one of them must

win outright, and since this winner is not a Condorcet winner, Lemma 5 applies and shows

that votes cannot be concentrated on two candidates, the desired contradiction.

Lemma 5 also rules out the possibility that the Condorcet winner (in case there is one)

does not receive any votes (that is, votes cannot be concentrated on the other two can-

didates). We therefore now focus on providing an intuition for why in situations where a

Condorcet winner exists there can be no equilibria in which either the Condorcet loser or the

candidate that takes the middle position in the Condorcet ranking do not receive any votes.

Specifically, we consider voter preferences in which Candidate C1 is the Condorcet winner,

and Candidate C2 has the closer winning margin in a runoff round against Candidate C1

than Candidate C3 (i.e. 0 < ∆12 < ∆13). Note that this case is compatible with either C2

being majority-preferred to C3, or vice versa.

Now take a profile of first-round votes in which only C1 and C3 receive votes. By Lemma 5

such a profile is not robust if C3 receives more votes than C1. So assume that v1
1 ≥ (N+1)/2.

Consider a voter who prefers C2 over C3 over C1, and who switches his vote from C3 to C2.
10

Just like in the case above, this does not affect the probability of C1 winning outright, as

the number of votes for and against C1 has not changed. There are two possible changes in

the runoff: Either, C2 replaces C3, or C2 replaces C1 in the runoff. Since C1 receives more

votes than C3, the first of these cases is much more likely than the second one. Moreover,

the chance that C2 wins the runoff against C1 is much larger than the chance that C3 wins

the runoff against C1, because the first event requires fewer miscounts in the second round

than the second one. Therefore, the voter whom we have considered is better off switching

his vote to C2 instead of C3.

This leaves us with one final two-candidate first-round vote profile to consider in which

only C1 and C2 receive votes. We now claim that such a vote profile cannot be robust since

voters in N32 would have an incentive to deviate from voting for C2 to C3.
11

10Remember that a necessary condition for the robustness of the presumed vote profile is (see Lemma 4)

that C3 either obtains all votes of the sympathizers of C3 against C1 or it gets the votes of all sympathizers

of C2 against C1. Since N23 ⊂ Σ21 ∩Σ31 it thus follows that the vote profile can be robust only if N23 ⊂ V 1
3 .

11Again, we show in the proof of Proposition 2 that these voters cannot vote for C1 in equilibrium, and

assume that they are voting for C2.
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A deviation from C2 to C3 reduces the vote gap between C3 and the other two candidates.

This makes it more likely that C3 survives the first stage of the election. In particular, the

minimal number of miscounts that are necessary in order to trigger a runoff race between

C2 and C3 decreases from v1
1 to t := v1

1 − 1. Now observe that any t−event that leads to the

runoff pair (C2, C3) after the deviation only involves first round miscounts. Thus, any such

event must have produced C1 as outcome before the deviation. Since voters in N32 prefer

both C2 and C3 over C1 this implies that the deviation generates benefits of at least order t

for individuals in N32. Therefore these individuals deviate if there is no cost associated with

the deviation that is of order t or lower.

What are the potential costs of the deviation? For voters in N32, an undesirable outcome

change is a switch from C2 to C1, but we argue now that such a switch requires more than t

miscounts and is thus much less likely than the benefit described above. The only way how

C2 can win in the pre-deviation situation with at most t = v1
1 − 1 miscounts is via a runoff

between C1 and C2. Moreover, the only possibility that the deviation can lead to a switch

of the outcome from C2 to C1 is by triggering a change of the runoff pair from (C1, C2) to

(C1, C3). This means that events for which the deviation leads to a switch from C1 to C2

must involve at least the following miscounts:

a) v1
1 − N−1

2
miscounts of first round C1-votes (otherwise, C1 wins outright);

b) v1
2 − 2 miscounts of first round C2-votes (otherwise, the deviation does not trigger a

change in the runoff pair from (C1, C2) to (C1, C3)).

c) ∆12 second round votes of individuals in Σ12, for otherwise, C2 could not win the runoff

against C1 in the pre-deviation situation.

By Lemma 4, a necessary condition for robustness of our voting profile is that either Σ21 ⊂
V 1

2 ∪ V 1
3 = V 1

2 or Σ31 ⊂ V 1
2 ∪ V 1

3 = V 1
2 , depending on whether C2 or C3 is more likely to

benefit from miscounts.

Assume first that Σ21 ⊂ V 1
2 . In this case, summing up the miscounts in the above list
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yields

v1
1 −

N − 1

2
+ v1

2 − 2 + ∆12

≥ v1
1 −

N − 1

2
+ σ21 − 2 +N − 2σ21

= v1
1 − 1 +

N − 1

2
− σ21 > v1

1 − 1 = t.

Thus, for ε sufficiently small, the probability that the deviation generates a benefit is much

larger than the probability that the deviation generates a cost.

Finally, assume that Σ31 ⊂ V 1
2 . This is the case only if, under the pre-deviation vote

profile, C3 is at least as likely to benefit from miscounts as C2. But then, since C3 becomes

strictly more likely as outcome due to the deviation (i.e. the minimal number of miscounts

that are required to obtain C3 strictly decreases), it must be replacing C1 as outcome.

Moreover, there can be no cost of the same order as this benefit since in the pre-deviation

situation only C1 wins in events of that order.

Proposition 2 is a central result, because it shows that our voting model admits only

equilibria that are consistent with Duverger’s Hypothesis (Duverger (1963)).12 Duverger

argues that, unlike plurality rule, runoff rule favors the emergence of a multi-party system.

Of course, we do not provide a formal model of candidate entry here, but a necessary and

arguably sufficient condition for the co-existence of more than two parties is that all the

competing parties that are attractive for at least some voters receive a positive vote share.

If a party would not receive any votes, then it appears unlikely that it can attract any good

candidates, and this would perpetuate their irrelevance. In contrast, if a party receives a

positive vote share, then party financing laws in most countries imply some financial support

from the state for the party, enabling it to build an organization and attract some good

candidates.

Proposition 2 shows that, if preferences are sufficiently diverse (i.e., all potential prefer-

ence groups are represented in the population) then in every robust equilibrium of a runoff

voting game all candidates must get at least some votes. If there are more than three candi-

dates, this result generalizes as follows: There must be at least three candidates who receive

12Strictly speaking, Proposition 2 just shows that there are no equilibria in which votes are concentrated

on two candidates, but not that there exist equilibria in which votes are distributed over all three candidates.

However, we show in Propositions 3 and 4 below that existence holds as well.
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a positive vote share. To the best of our knowledge our paper is the first one that pro-

poses an equilibrium concept that generates both (i) under plurality rule, only equilibria that

satisfy Duverger’s Law, and (ii) under runoff rule, only equilibria that satisfy Duverger’s

Hypothesis.

Our next step in the characterization of the set of robust equilibria under runoff rule is to

consider voting profiles that lead to a second round election. Lemma 6 considers situations

where a Condorcet winner exists and shows that a vote profile in which the Condorcet winner

does not reach the runoff round cannot be a robust equilibrium.

Lemma 6. Assume that candidate Ci is the Condorcet winner. If a voting profile s satisfies

the condition (N + 1)/2 > v1
j (s), v1

k(s) ≥ v1
i (s), then s is not a robust equilibrium.

Proof. See Appendix.

To understand this result, assume (without loss of generality) that the Condorcet ordering

is given by Ci � Cj � Ck. In a voting profile such as the one described in Lemma 6, the

election is won by Cj after a runoff against Ck (unless miscounts trigger either a different

runoff or a different outcome of the runoff round). By assumption, a majority of the electorate

ranks Ci above Cj but less than a third of the electorate votes for Ci (otherwise Ci would get

into the runoff). Thus, some of those who vote for Cj or Ck prefer Ci over Cj. By deviating

to Ci, they can move the outcome distribution in that direction.

We next consider voter preferences for which no Condorcet winner exists.

Lemma 7. Assume that the Condorcet ordering is not transitive.

i) If (N − 1)/2 ≥ v1
i (s)− 1 > max(v1

j (s), v1
k(s)) then s is not a robust equilibrium.

ii) Suppose that Ci � Cj. If s is a robust equilibrium such that (N−1)/2 ≥ max{v1
j (s), v1

k(s)} >
min{v1

i (s), v1
j (s), v1

k(s)} = v1
i (s), then Lj ⊂ V 1

i (s).

Proof. See Appendix.

Part i) shows that, if there is a Condorcet cycle, a voting profile that leads to a runoff

can be robust only if the first round vote profile is tight. That is, the difference between the

first-ranked and the second-ranked candidate is at most one vote.

23



To get some intuition for this result, suppose that the Condorcet cycle is given by Ci � Cj,

Cj � Ck and Ck � Ci. Consider first a voting profile where v1
i − 1 > v1

j ≥ v1
k. In such a

profile, all voters of candidate Ci have an incentive to deviate. Those who rank Ci above

Ck profit from a deviation towards Cj since it decreases the risk that in the second round

election Ci faces Ck instead of Cj. Players who instead prefer Ck to Ci want to increase the

probability of an ik-runoff and thus want to switch their vote towards Ck. An analogous

argument applies when v1
i − 1 > v1

k > v1
j .

Part ii) of Lemma 7 shows that, unless there is a three way tie among all three candidates,

the one who receives the fewest votes must receive all votes of the core opponents of the

dominant candidate among the other two candidates. The intuition is again straightforward.

Given that there is a Condorcet cycle, the candidate who receives the fewest votes in the

first round (Ci) Condorcet-dominates the winning candidate (Cj). All players who rank Cj

lowest have an incentive to reduce Cj’s winning chances, no matter which of the other two

candidates’ winning probabilities increases. They can achieve this goal by deviating to Ci,

which reduces the chances of a runoff between Cj and Ck in favor of a runoff that involves

Ci and is won by either Ci or Ck.

Why does the same argument not apply in the case of a three-way tie? If all three

candidates get the same number of votes, then the relevant effect of any possible deviation

is to eliminate the candidate who loses the vote from the race. This is not the case in voting

profiles where the first- and last-ranked candidates do not get the same number of votes. In

those situations there also exist deviations whose main effect is to enhance the chances of

the candidate who receives the additional vote to enter the second round.

It is interesting to think about the fundamental reason for the difference between Lem-

mas 6 and 7. Lemma 6 shows that there is no robust voting profile that leads to a runoff

without the CW (candidate Ci). This is due to the fact that those voters who prefer Ci over

the winner, but do not vote for Ci benefit from switching their vote to Ci, as they increase

Ci’s chance of entering (and winning) the runoff round.

Of course, when no CW exists, there are also some voters who prefer Ci over the dominant

candidate among Cj and Ck. Why is it then that, when no CW exists, Lemma 7 does not

rule out the possibility of robust voting profiles that will lead to a runoff? The reason is

that, if candidate Ci is the CW then he beats both of the other two candidates in pairwise

comparison, so that an increase in the number of votes for Ci always translates into an
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increase in the chances of Ci, independently of which of the other two candidates proceeds

to the runoff. In contrast, in case of a Condorcet cycle, the effects of a deviation towards

Ci are more ambiguous, as Ci dominates only Cj, but is dominated by Ck. Thus, whether a

deviation towards Ci increases Ci’s winning probability depends on which of the two runoff

combinations that include Ci increases more in probability. Not all voters who rank Ci above

Cj will necessarily deviate towards Ci if the relevant effect of the switch is an increase of

the probability of a runoff between Ci and Ck. In this case, the deviation amounts to a

replacement of Cj by Ck and therefore decreases the utility of voters in Nij ⊂ Σij.

In combination with Lemma 5, Lemma 7 shows an important result regarding the set

of equilibrium outcomes for environments where no Condorcet winner exists. If the number

of voters is not a multiple of three, then all candidates ranked lowest by more than a third

of the electorate can be ruled out as robust equilibrium outcomes. Generically, there is at

least one such candidate, and in many situations, it may even be possible to reduce the set

of candidates who can win the election to a single candidate.

Our analysis so far has concentrated on characterizing which candidates are possible

equilibrium outcomes. We now turn to the question of existence of a robust equilibrium

under runoff rule. Unlike in the case of plurality rule, it is not as straightforward to see that

robust equilibria always exist. Since we require equilibria to be in pure strategies, we take a

constructive approach. Our first result covers cases where no Condorcet winner exists.

Proposition 3. Suppose the Condorcet cycle is given by Ci � Cj, Cj � Ck and Ck � Ci.

Let candidate Cj have the smallest set of core opponents, i.e. lj < li, lk. Moreover, assume

that the sets Nij and Nki both contain at least one individual who prefers a uniform lottery

over all three candidates to having his second ranked candidate for sure. There either exists

a robust equilibrium profile s such that v1
j (s), v1

k(s) > v1
i (s) and |v1

j (s) − v1
k(s)| ≤ 1 or there

is a robust profile s′ such that v1
i (s′) = v1

j (s′) > v1
k(s′).

Proof. See Appendix.

When the Condorcet ranking is transitive then there are always equilibria in which the

Condorcet winner gets an absolute majority in the first round. The exact voting behavior

in these equilibria often depends on the details of the preference distribution (i.e. on the

absolute and relative sizes of the preference groups). This is the reason why we have to
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go through several different cases to show that existence holds for the entire space of voter

preference distributions.

Proposition 4. Suppose that the Condorcet ordering is given by Ci � Cj � Ck.

i) If (N + 1)/3 > σji, σki and σji > 4σki − N then there exists a robust equilibrium s

satisfying V 1
i (s) = Σij and 1 ≥ v1

j (s)− v1
k(s) ≥ 0.

ii) If (N + 1)/3 > σji, σki and σji < 4σji −N then there exists an equilibrium s satisfying

V 1
i (s) = Σik, V 1

k (s) = Nki and V 1
j = Li.

iii) If σji > (N + 1)/3, σki then there exists a robust equilibrium s satisfying Vi(s) = Σij,

1 ≥ vj(s)− [2σji − (N + 1)/2] ≥ 0 and v1
j (s) > v1

k(s).

iv) If σki > (N+1)/3, σli then there exists a robust equilibrium s satisfying Vi(s) = Σik and

v1
k(s) > v1

j (s). Moreover, at this equilibrium either 1 ≥ vk(s)− [2σki − (N + 1)/2] ≥ 0

or v1
k(s) = nki.

Proof. See Appendix.

In summary, Propositions 3 and 4 together show that a robust equilibrium always exists.

5 Conclusions

In this paper, we analyze the implications of imperfections in the vote counting technology

on the equilibrium sets of plurality and runoff voting games. In the context of voting, real

life experience suggests that ballots are indeed occasionally lost or miscounted, so that our

refinement method also has a straightforward intuitive interpretation. While our robustness

concept is related to the notion of trembling-hand perfectness, the distribution of our mis-

counts cannot depend on the players’ identities. In the context of vote-counting errors, this

symmetry assumption appears reasonable and considerably strengthens the implications of

our robustness refinement relative to trembling-hand perfection.

Under plurality rule, all robust equilibria satisfy Duverger’s Law: That is, exactly two

candidates receive all votes. Under very general conditions, all robust equilibria under runoff
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rule satisfy Duverger’s Hypothesis: That is, first-round votes are dispersed over more than

just two candidates.

In terms of equilibrium outcomes, robustness to miscounts generates sharper predictions

under runoff rule than under plurality rule. Under plurality rule, the only outcome that can

be excluded is a victory of the Condorcet loser.

In contrast, under runoff rule, the equilibrium outcome is unique for many constellations

of voter preferences. If there is a Condorcet cycle, then all candidates whose core opponents

(i.e., voters who rank this candidate lowest) are more than 1/3 of the population cannot

be the outcome in a robust equilibrium. Generically, there is at least one such candidate,

and often, there are two, in which case the unique robust equilibrium outcome is unique.

Instead, if there is a Condorcet winner, there always is a robust equilibrium in which the

Condorcet winner is elected. Moreover, conditions on the preference distribution that have to

be satisfied for the second candidate in the Condorcet ranking to be the equilibrium election

winner are very restrictive. Finally, the Condorcet loser cannot be the outcome in a robust

equilibrium.

While our formal analysis is for three candidates, it is clear that several major results

extend to settings with more than three candidates. As we have already pointed out Sec-

tions 3 and 4, Duverger’s Law under plurality rule and Duverger’s Hypothesis under runoff

rule will continue to hold in settings with more than three candidates. In contrast, the

characterization of which candidates can be the election outcome under runoff rule becomes

considerably more complex as the number of candidates increases.
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Appendix

Plurality Rule

Proof of Lemma 2

We have to show that no profile s with vi(s) > vj(s) > vk(s) > 0 can be an equilibrium of

an ε-perturbed pluratlity voting game for ε small enough.

So consider a profile s of the above mentioned type and notice that the probability that

candidate Ci will win is 1 − o(vi(s) − vj(s)) (where o(x) is a term of order x in ε),13 the

probability that candidate Cj will win is o(vi(s)− vi(s)), and the probability that candidate

Ck ends up as the winner is o((vi(s)− vk(s)) + (vj(s)− vk(s))).

Consider player n who intends to vote for the third placed candidate, and fix all other

individuals’ vote intentions. The probability that n’s vote is pivotal for a decision between

Ck and Ci, or between Ck and Cj, is o((vi(s) − vk(s)) + (vj(s) − vk(s))) in ε. On the

other hand, the probability that n’s vote is pivotal in a decision between Candidate 1 and

Candidate 2 is o(vi(s)−wj(s)) in ε. In all other cases, voter n’s vote does not matter. Since

vi − vj < (vi − vk) + (vj − vk), there exists an ε̄ > 0 such that the action which maximizes

expected utility for all ε ∈ (0, ε̄] is to vote for Ci, if un(Ci) > un(Cj), and to vote for Cj if

un(Cj) > un(Ci). Consequently, a vote for the third placed candidate cannot be optimal.

Proof of Proposition 1

First, it is easy to see that the profile in which just candidates Ci and Cj receive votes, and

every voter who prefers Ci over Cj votes for Ci and vice versa, is an equilibrium. Suppose

that ∆ij > 0. The probability that an individual’s vote is pivotal between Ci and Cj is a

term of order ∆ij, while the probability that his vote, if cast for a third candidate, is pivotal

between any other pair of candidates is a term of order N − 1 > ∆ij. Hence, there is no

point in deviating to vote for a third candidate. Similarly, it is also obvious that it cannot

be optimal for a voter who prefers Ci to Cj to vote for Cj, and vice versa.

We now turn to the proof that there are no other equilibria. First, note that there cannot

13The reason is that at least vi(s)− vj(s) votes need to be not counted in order that there is a possibility

that candidate Ci will not receive the most of the counted votes.
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be an equilibrium in which only one candidate receives votes. This follows immediately from

Lemma 1. Second, we will show that there cannot be an equilibrium in which three (or

more) candidates receive a positive number of votes.

Lemma 2 already shows that we cannot have vi(s
∗) ≥j (s∗) > vk(s∗) > 0. The remaining

possible configuration in which 3 candidates receive votes is vi(s
∗) ≥ vj(s

∗) = vk(s∗).

First, can we have vi(s
∗) = vj(s

∗) = vk(s∗)? In such an equilibrium, every core supporter

of candidate Ci must vote for Ci (otherwise, a voter who prefers Ci, but votes for Cj 6= Ci

could switch to vote for Ci and secure Ci’s victory). Thus we can rule out a three way tie if

one of the three candidates has a strictly smaller core support than one of the other two as

stated in condition i) of the proposition.

Suppose therefore that condition one is violated and observe that in an all over tie, every

voter can secure a victory of his second ranked candidate (by switching his vote to this

candidate). Since condition ii) guarantees that there is at least one voter who prefers this

result to the even lottery over the three candidates, we again arrive at the conclusion that

vi(s
∗) = vj(s

∗) = vk(s∗) is not possible.

Second, can we have vi(s
∗) > vj(s

∗) = vk(s∗)? Again, it must be true that the respective

core supporters vote for their favorite candidates: This is obvious for the core supporters of

the winner, but it is also true for the core supporters of the runners-up: Suppose it were not

so, but rather a core supporter of (say) Cj voted for Ck; in this case, switching the vote to Cj

increases the probability that Cj wins by one order of magnitude (in ε), and in comparison

to this effect, the change in Ck’s winning probability is negligible.

However, consider the voting behavior of an individual who prefers Cj to Ck to Ci and

who at s∗ votes for Cj. Switching the vote to Ck increases the probability that Ck is elected

from a term of order vi(s
∗)− vk(s∗) to a term of order vi(s

∗)− vk(s∗)− 1 in ε and decreases

the probability that Cj will be elected to a term of order vi(s
∗)− vk(s∗) + 1, but the overall

effect of the vote switch on this individual’s expected utility must be positive for ε sufficiently

small. Hence, there cannot be an equilibrium with vi(s
∗) > vj(s

∗) = vk(s∗).

Remark 1. For the case of more than 3 candidates, the conditions of the proposition have

to be adapted as follows:

i) For every K ⊂ C with #K ≥ 3 minK∈K n
K
K < maxK∈K n

K
K, where nKK is the core support

of K if the set of candidates is restricted to K.
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ii) For every K ⊂ C with #K ≥ 3 there exists at least one voter who prefers his second

ranked candidate from K to a lottery that gives all candidates in K with probability

1/#K.

Runoff rule

Lemma 4 and Proposition 2 refer to situations in which in the absence of any miscounts the

election is decided on the first round. Before presenting the details of the proofs of these two

results it is convenient to recall the definitions of the miscount margins at a voting profile,

s∗, where candidate Ci collects more than half of the first round vote intentions. Letting

ηlm = max{0, vl(s
∗)− vm(s∗)} we have

Tji(s) = vi(s)−
N − 1

2
+ ηkj(s) + ∆ij Tjk(s) = vi(s)−min{vj(s), vk(s)}+ ∆kj

In what follows we write Ci → Cj for a deviation from Ci to Cj; changes in the miscount

margins triggered by a deviation are denoted by ∆Tji etc. The table below lists the changes

in the miscount margins for the all possible types of deviations. Notice that the three possible

types of deviations are the following: i) a deviation towards the candidate that obtains the

majority; in the table this is represented by the deviation Cj → Ci; ii) a deviation away

from the candidate that obtains the majority of the votes (Ci → Cj); iii) a deviation that

does not involve the candidate that gets the majority of the votes (Cj → Ck).

Proof of Lemma 4

i) We first show that Σji ∩ V 1
i (s∗) = ∅. Ci → Cj implies ∆Tj < 0 and ∆Tj ≤ ∆Tk

(see rows 6 and 7 of Table 2). Since Tj(s
∗) < Tk(s∗), it follows that Tj(s

∗) + ∆Tj <

T(s
∗), Tk(s∗) + ∆Tk. Thus, for small enough miscount probabilities the deviation is

profitable for all individuals in Σji.

Σij ∩ V 1
j (s∗) = ∅: Cj → Ci implies ∆Tj > 0 and Tk ≥ 0 (see rows 1 and 2 of Table 2).

Since Tj(s
∗) < Tk(s∗) this means that the deviation would be profitable for all players

in Σij.

Σij ∩ V 1
k (s∗) = ∅: If either vk(s∗) ≤ vj(s

∗) or [vk(s∗) > vj(s
∗) and Tjk(s∗) ≤ Tji(s

∗)]

then for Ck → Ci we have ∆Tj > 0 and ∆Tk ≥ 0. Thus, in these cases the deviation

is profitable for all individuals who rank Ci above Cj.
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Deviation \ Miscount margin ∆Tji ∆Tjk ∆Tki ∆Tkj

Cj → Ci

1) v1
k(s) < v1

j (s) +1 +1 ±0 +1

2) v1
k(s) ≥ v1

j (s) +2 +2 +1 +2

Cj → Ck

3) v1
k(s) + 1 < v1

j (s) ±0 −1 −2 −1

4) v1
k(s) + 1 = v1

j (s) +1 ±0 −1 ±0

5) v1
k(s) ≥ v1

j (s) +2 +1 ±0 +1

Ci → Cj

6) v1
k(s) > v1

j (s) −2 −2 −1 −2

7) v1
k(s) ≤ v1

j (s) −1 −1 ±0 −1

Table 2: The effects of deviations on the miscount margins

Finally, consider the case vk(s∗) > vj(s
∗) and Tjk(s∗) > Tji(s

∗). From rows 3 and 4 of

Table 2 we see that Ck → Cj implies ∆Tji < 0, and ∆Tji ≤ ∆Tki,∆Tkj,∆Tjk. Thus,

in order for s∗ to be a robust equilibrium we must have that Σji ⊂ V 1
j (s∗). But then

(N + 1)/2 ≤ vi(s
∗) ≤ σij − vk(s∗) ≤ σij − (vj(s

∗) + 1) = σij − σji − 1 = ∆ij − 1,

which in turn implies that

Tij(s
∗)−min{Tjk(s∗), Tkj(s

∗)}

= v1
i (s∗)− (N − 1)/2 + (v1

k(s∗)− v1
j (s∗)) + ∆ij − (v1

i (s∗)− v1
j (s∗))

= ∆ij − (N − 1)/2 + v1
k(s∗) > 0.

Since this contradicts our starting assumption that Tji(s
∗) < Tjk(s∗), Tjk(s∗) we are

done.

ii) V 1
i (s∗) ∩ Σji: Ci → Cj implies ∆Tj < 0, ∆Tj < ∆Tki. Since ∆jk > 0 implies that

Tjk(s) < Tkj(s) for all s, it therefore follows that the deviation is profitable for all

players in Σji.

V 1
i (s∗)∩Σji = ∅ and v1

i (s∗) ≥ (N + 1)/2) implies that ∆ij > 0. It remains to be shown

that if Ci does not Condorcet dominate Ck then Li = ∅.
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Assume that ∆ki > 0. For Ci → Ck (see rows 6 and 7 of Table 2) we have ∆Tk < 0

and ∆Tk < ∆Tji. Thus, if in the initial situation Tjk(s∗) > Tj(s
∗) = Tji(s

∗) = Tki(s
∗)

then the deviation benefits all players in Σki. If no voter in Σji ∪ Σki is voting for Ci,

then V 1
i (s∗) ⊂ Ni. But ni ≥ v1

i (s∗) ≥ (N + 1)/2 contradicts the assumption ∆ki > 0.

Finally, we show that the remaining case Tjk(s∗) = Tki(s
∗) can arise only if Li = 0. In

order to see this observe that

Tjk(s∗)− Tki(s
∗) = v1

i (s∗)− v1
j (s∗) + ηjk(s∗)− [v1

i (s∗)− (N − 1)/2 + ηjk(s∗)]

= v1
j (s∗)− (N − 1)/2.

If v1
j (s∗) = (N − 1)/2 then v1

k(s∗) = 0. In such a case Cj → Ci implies ∆Tj > 0

and ∆Tki = 0. We will argue now that that this means that for t = Tki(s
∗) =

Tjk(s∗) miscounts the deviation’s only effect is a replacement of the outcome Cj with

the outcome Ci. A t−configuration that before the deviation has delivered Cj via a

runoff against Ci must have involved exactly v1
i (s∗) − (N − 1)/2 miscounts of first

round votes of Ci. With this number of first round misounts the outcome in the post-

deviation situation is always Ci. t-configurations that delivered Cj via a runoff against

Ck must have involved all first round votes of Ci. In the post-deviation situation

such configurations lead to a runoff between Ci and Cj that is won by Ci. Finally, a

t−configuration that in the predeviation situation has produced Ck as outcome must

have involved all votes in favor of Cj, including the one of the deviating player. But

if the vote of the deviating player is not counted anyway, the deviation cannot change

the outcome. So we can conclude that the deviation would benefit all players in Σij

and thus Σij ∩ V 1
j (s∗) = ∅.

Finally, if vj(s
∗) > vk(s∗) = 0 then Cj → Ck implies that ∆Tki < 0 and ∆Tki <

∆Tji,∆Tjk (see rows 3 and 4 of Table 2). This implies that voters in Σki would benefit

from the deviation. Combining this with the previous observation we can thus conclude

that V 1
k (s∗) = Σji ∩ Σki = Li = ∅ and V 1

j (s∗) = Σji\Σki = Σji = Nj.

Proof of Lemma 5

We know already that V 1
j (s∗) = V 1

k (s∗) = Σji. We have to argue that V 1
k (s∗) = Li.

If ∆ik = 0 then Tki(s
∗) − min{Tjk(s∗), Tkj(s

∗)} = vi − (N − 1)/2 + ηjk(s∗) − [v1
i (s∗) −

min{v1
j (s∗) − v1

k(s∗)}] ≤ 0. Thus, in order to have Tj(s
∗) < Tk(s∗) it must be true that
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Tji(s
∗) < Tki(s

∗). It is straightforward to verify that this latter condition can hold only if

v1
j (s∗)− v1

k(s∗) > ∆ij > 0.

If v1
j (s∗)− v1

k(s∗) > ∆ij then Cj → Ck implies ∆Tki = −2, ∆Tji = 0 and ∆Tjk = ∆Tkj =

−1. If Tki(s
∗)− 2 < Tji(s

∗) then the deviation is profitable for all individuals in Li and we

are done.

So suppose that Tji(s
∗) ≤ Tki(s∗) − 2. Observe that a configuration of t = Tki(s

∗) − 2

miscounts, which after the deviation delivers Ck as outcome, does not include miscounts in

round two. But then such a miscount configuration cannot have produced Cj as outcome

in the initial situation but only Ci. Conversely, any τ−configuration, with Tji ≤ τ ≤ t,

that before the deviation has delivered Cj cannot deliver Ci afterwards. Whenever such a

τ -configuration leads to a ji-runoff after the deviation then the outcome must be the same

as before the deviation since the deviation does not affect second round votes. If instead the

runoff changes to a ki-runoff then all miscounts must be concentrated on the first round;

such a configuration cannot have resulted in Cj as outcome before the deviation. The runoff

cannot change to a jk-runoff since t < min{Tjk(s∗)− 1, Tkj(s∗)−1.

Combining these observations allows us to conclude that (for a sufficiently small miscount

probability) the relevant effect of Cj → Ck is an increase in the winning chances of Ck that

goes entirely at the cost of the chances of Ci. Thus the deviation is profitable for all voters

in Li.

Next we show Ck → Cj benefits all voters in Nji. First observe that we have to

contemplate such a deviation only if v1
k(s∗) > 0. But if this is the case then Tki(s

∗) <

min{Tjk(s∗), Tkj(s
∗)}. Since v1

j (s∗)−v1
k(s∗) > ∆ij we have that ∆Tji = 0 and ∆Tki,∆Tjk,∆kj >

0. Configurations of Tki(s
∗) miscounts which before the deviation delivered Ck as outcome

must lead to a ij-runoff after the deviation. Given that such configurations only contain

first round miscounts the ij-runoff must end with a win of Ci.

Other configurations with t ≤ Tki(s
∗) miscounts must produce both before and after the

deviation an ij-runoff. The winner of this runoff depends only on second round votes which

are not affected by the deviation.

Based on the preceding observations we can conclude that voters in Nji profit from

Ck → Cj and thus Nji = V 1
j (s∗).

We finally have to show that nji > (N + 1)/3 > li + 1. Combining the facts vj(s) = nji,
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vk(s) = nkj + njk and vj(s)− vk(s) > ∆ij and using the definition of ∆ji delivers

nji − nkj − njk > σij − nji − nkj − njk ⇔ 2nji > σij.

Since σij ≥ (N + 1)/2 it thus follows that nji > (N + 1)/4. Finally, the sum of nji and li + 1

cannot exceed (N + 1)/2 and so li + 1 < (N + 1)/4.

Proof of Proposition 2

By Lemma 5, there are no robust equilibria such that i) votes are concentrated on two

candidates only (so that the election is decided in the first round) and ii) the candidate who

gets the most votes is not a Condorcet winner. Thus, we only have to show that votes must

also be dispersed when the candidate who gets the most first round votes is a Condorcet

winner.

Assume that Ci is the Condorcet winner. Let s∗ be such that v1
i (s∗) ≥ (N + 1)/2 and

v1
k(s∗) = 0. By Lemma 4, a necessary condition for robustness of s∗ is that either Σji ⊂ V 1

j (s∗)

or Σki ⊂ V 1
j (s∗). Therefore, Nkj ⊂ Σji ∩ Σki ⊂ V 1

j (s∗). We show now that, for individuals

in Nkj, a deviation from Cj to Ck is profitable. In order to do so, we argue that the most

likely outcome change triggered by the deviation is neither a switch from Ck to one of the

other two candidates, nor a switch from Cj to Ci; all other outcome changes are profitable

for individuals in Njk.

Denote the post-deviation profile by s′. Since vj(s
∗) ≥ min{σji, σki} ≥ 3 (there is at

least one individual of each preference type) we have that vj(s
′) ≥ 2 > 1 = vk(s′). From

row 3 of Table 2 we see that Cj → Ck implies Tji(s
∗) − Tji(s

′) = 0, Tjk(s∗) − Tjk(s′) =

Tkj(s
∗)− Tkj(s

′) = 1 and Tki(s
∗)− Tki(s

′) = 2.

Consider first outcome changes that involve candidate Ck. Since Tk(s′) < Tk(s∗) it follows

that switches towards Ck are more likely than switches away from Ck, so that voters in Nkj

are better off in expectation if the outcome change involves Ck.

It remains to be shown that outcome changes from Cj to Ci also cannot be relevant.

Since the deviation only affects first round votes, any outcome change must be produced

through a change in the runoff pair. Now observe that due to the deviation the number

of miscounts that are required to obtain the runoff pair (Cj, Ck) decreases from v1
i (s∗) to

v1
i (s∗) − 1. Thus a switch toward this pair is more likely than any switch away from this
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pair. But then the only way to generate an outcome change from Cj to Ci that can be

relevant is through a change in the runoff pair from (Ci, Cj) to (Ci, Ck). Any event where

the deviation triggers such an outcome change must involve at least the following miscounts:

a) v1
i (s∗)− (N − 1)/2 miscounts of first round Ci-votes (for, otherwise, Ci wins the election

outright); b) v1
j (s∗) − 2 miscounts of first-round Cj-votes (excluding the deviating player’s

ballot) for otherwise, the deviation cannot trigger a switch from the runoff pair (Ci, Cj) to

(Ci, Ck); c) ∆ij = N − 2σji miscounts of second round votes of players that rank Ci above

Cj, for otherwise Cj cannot win the runoff against Ci in the pre-deviation situation. Thus,

the minimum number of miscounts necessary for a switch in outcome from Cj to Ci to occur

is

v1
i (s∗)− N − 1

2
+ v1

j (s∗)− 2 +N − 2σji = v1
i (s∗)− 1 +

N − 1

2
− v1

j (s∗).

Now remember that if at s∗ candidate Cj is strictly more likely to benefit from miscounts

than Ck (i.e. if Tj(s
∗) < Tk(s∗)) then V 1

j (s∗) = Σji. Since, by assumption, σji < (N − 1)/2

it follows that the above sum is strictly larger than v1
i (s∗) − 1. Hence, the contemplated

outcome change from Cj to Ci is less likely than a switch from a runoff between Ci and Cj

that is won by Ci to a runoff between Cj and Ck. Thus, the deviation increases the expected

utility of a type kj voter.

Finally, if Tk(s∗) ≤ Tj(s
∗), then Tk(s′) < Tj(s

′) and thus the relevant effect the deviation

is a replacement of the outcome Ci by the outcome Ck.

Proof of Lemma 6

Without loss of generality, assume that Cj Condorcet dominates Ck (so that Ck is the

Condorcet loser). We show that at a voting profile s that satisfies the condition specified

in the lemma, there must always be some player in V 1
j (s) or V 1

k (s) who benefits from a

deviation towards Ci. In what follows we denote the corresponding post deviation voting

profile by s′.

If v1
i (s) = min{v1

j (s), v1
k(s)} then the deviation changes the outcome distribution even in

the event that no miscounts occur. In particular, it increases the probability that Ci enters

the second round (and thus wins the election). This increase of the Condorcet winner’s

chances to win go at the expense of Cj (Ck can never win when there are no miscounts).

Thus the deviation benefits all in Σij. Since Σij comprises a majority of the electorate, not
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all of its members can be voting for Ci at the profile s.

If v1
i (s) < min{v1

j (s), v1
k(s)} then the deviation strictly lowers Ti. A Ti(s

′)−configuration

that delivers Ci after the deviation comprises only miscounts of first round votes. Conse-

quently, the pre-deviation outcome for such configurations must be Cj. Conversely, there can

be no switch from Ck to Cj or from Cj to Ck for configurations that comprise at most Ti(s
′)

miscounts. Since the deviation only affects first round votes, such changes could occur only

if the miscounts lead to a runoff pair different from the pair jk that results if no miscounts

happen. But miscount configurations for which the runoff pair changes to ik or ij either Ci

either yield Ci as outcome, or they comprise more than Ti(s
′) miscounts.

Proof of Lemma 7

Part i): Assume (wlog) that the Condorcet ranking is given by Ci � Cj, Cj � Ck and

Ck � Ci. We show that if v1
i (s)−1 > v1

j (k), v1
k(s), then all players in V 1

i (s) have an incentive

to deviate. The basic idea is that while the deviation does not change the fact that Ci gets

more votes than the opponents it changes the gap between v1
j and v1

k and thus determines

the relative chances for the two candidates to meet Ci in the runoff. Voters in V 1
i (s) ∩ Σki

profit from Ci → Ck (it becomes more likely that Ci meets and loses against Ck instead of

winning against Cj) while voters in V 1
i (s) ∩ Σik benefit from Ci → Cj (making it less likely

that Ci will meet Ck instead of Cj).

In what follows we spell out the details for the case v1
j (s) ≥ v1

k(s). The case v1
j (s) < v1

k(s)

is treated in a perfectly analogous way.

We first argue that the relevant effect of Ci → Ck is a replacement of the outcome Ci by

the outcome Ck. This is easily seen if v1
j (s)− v1

k(s) ≤ 1. In this case the deviation increases

the probability of the outcome Ck even in the absence of miscounts. But when no miscounts

occur Cj cannot have been winning the election in the predeviation situation and so the gain

of Ck must go at the cost of Ci.

Consider the case v1
j (s) > v1

k(s)+1. Tji = ∆ij, Tki(s) = v1
j (s)−v1

k(s), Tik(s) = Tki(s)+∆ki,

Tjk = v1
i (s)−v1

k(s) and Tkj = Tjk +∆jk. Ci → Ck implies ∆Tki = −1 and ∆Tji = 0. Changes

in Tik, Tjk and Tkj are irrelevant for these margins remain strictly larger than Tki(s)− 1. If

Tki(s) − 1 < Tji(s) then the relevant effect of the deviation is a replacement of Ci by Ck.

In order to prove that the same is true also if Tki(s) − 1 ≥ Tji(s) it suffices to show that
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configurations of no more than Tki(s)− 1 miscounts yield Cj as outcome after the deviation

if and only if they have delivered Cj in the pre-deviation situation. But this follows from the

following observation: As long as miscounts do not trigger a change in the runoff pair, the

outcome depends only on second round votes and miscounts, which are not affected by the

deviation. The most likely change in the runoff pair is from ij to ik, which requires exactly

Tki − 1 miscounts of first round votes. Any configuration which leads to this outcome does

not involve second round miscounts and can thus in the pre-deviation situation cannot have

delivered the outcome Cj.

By similar arguments it can be shown that the relevant effect of Ci → Cj is a replacement

of Ck by Ci.

Part ii) We have to show that at if a voting profile s satisfies the conditions v1
i (s) ≤ v1

j (s)

and v1
i (s) ≤ v1

k(s), with at least one of the two inequalities being strict, then voters in Lj

have an incentive to deviate if they are not voting for Ci. Notice first that the assumptions

that Ci � Cj and that there is no CW imply that the Condorcet ranking is given by Ci � Cj,

Cj � Ck and Ck � Ci. The idea beneath the following proof is that a deviation towards Ci

makes it more likely that instead of a jk-runoff (that is won by Cj) the first round election

delivers a runoff pair that involves Ci. This either increases the winning chances of Ci (if Ci

is paired with Cj) without hurting Ck or of Ck (if Ci is paired with Ck) without hurting Ci,

or the chances of both Ci and Ck improve.

If v1
k(s) ≥ v1

j (s) then Cj → Ci closes the gap between Cj and Ci (Ci might even overtake

Cj) while Ck still receives the most votes. This means that the chances of a ik-runoff increase

at the cost of the jk-runoff.

Since the deviation does not affect second round votes, it cannot influence the outcome

of the second round elections (in particular of the jk-runoff). Thus the deviation’s relevant

effect on the outcome distribution is an increase in the chances of Ck at the expense of Cj.

Proof of Proposition 3

The proof is constructive. We first define the two voting profiles s and s′ and show that one

of the two must give rise to the desired vote distribution. In a second step we then show

that no player has an incentive to deviate from the profile which delivers the correct vote

distribution
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Step 1: Consider the following voting profiles:

s: Players in Lj = Nki ∪ Nik vote for Ci; players in Nkj vote for Ck. The votes of the

remaining players (those in Σjk = Nij ∪Nji ∪Njk) are distributed as follows:

If nij ≤ nkj + nji + njk = σji assign all votes of players in Nij to Cj. Then distribute

the votes in Nj over Cj and Ck such that v1
k(s) = v1

j (s). If this is not possible because

N − lj is an odd number, then take a ballot from a voter in Nij who prefers a uniform

lottery over all three candidates to having his second ranked candidate for sure and

assign it to Ci.

If σji− lj > nij − σji > 0 assign all votes of players in Nj to Ck. In describing how the

remaining voters in Nij are to be devided between Cj and Ci we have to distinguish

two subcases. For this task it is convenient to introduce the following notation. Let X

be the set of all players in Nij who prefer a uniform lottery over all three candidates

to having Cj for sure. Write x = |X|.

If x ≥ nij − σji then assign [nij − σji] votes of players in X to Ci. The remaining votes

go to Cj. Observe that the resulting profile s satisfies v1
j (s)− 1 = v1

k(s) > vi(s).

If x < nij − σji then assign all voters in X and sufficiently many voters in Nij −X to

Ci so that the resulting profile s satisfies v1
j (s)− 1 = v1

k(s) > vi(s).

s′: The only case which we have not considered in the construction of s is nij − σji ≥
σji − lj > 0. This condition implies that σji = nji + li ≤ N/3 and thus li < N/3.

Since by assumption we have lj < N/3 we therefore must have lk > N/3. Next observe

that |nji − nki| ≤ nij + nik: nji > nij + nik + nki = σij ≥ (N + 1)/2 contradicts the

assumption that Cj is not a Condorcet winner. nki > nij + nik + nji = lk + nik > N/3

is at odds with the condition lj < N/3 < lk.

From these observations it follows that we can construct s′ as follows: All votes in Li

are assigned to Ck; votes in Nji go to Cj. Votes in Nki are assigned to Ci unless N − li
is odd; in this latter case Ck receives one of the votes of the players in Nki who prefer

a uniform lottery over all candidates to getting Ci for sure. The remaining votes in

Nij ∪ Nik are distributed over the candidates Ci and Cj so that their final number of

votes are equal.
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Step 2: In this second step we show that if s and s′ are constructed as described above,

then no player has an incentive to deviate. Consider first the case where s is such that

v1
j (s) = v1

k(s) > v1
i (s). Notice that at s we have Tij(s) = v1

k(s) − v1
i (s) = v1

j (s) − v1
i (s) =

Tki(s) < Tji(s), Tik(s). Since any deviation from s changes either Tij or Tki (or both) we

can ignore the margins Tik and Tji. Finally, observe that not change the kj-margin, since

Tkj = ∆jk. In the following we denote the post-deviation voting profile by ŝ.

i) Ci −→ Cj, Ck. Due to the deviation both the ij- and the ki-margin increase. Thus,

if Tkj(s) > Tki(s) = Tij(s) = t then the relevant change in the outcome distribution is

an increase in the winning chances of Cj and an identical decrease of the chances of

Ci and Ck. Such a change is detrimental for all individuals in Lj ∪X which is exactly

what we have to show. The same conclusion remains valid if Tkj(s) ≤ t. In order

to see this notice that the ij- and ki−margins comprise only miscounts of first round

votes. A victory of Ck via a jk-runoff instead requires ∆jk miscounts of second round

votes. Thus, any t−configuration which delivers Ci through a ij-runoff or Ck through

a ki−runoff must yield Cj in the post deviation situation. Moreover, there can be no

other change in the outcomes for configurations which are composed of no more than

t miscounts. That is, if such a configuration has delivered Ck via a kj-runoff before

the deviation it must do so also after the deviation. In order for Ck to win against Cj

the t−configuration must contain sufficiently many second round miscounts in favor

of Ck. The deviation concerns only the first round voting behavior. Thus as long

as the deviation does not change the runoff-pair Ck remains the winner. But in the

post deviation situation a change of the runoff pair requires at least t + 1 first round

miscounts.

ii) Cj −→ Ci, Ck. Due to such deviations the ki-margin decreases by more than the ij-

margin. It thus follows that if Tki(ŝ) < Tkj(s), then a player benefits from the deviation

if and only if he ranks Ck above Cj. The increase in Ck’s winning chances of order

Tki(ŝ) remains the relevant change in the outcome distribution also if Tki(ŝ) ≥ Tkj(s).

This follows from the fact that any miscount configuration of at most Tki(ŝ) miscounts

delivers Ck in the post deviation situation if and only if it delivers it also before the

deviation. In order to show this the same arguments can be used which we have

employed in i).

iii) Ck −→ Ci, Cj. This case is perfectly analogous to case ii). The relevant change in the
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outcome distribution triggered by the deviation is a decrease of the ij-margin (which

decreases by more than the ki-margin). This change is detrimental for all individuals

in Σji.

s has been constructed such that candidate Ci only receives votes from players in Lj ∪ X,

Cj’s votes come from players in Σjk and Ck is voted only by players in Σji. Hence, from

observations i) to iii) it follows that there at s there is no individual who has an incentive

to deviate.

Also the voting profile s′ is a profile where the two leading candidates obtain the same

number of votes. We can therefore apply the same arguments in order to show that there

are no voters who could profit by deviating from s′.

We are thus left with the case v1
j (s)−1 = v1

k(s) > v1
i (s). Observe that Tij(s

′) < Tki(s
′) ≤

Tik(s′), Tji(s
′). The jk-margin does not change with any deviation. We can thus ignore it

again for the same reasons which we have spelled out in the previous case. The deviation

incentives for players who are voting for Ck are the same as in the previous case where Cj

and Ck obtain the same number of votes. The relevant change in the outcome distribution

generated by a deviation away from Ci is an increase of the winning probability of Cj at the

cost of Ci’s chances. Hence, the deviation is detrimental for all individuals in Σij. Finally,

consider deviations away from Cj. If a ballot is moved toward Ci then the ij-margin and

the ki−margin decrease by one and two, respectively. Moreover, the two margins coincide in

the post-deviation situation. The relevant change in the outcome distribution is therefore a

decrease in Cj’s winning probability which benefits in equal parts the other two candidates.

Observe, that such a change is detrimental for all voters in Nij − X. If the deviating

vote goes to Ck than Tij increase by one while Tki decreases by one. This implies that

Tki(ŝ) = Tij(s) < Tij(ŝ) = Tki(s). Hence, the relevant outcome change triggered by the

deviation is a replacement of Ci by Cj. We can therefore conclude again that the deviation

is detrimental for all individuals in Nij −X.

Proof of Proposition 4

Proof. Throughout the following proof we will denote vote profiles which result from a de-

viation from s by s′.

Part i): The proof of this statement relies on the following arguments: First observe that
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at s the smallest miscount margin is the jk-margin, i.e. Tjk(s) < Tki(s), Tji(s). If σji is an

even number so that v1
k(s) = v1

j (s), we have

Tki(s)− Tjk(s) = v1
i (s)− N − 1

2
+N − 2σki − [v1

i (s)− σji/2]

=
N + 1

2
+
σji

2
− 2σki > 0

Tji(s)− Tjk(s) = v1
i (s)− N − 1

2
+N − 2σji − [v1

i (s)− σji/2]

=
N + 1

2
− 3σji

2
> 0.

It is not difficult to verify that a similar conclusion holds if σji is odd so that v1
j (s) = vk(s)+1.

In particular, in this case we must have that Tjk(s) < Tki(s) and Tjk(s) ≤ Tji(s).

Using Table 2 it can be shown that the jk- margin increases with any deviation from Cj

or Ck towards Ci and for any deviation from Ck to Cj. Moreover such deviations do not

reduce any other miscount margin. Thus the relevant change in the outcome distribution is

a replacement of Cj by Ci and so it follows that no individual who is supposed to vote for

Cj or Ck (i.e. those in Σji) could ever benefit from them. Conversely, deviations from Ci

towards Cj strictly lower the jk-margin by at least as many units as the reduce any other

miscount margin. Consequently, they are profitable for a player if and only if he ranks Cj

above Ci. If v1
j (s) = v1

k(s) then a switch from Cj towards Ck increases the jk-margin and

so again we can conclude that they are detrimental for players in Σji. If v1
j (s) = v1

k(s) + 1

the jk-margin does not change when a player switches his vote from Cj to Ck. This case

therefore requires a somewhat more involved argument.

Consider the ki-margin and ji-margin. From Table 2 we can see that due to the deviation

the first decreases by one while the latter increases by one. Moreover, it is not difficult

to verify that Tki(s
′) > Tjk(s) = Tjk(s′). We therefore have to distinguish three cases:

Tki(s
′) < Tji(s), Tki(s

′) > Tji(s) and Tki(s
′) = Tji(s).

The first of these cases is possible only if σji < σki. Observe that in this case the

relevant change in the outcome distribution which the deviation implies is a replacement

of Ci by Ck. Therefore, s can be immune to the deviation only if all those voters in Σji

who rank Ck above Ci are already voting for Ck. Such a distribution of voters in Σji is

feasible only if Σji ∩ Σki = Li comprises less than half of the members of Σji. In order

to see that this condition must indeed be satisfied under our assumptions observe that

combining the assumption that N −ni = σki +nji ≥ (N + 1)/2 with σki < (N + 1)/3 implies
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nji > (N + 1)/2− σki > (N + 1)/6. At the same time σji = nji + li < nki + li = σki means

that nji < nki. But then from li ≥ nki we get that σji = li + nji > 2nji > (N + 1)/3 which

contradicts our assumption that σji < σki.

If Tki(s
′) = Tji(s) the deviation implies a replacement of Cj by Ck (or more precisely, a

replacement of Cj by Ci and a replacement of Ci by Ck, with a zero net effect for Ci). Hence

the deviation is profitable only for those players who rank Ck above Cj. But again that is

only a minorty of Σji and hence there is a way to distribute players over Cj and Ck such

that no voter can gain by deviating from Cj to Ck.

Finally if Tki(s
′) > Tji(s) then the relevant change regards situations where in the pre-

deviation situation Cj has won the election through a runoff against Ci. Since no voter who

is supposed to vote for Cj or Ck wants Cj be replaced by Ci we are done.

Part ii) In a first step we show that under our assumptions it must be true that v1
k(s) > v1

j (s)

and Tki(s) < Tjk(s), Tji(s). The first condition is satisfied if nki > li. The second one instead

requires that the two differences

Tji(s)− Tki(s) = v1
i (s)− (N − 1)/2 + nki − li +N − 2σji − [v1

i (s)− (N − 1)/2 +N − 2σki]

= 2σki − 2σji + nki − li and

Tjk(s)− Tki(s) = v1
i (s)− li − [v1

i (s)− (N − 1)/2 +N − 2σki] = σki + nki − (N + 1)/2

are both strictly positive. In order to show this it is sufficient to prove that the following

three inequalities must hold: nki > li, σki > σji and σki + nki > (N + 1)/2.

The second inequality is implied by the assumptions σki < (N +1)/3 and σji < 4σki−N .

Of course, σji < σki is equivalent to nji < nki. But then σki + nji ≥ (N + 1)/2 implies

σki + nki > (N + 1)/2. Finally, Using nji + σki ≥ (N + 1)/2 and σki = nki + li < (N + 1)/3

once more, we get nji > (N + 1)/6. But then nki > nji and σki < (N + 1)/3 are compatible

only if li < (N + 1)/6 < nji < nki.

At s voters are split between Ci and the other two candidates according to how they rank

Ci versus Ck. With the help of Table 2 it is easy to verify that any deviation away from Ci

lowers the ki-margin (and no other margin decreases stronger) while any deviation towards

Ci increases this margin without decreasing any of the other margins. Consequently, at s no

voter could profit from such deviations.

It remains to be shown that no player wants to switch from Cj to Ck or vice versa. In order

for the three conditions nki > nji > li, nki + nji + li ≥ (N + 1)/2 and nki + li < (N + 1)/3
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to hold it must be true that nki − li > 2. But then deviations between Cj and Ck leave

the ki-margin unchanged. They do change however the jk−margin (a deviation towards

Ck increases it while a deviation in opposite direction decreases it). They also change the

chances of getting a ji-runoff when there are enough second round miscounts so that Ck

would win against Ci (the ji−margin must be larger than Rij(s) + ∆ki). But since

Rij(s) + ∆ki − Tjk(s) = (N + 1)/2− σki − li > 0

it follows that the jk−margin is always the (weakly) smallest margin after the ki−margin.

Consider a deviation from Ck to Ck. If Rij(s
′) + ∆ki > Tjk(s′) then the relevant effects of

the deviation is a replacement of Ci by Cj Hence, it is profitable for a player if and only if

he ranks Cj above Ci. But at s only voters who prefer Ci over Cj are supposed to vote for

Ck. What if Rij(s
′) + ∆ki = Tjk(s′). In this case there is a replacement of Ci by Cj and a

replacement of Ck by Ci. Both changes are detrimental for players in Nki.

The last case to consider is a deviation from Cj to Ck. This increases Tjk and Rij + ∆ki.

The relevant effect of the deviation is thus a replacement of Cj by Ci. But since voters of

Cj belong to Li, no such player would benefit from the switch.

Part iii) The assumptions σji ≥ (N + 1)/3 and σji > σki guarantee that min{Tjk, Tkj, Tki}−
Tji > 0, for all vote profiles where v1

i = σij and v1
j ≥ v1

k. Denote the term 2σji−(N+1)/2 by v̄.

It is straightforward to show that σji > v̄ > σji/2. Thus the condition v1
j ≥ v1

k is satisfied at s.

Since the ji-margin increases with a deviation towards Ci while no other margin decreases,

we can immediately conclude that it is detrimental for all voters in Σji = V 1
j (s) ∪ V 1

k (s)

(V 1
i (s) = Σij). Similarly, deviations away from Ci lower the ji-margin at least as strongly

as they lower any other margin. Hence, they benefit only voters who rank Cj above Ci of

which there are none among the players who are supposed to vote for Ci. It remains to be

shown that no player in Σji has an incentive to deviate from Cj to Ck or vice versa.

Observe that v̄ has been chosen such that v1
j (s) = v̄ implies that the the number of

miscounts which are necessary for a victory of Cj through a jk-runoff (Tjk = v1
i (s)− v1

k(s) =

N − σji − (σji − v̄) = (N − 1)/2) is the same as the minimal number of miscounts which

are necessary to trigger an ik-runoff on round one (notation: Rik) and a win of Cj in an

ij-runoff (v1
i (s)− (N − 1)/2 + v1

j (s)− v1
k(s) + ∆ij = Tki(s)− (∆ik −∆ij) = N − σji − (N −

1)/2 + 2v̄−σji +N − 2σji = (N − 1)/2). This also implies that at s we have Tjk(s) < Tki(s).

Now consider a deviation from Cj to Ck. If v1
j (s)−v1

k(s) = 1 then the deviation increases

43



the ji-margin and thus is not profitable for the voters of Cj. If v1
j (s) − v1

k(s) > 1 then the

deviation leaves the ji-margin unchanged, decreases Tjk by one and Rik + ∆ij by two. Thus

there are miscount configurations with Tjk(s)− 2 miscounts for which the deviation changes

the outcome from Cj (via a ij-runoff) to Ci (via a ik-runoff). In order to complete the

argument we have to prove that there are no miscount configurations with at most Tjk − 2

miscounts for which Ci is replaced by Cj. With at most Tjk(s) − 2 miscounts Cj can win

only via a ij-runoff. But any admissible miscount configuration which yields an ij-runoff

after the deviation and contains enough second round miscounts in favor of Cj must have

delivered Cj already before the deviation.

Next consider a deviation from Ck to Cj. Such a deviation increases both Tjk and Rik +

∆ij. This means that there are Tjk(s)-configurations (containing only first round miscounts)

for which Cj is replaced by Ci. On the other hand there are also Tjk(s)-configurations which

in the pre-deviation situation produce a ik-runoff which ends with a win of Ci while after

the deviation they result in a win of Cj via a ij-runoff. For any miscount configuration

with strictly less than Tjk(s) miscounts, there can be no change in the outcome distribution.

Hence, depending on whether Tjk(s)-configurations for which Cj replaces Ci are more likely

than Tjk-configurations for which Ci replaces Cj either every voter of Ck has an incentive to

deviate or all of them want to stick to their strategy. In the latter case we are done.

If instead all voters want to deviate from Ck to Cj when v1
j (s) = v̄ then none of them

would want to move in the opposite direction if v1
j (s) = v̄+ 1. Moreover, at any such profile

voters would still not want to move away from/towards Ci. Finally, v1
j (s) = v̄ + 1 implies

that Tjk(s) < Rik(s) + ∆ij. This means that a deviation from Ck to Cj is unambiguously

detrimental for all players in σji since its relevant effect is the increase of Tjk (which amounts

to a replacement of Cj by Ci).

Part iv) Consider first situations where v1
k(s) = v̄ or v1

k(s) + 1. The assumptions σki ≥
(N + 1)/3 and σki > σji guarantee that min{Tjk, Tkj, Tji} − Tki > 0, for all vote profiles

where v1
i = σij and v1

k ≥ v1
j . Denote the term 2σki − (N + 1)/2 by v̄. It is straightforward

to show that σki > v̄ > σki/2. Thus the condition v1
j ≥ v1

k is satisfied at s. Just as in part

iii) one can show that voters cannot benefit from deviations toward and away from Ci. In

what follows we can therefore concentrate our attention on deviations from Cj to Ck or vice

versa.

v1
j (s) = v̄ defines the vote distribution for which the jk-miscount margin coincides with
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the number of miscounts which are necessary to trigger an ij-runoff and to guarantee a victory

of Ck in a ik-Runoff. That is, Tjk(s) = v1
i (s)− v̄ = v1

i (s)− (N −1)/2 +σki−2v̄+N −2σki =

Rij(s) + ∆ik. So when v1
j (s) = v̄ then we have Tki(s) < Tjk(s) = Rij(s) + ∆ik < Tji(s). At

any such profile no voter of Ck has an incentive to deviate towards Cj. If the difference in the

votes of Ck and Cj is smaller than two then due to such a deviation Cj would either overtake

Ck or catch up with Ck. In either case the relevant change in the outcome distribution would

be a reduction of Ck’s chances in favor of Ci (of order Tki). In all other cases the deviation

leaves Tki unchanged but reduces Rij + ∆ik by two while Tjk decreases by only one. So the

relevant change in the outcome distribution would again be a replacement of Ck by Ci (there

are miscount configurations with Rij + ∆ki− 2 miscounts which before the deviation deliver

a ik runoff which Ck wins but end up in a ij-runoff after the deviation which can be won

only by Ci because ∆ki second round miscounts can never suffice for a victory of Ck). That

there are no other changes in the outcome distribution of a lower order is straightforward to

see.

What about deviations in the opposite direction, from Cj to Ck? Any such deviation

leaves Tki unchanged and increases both Tjk (by one) and Rij + ∆ik (by two). What are

the implied (relevant) changes in the outcome distribution? First, there is a replacement

of Cj by Ci (when instead of a jk-runoff we get an ik-runoff which ends with a win of Ci

because there are no second round miscounts). Second, there is a replacement of Ci by Ck

(instead of a win of Ci via a ij-runoff, we get a ik-runoff which is won by Ck). Overall, C ′ks

chances must increase and Cj’s must decrease. Notice that this implies that individuals in

Nki must benefit from the deviation no matter what the net effect on Ci’s chances are (this

is not crucial for the immediately following argument but will be important later on). Let

X be the set of players in Σki who prefer a vote profile with v1
k(s) = v̄ + 1 over a profile

with v1
k(s) = v̄; moreover, let x be the number of elements in X. If x ≤ v̄ then it is feasible

to assign the votes in Σki in a way to Cj and Ck such that Ck receives exactly v̄ votes and

X ⊂ V 1
k . By construction any such profile is robust.

So consider next the case x > v̄. We will argue now that in this case there must either

exist a robust equilibrium where Ck receives v̄ + 1 votes or there must be an equilibrium

where Ck gets all votes of players in Nki (and no other votes). In order to see this, consider

a situation where v̄ + 1 players vote for Ck and ballots are distributed such that V 1
k ⊂ X

(such a distribution must exist since x > v̄). By construction no player of Ck then has an
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incentive to deviate to Cj. So again the only question is if there are voters of Cj who might

want to switch to Ck.

By doing so they further increase Tjk (by one) and Rji + ∆ik (by two). Since in the

starting situation Tjk is strictly smaller than Rij + ∆ik it follows that the relevant change in

the outcome distribution is a replacement of Cj by Ci. The deviation is therefore profitable

only for individuals who rank Ci above Cj. This means that if it is possible to distribute

voters in Σki in such a way between Cj and Ck so that on top of the conditions i) v1
k = v̄+ 1

votes and ii) V 1
k ⊂ X are satisfied but also iii) V 1

j ∩ Σij = ∅ holds, then no player has an

incentive to deviate and we are done.

Assume therefore that the third condition cannot be met when the first two hold. Since

Σki ∩ Σji = Nki and Nki ⊂ X this means that nki > v̄. Take a vote profile where the

electorate of Ck is composed by exactly Nki. By construction at such a profile we must have

that Tjk < Rji + ∆ki. A deviation towards Cj is detrimental for ki-types since it leads to a

replacement of Ci by Cj (Tjk increases). A deviation towards Ck is detrimental for all voters

of Cj (i.e. those in Li) since it leads to a replacement of Cj by Ci (Tjk decreases and remains

strictly smaller than Rij + ∆ik).

46



References

Callander, S. (2005). Duverger’s hypothesis, the run-off rule, and electoral competition.

Political Analysis 13, 209–232.

Castanheira, M. (2003). Why vote for losers? Journal of the European Economic Associ-

ation 1, 1207 – 1238.

Cox, G. (1997). Making Votes Count. Cambridge University Press.

Dhillon, A. and B. Lockwood (2004). When are plurality rule voting games dominance

solvable? Games and Economic Behavior 46, 55–75.

Duverger, M. (1963). Political parties: their organization and activity in the modern state.

Wiley.

Farquharson, R. (1969). Theory of Voting. New Haven, CT: Yale University Press.

Feddersen, T. (1993). Coalition-proof nash equilibria in a model of costly voting under

plurality rule. mimeo.

Martinelli, C. (2002). Simple plurality versus plurality runoff with privately informed

voters. Social Choice and Welfare 19, 901 – 919.

Messner, M. and M. Polborn (2007). Strong and coalition-proof political equilibria under

plurality and runoff rule. International Journal of Game Theory 35(2), 287–314.

Morelli, M. (2004). Party formation and policy outcomes under different electoral systems.

Review of Economic Studies 71, 829–853.

Moulin, H. (1979). Dominance solvable voting schemes. Econometrica 47, 1337–1351.

Myatt, D. P. (2007). On the theory of strategic voting. Review of Economic Studies 74,

255 – 281.

Myerson, R. and R. Weber (1993). A theory of voting equilibria. American Political Science

Review 87, 102–114.

Myerson, R. B. (1998). Population uncertainty and poisson games. International Journal

of Game Theory 27 (3), 375–392.

Myerson, R. B. (2000). Large poisson games. Journal of Economic Theory 94 (1), 7–45.

Myerson, R. B. (2002). Comparing scoring rules in poisson voting games. Journal of Eco-

nomic Theory 103 (1), 219–251.

47



Niemi, R. G. and A. Frank (1981). Sophisticated voting under the plurality procedure. In

P. Ordeshook and K. Shepsle (Eds.), Political equilibrium. Kluver.

Palfrey, T. (1989). A mathematical proof of Duverger’s law. In P. Ordeshook (Ed.), Models

of strategic choice in politics. Ann Arbor: University of Michigan Press.

Sinopoli, F. D. (2000). Sophisticated voting and equilibrium refinements under plurality

rule. Social Choice and Welfare 17, 655–672.

48


	University of Illinois at Urbana-Champaign
	From the SelectedWorks of Mattias K Polborn
	2011

	Miscounts, Duverger's Law and Duverger's Hypothesis
	tmpguQcq2.pdf

