Web-Based Supplementary Materials for
 "Functional Generalized Linear Models with Images as Predictors"

Philip T. Reiss and R. Todd Ogden
August 28, 2008

A Proof of Proposition 1

Proposition 1 Let $\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{T}$ be the singular value decomposition of the $n \times K$ matrix \boldsymbol{Z}, let \boldsymbol{U}_{q} be the matrix consisting of the first $q<\min (n, K)$ columns of \boldsymbol{U}, and let \boldsymbol{D}_{q} be the $q \times q$ upper left submatrix of \boldsymbol{D}. Then $\boldsymbol{M}_{0}=\boldsymbol{U}_{q} \boldsymbol{D}_{q}$ minimizes

$$
\begin{equation*}
\max _{\mathbf{w} \in \mathbf{R}^{K},\|\mathbf{w}\|=1}\left\|\boldsymbol{Z} \boldsymbol{w}-\operatorname{proj}_{\mathbf{M}} \boldsymbol{Z} \boldsymbol{w}\right\| \tag{1}
\end{equation*}
$$

over all $n \times q$ matrices \boldsymbol{M}, where $\operatorname{proj}_{\mathbf{M}}$ denotes projection onto the column space of \boldsymbol{M}.

Proof. Since $\operatorname{proj}_{\boldsymbol{M}} \boldsymbol{Z} \boldsymbol{w}=\boldsymbol{M}\left(\boldsymbol{M}^{T} \boldsymbol{M}\right)^{-1} \boldsymbol{M}^{T} \boldsymbol{Z} \boldsymbol{w}$, (1) equals the spectral norm $\left\|\boldsymbol{Z}-\boldsymbol{M}\left(\boldsymbol{M}^{T} \boldsymbol{M}\right)^{-1} \boldsymbol{M}^{T} \boldsymbol{Z}\right\|_{2}$.
Extending the above notation, let \boldsymbol{V}_{q} consist of the first q columns of \boldsymbol{V}, let \boldsymbol{U}_{-q} consist of the last $K-q$ columns of \boldsymbol{U}, and similarly define \boldsymbol{D}_{-q} and \boldsymbol{V}_{-q}. We then have $\boldsymbol{Z}=\boldsymbol{U}_{q} \boldsymbol{D}_{q} \boldsymbol{V}_{q}^{T}+$ $\boldsymbol{U}_{-q} \boldsymbol{D}_{-q} \boldsymbol{V}_{-q}^{T}$, and thus

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{M}_{0}} \boldsymbol{Z} \boldsymbol{w}= & \boldsymbol{M}_{0}\left(\boldsymbol{M}_{0}^{T} \boldsymbol{M}_{0}\right)^{-1} \boldsymbol{M}_{0}^{T} \boldsymbol{Z} \boldsymbol{w} \\
= & \boldsymbol{U}_{q} \boldsymbol{D}_{q}\left(\boldsymbol{D}_{q} \boldsymbol{U}_{q}^{T} \boldsymbol{U}_{q} \boldsymbol{D}_{q}\right)^{-1} \boldsymbol{D}_{q} \boldsymbol{U}_{q}^{T} \\
& \times\left(\boldsymbol{U}_{q} \boldsymbol{D}_{q} \boldsymbol{V}_{q}^{T}+\boldsymbol{U}_{-q} \boldsymbol{D}_{-q} \boldsymbol{V}_{-q}^{T}\right) \boldsymbol{w}
\end{aligned}
$$

which simplifies, using the equalities $\boldsymbol{U}_{q}^{T} \boldsymbol{U}_{q}=\boldsymbol{I}_{q}$ and $\boldsymbol{U}_{q}^{T} \boldsymbol{U}_{-q}=\mathbf{0}_{q \times(K-q)}$, to

$$
\operatorname{proj}_{\mathbf{M}_{0}} \boldsymbol{Z} \boldsymbol{w}=\boldsymbol{U}_{q} \boldsymbol{D}_{q} \boldsymbol{V}_{q}^{T} \boldsymbol{w}
$$

But by a standard result (e.g., Watkins, 2002), $\left\|\boldsymbol{Z}-\boldsymbol{U}_{q} \boldsymbol{D}_{q} \boldsymbol{V}_{q}^{T}\right\|_{2} \leq\|\boldsymbol{Z}-\boldsymbol{A}\|_{2}$ for any full-rank $n \times q$ matrix \boldsymbol{A}, and in particular for any such \boldsymbol{A} of the form $\boldsymbol{M}\left(\boldsymbol{M}^{T} \boldsymbol{M}\right)^{-1} \boldsymbol{M}^{T} \boldsymbol{Z}$ with \boldsymbol{M} an $n \times q$ matrix. This establishes the claim of minimality.

B Stretched Confidence Bands

This supplementary appendix concerns simultaneous confidence bands formed by bootstrap estimates $\hat{\boldsymbol{f}}_{1}^{*}, \ldots, \hat{\boldsymbol{f}}_{B}^{*}$ of the coefficient function. In the paper we note that $E(1)$, the band described by all B function estimates, may sometimes have estimated simultaneous coverage (in the crossvalidatory sense described there) lower than $100(1-\alpha) \%$. We describe here a method which can be used in such cases to "stretch" the envelope and thereby attain simultaneous coverage of $100(1-\alpha) \%$.

B. 1 Basic Formulation

A fairly straightforward stretching method is available under the condition that

$$
\begin{equation*}
\text { for all } v, \hat{f}_{(2)}^{*}(v)<\hat{f}(v)<\hat{f}_{(B-1)}^{*}(v) \tag{2}
\end{equation*}
$$

For $b=1, \ldots, B$, let

$$
M_{b}=\max _{v} \max \left\{\frac{\hat{f}_{b}^{*}(v)-\hat{f}(v)}{\hat{f}_{(2)}^{*}(v)-\hat{f}(v)}, \frac{\hat{f}_{b}^{*}(v)-\hat{f}(v)}{\hat{f}_{(B-1)}^{*}(v)-\hat{f}(v)}\right\} .
$$

As argued in the paper, $E(1)$ has estimated simultaneous coverage $<100(1-\alpha) \%$ if and only if there are more than $B \alpha$ values of $b \in\{1, \ldots, B\}$ such that for some $v=v_{b}$

$$
\text { either } \hat{f}_{b}^{*}\left(v_{b}\right)=\hat{f}_{(1)}^{*}\left(v_{b}\right)<\hat{f}_{(2)}^{*}\left(v_{b}\right) \text { or } \hat{f}_{b}^{*}\left(v_{b}\right)=\hat{f}_{(B)}^{*}\left(v_{b}\right)>\hat{f}_{(B-1)}^{*}\left(v_{b}\right)
$$

Under (2), the above condition implies

$$
\begin{equation*}
M_{(\lceil B(1-\alpha)\rceil)}>1 . \tag{3}
\end{equation*}
$$

(The left side of the above denotes the $\lceil B(1-\alpha)\rceil$ th-smallest of the M_{b} 's, where $\lceil B(1-\alpha)\rceil$ is the smallest integer $\geq B(1-\alpha)$.) Thus $E(1)$ will have at least $100(1-\alpha) \%$ simultaneous coverage if (3) does not hold; the stretching procedure developed here is relevant only when (3) is observed to hold.

To define the stretched envelope, for each v let

$$
\begin{equation*}
r(v)=\max \left\{\frac{\hat{f}_{(1)}^{*}(v)-\hat{f}(v)}{\hat{f}_{(2)}^{*}(v)-\hat{f}(v)}, \frac{\hat{f}_{(B)}^{*}(v)-\hat{f}(v)}{\hat{f}_{(B-1)}^{*}(v)-\hat{f}(v)}\right\} \tag{4}
\end{equation*}
$$

and let

$$
\begin{equation*}
c_{\alpha}(v)=\min \left\{r(v), M_{(\lceil B(1-\alpha)\rceil)}\right\} . \tag{5}
\end{equation*}
$$

Note that, since $r(v) \geq 1$ for all v, condition (3) implies

$$
\begin{equation*}
c_{\alpha}(v) \geq 1 \text { for all } v \tag{6}
\end{equation*}
$$

The stretched envelope is then given by

$$
\begin{equation*}
E^{c_{\alpha}}=\prod_{v}\left[\hat{f}(v)+c_{\alpha}(v)\left\{\hat{f}_{(1)}^{*}(v)-\hat{f}(v)\right\}, \hat{f}(v)+c_{\alpha}(v)\left\{\hat{f}_{(B)}^{*}(v)-\hat{f}(v)\right\}\right] \tag{7}
\end{equation*}
$$

The intuition behind this procedure is as follows. Equation (4) gives the smallest value $r(v)>0$ such that if we instead defined the stretched envelope as

$$
\prod_{v}\left[\hat{f}(v)+r(v)\left\{\hat{f}_{(1)}^{*}(v)-\hat{f}(v)\right\}, \hat{f}(v)+r(v)\left\{\hat{f}_{(B)}^{*}(v)-\hat{f}(v)\right\}\right]
$$

then $\hat{f}_{b}^{*}(v)$ would lie within the "delete- b th-function" version of this envelope for all $b \in\{1, \ldots, B\}$. One can think of $c_{\alpha}(v)$, defined in (5), as truncating $r(v)$ at an upper bound chosen to allow $\hat{\boldsymbol{f}}_{b}^{*}$ to exit from the "delete-bth-function" envelope for up to $\lfloor B \alpha\rfloor$ values of b.

B. 2 A More General Formulation

If (2) does not hold, then the above formulation may break down due to one or both of the following pathological situations:

1. For some v, either $\hat{f}_{(1)}^{*}(v) \leq \hat{f}(v) \leq \hat{f}_{(2)}^{*}(v)$ or $\hat{f}_{(B-1)}^{*}(v) \leq \hat{f}(v) \leq \hat{f}_{(B)}^{*}(v)$ holds, where one of the pair of inequalities is strict. If, say, the first pair of inequalities holds, then $\hat{f}_{(1)}^{*}(v)$ lies outside the pointwise interval

$$
\left[\hat{f}(v)+K\left\{\hat{f}_{(2)}^{*}(v)-\hat{f}(v)\right\}, \hat{f}(v)+K\left\{\hat{f}_{(B)}^{*}(v)-\hat{f}(v)\right\}\right]
$$

for any $K>0$. In this sense, no amount of stretching is adequate at point v, and accordingly it makes sense to set $r(v)=\infty$ (see (8) below).
2. For some $v, \hat{f}_{(1)}^{*}(v), \ldots, \hat{f}_{(B)}^{*}(v)$ are all $>\hat{f}(v)$ or all $<\hat{f}(v)$. If this occurs, $\hat{f}(v)$ would lie outside the stretched envelope (7).

These problems can be avoided by modifying the stretching procedure as follows. For each v, let

$$
r(v)= \begin{cases}\infty, & \text { if } \hat{f}_{(1)}^{*}(v) \leq \hat{f}(v) \leq \hat{f}_{(2)}^{*}(v) \tag{8}\\ & \text { or } \hat{f}_{(B-1)}^{*}(v) \leq \hat{f}(v) \leq \hat{f}_{(B)}^{*}(v) \\ \max \left\{\frac{\hat{f}_{(1)}^{*}(v)-\hat{f}(v)}{\hat{f}_{(2)}^{*}(v)-\hat{f}(v)}, \frac{\hat{f}_{(B)}^{*}(v)-\hat{f}(v)}{\hat{f}_{(B-1)}^{*}(v)-\hat{f}(v)}\right\}, & \text { otherwise. }\end{cases}
$$

Similarly, for $b=1, \ldots, B$, let

$$
M_{b}= \begin{cases}\infty, & \text { if for some } v, \hat{f}_{b}^{*}(v) \leq \hat{f}(v) \leq \hat{f}_{(2)}^{*}(v) \\ & \text { or } \hat{f}_{(B-1)}^{*}(v) \leq \hat{f}(v) \leq \hat{f}_{b}^{*}(v) \\ \max _{v} \max \left\{\frac{\hat{f}_{b}^{*}(v)-\hat{f}(v)}{\hat{f}_{(2)}^{*}(v)-\hat{f}(v)}, \frac{\hat{f}_{b}^{*}(v)-\hat{f}(v)}{\hat{f}_{(B-1)}^{*}(v)-\hat{f}(v)}\right\}, & \text { otherwise. }\end{cases}
$$

We now define the stretched envelope as

$$
\begin{equation*}
E^{c_{\alpha}}=\prod_{v}\left[\hat{f}(v)+\min \left\{0, c_{\alpha}(v)\left[\hat{f}_{(1)}^{*}(v)-\hat{f}(v)\right]\right\}, \hat{f}(v)+\max \left\{0, c_{\alpha}(v)\left[\hat{f}_{(B)}^{*}(v)-\hat{f}(v)\right]\right\}\right], \tag{9}
\end{equation*}
$$

where $c_{\alpha}(v)$ is given by (5) as before (and still satisfies (6)). This modification of (7) prevents $\hat{f}(v)$ from lying outside the stretched envelope (the second pathological situation above). As with the simpler procedure above, stretching is necessary only when (3) obtains.

B. 3 Simultaneous Coverage of the Stretched Bands

As in the paper, define $E_{-b}^{c_{\alpha}}$ as the simultaneous interval constructed as in (9) using the same function c_{α}, but with $\hat{f}_{(1)}^{*}(v)$ and $\hat{f}_{(B)}^{*}(v)$ replaced by the minimum and maximum, respectively, of

$$
\left\{\hat{f}_{1}^{*}(v), \ldots, \hat{f}_{b-1}^{*}(v), \hat{f}_{b+1}^{*}(v), \ldots, \hat{f}_{B}^{*}(v)\right\}
$$

The following result says that, given (3) and an additional mild condition, (9) defines confidence bands with the desired $100(1-\alpha) \%$ estimated simultaneous coverage.

Proposition 2 Assume (3). If $M_{(\lceil B(1-\alpha)\rceil)}<\infty$ then $\hat{\boldsymbol{f}}_{b}^{*}$ exits $E_{-b}^{c_{\alpha}}$ for at most B values $b \in$ $\{1, \ldots, B\}$.

Proof. Suppose $\hat{\boldsymbol{f}}_{b}^{*}$ exits $E_{-b}^{c_{\alpha}}$ at point v. Without loss of generality $\hat{f}_{b}^{*}(v)$ is above the upper limit of the envelope at v. We claim that

$$
\begin{equation*}
\hat{f}_{b}^{*}(v)=\hat{f}_{(B)}^{*}(v) \tag{10}
\end{equation*}
$$

Indeed, if this were not the case, the above would imply

$$
\hat{f}_{b}^{*}(v)>\hat{f}(v)+\max \left\{0, c_{\alpha}(v)\left[\hat{f}_{(B)}^{*}(v)-\hat{f}(v)\right]\right\}
$$

and thus

$$
0<c_{\alpha}(v)\left[\hat{f}_{(B)}^{*}(v)-\hat{f}(v)\right]<\hat{f}_{b}^{*}(v)-\hat{f}(v)<\hat{f}_{(B)}^{*}(v)-\hat{f}(v)
$$

which contradicts (6). Thus (10) holds, and our initial supposition implies

$$
\begin{equation*}
\hat{f}_{b}^{*}(v)=\hat{f}_{(B)}^{*}(v)>\hat{f}(v)+\max \left\{0, c_{\alpha}(v)\left[\hat{f}_{(B-1)}^{*}(v)-\hat{f}(v)\right]\right\} . \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
M_{b}<\infty \tag{12}
\end{equation*}
$$

then, by (8) and (11), $r(v) \geq \frac{\left.\hat{f}_{(B)}^{*}\right)(v)-\hat{f}(v)}{\hat{f}_{(B-1)}^{*}(v)-\hat{f}(v)}>c_{\alpha}(v)$, whence, by (5), $c_{\alpha}(v)=M_{(\lceil B(1-\alpha)\rceil)}$. It follows that

$$
M_{b} \geq \frac{\hat{f}_{b}^{*}(v)-\hat{f}(v)}{\hat{f}_{(B-1)}^{*}(v)-\hat{f}(v)}=\frac{\hat{f}_{(B)}^{*}(v)-\hat{f}(v)}{\hat{f}_{(B-1)}^{*}(v)-\hat{f}(v)}>c_{\alpha}(v)=M_{(\lceil B(1-\alpha)\rceil)} .
$$

Thus, whether or not (12) holds, we have $M_{b}>M_{([B(1-\alpha)])}$. Since this inequality holds for at most $B \alpha$ values $b \in\{1, \ldots, B\}$, the proposition follows.

In summary, Proposition 2 demonstrates that, under the stated assumptions, (9) defines sensible $100(1-\alpha) \%$ simultaneous confidence bands for \boldsymbol{f}.

Reference

Watkins, D. S. (2002). Fundamentals of Matrix Computations, 2nd ed. New York: John Wiley.

