Skip to main content
Article
Advanced Mesospheric Temperature Mapper for High-Latitude Airglow Studies
Applied Optics
  • Pierre-Dominique Pautet, Utah State University
  • Michael J. Taylor, Utah State University
  • W. R. Pendleton, Jr.
  • Yucheng Zhao, Utah State University
  • Tao Yuan, Utah State University
  • R. Esplin
  • D. McLain
Document Type
Article
Publication Date
1-1-2014
Abstract

Over the past 60 years, ground-based remote sensing measurements of the Earth’s mesospheric temperature have been performed using the nighttime hydroxyl (OH) emission, which originates at an altitude of ∼87 km. Several types of instruments have been employed to date: spectrometers, Fabry–Perot or Michelson interferometers, scanning-radiometers, and more recently temperature mappers. Most of them measure the mesospheric temperature in a few sample directions and/or with a limited temporal resolution, restricting their research capabilities to the investigation of larger-scale perturbations such as inertial waves, tides, or planetary waves. The Advanced Mesospheric Temperature Mapper (AMTM) is a novel infrared digital imaging system that measures selected emission lines in the mesospheric OH (3,1) band (at ∼1.5 μm to create intensity and temperature maps of the mesosphere around 87 km. The data are obtained with an unprecedented spatial (∼0.5 km) and temporal (typically 30″) resolution over a large 120° field of view, allowing detailed measurements of wave propagation and dissipation at the ∼87 km level, even in the presence of strong aurora or under full moon conditions. This paper describes the AMTM characteristics, compares measured temperatures with values obtained by a collocated Na lidar instrument, and presents several examples of temperature maps and nightly keogram representations to illustrate the excellent capabilities of this new instrument.

Citation Information
Pautet P.-D., Taylor M.J., Pendleton Jr W.R., Zhao Y., Yuan T., Esplin R., and McLain D., An Advanced Mesospheric Temperature Mapper for high-latitude airglow studies, App. Optics, 53 (26), 5934-5943, 2014