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Cross-sectional versus longitudinal designs for
function estimation, with an application to
cerebral cortex development
Philip T. Reiss∗

Motivated by studies of the development of the human cerebral cortex, we consider the estimation of a mean growth
trajectory and the relative merits of cross-sectional and longitudinal data for that task. We define a class of relative
efficiencies that compare function estimates in terms of aggregate variance of a parametric function estimate.
These generalize the classical design effect for estimating a scalar with cross-sectional versus longitudinal data,
and in particular cases are shown to be bounded above by it. Turning to nonparametric function estimation, we
find that a longitudinal fits may tend to have higher aggregate variance than cross-sectional ones, but that this may
occur because the former have higher effective degrees of freedom reflecting greater sensitivity to subtle features
of the estimand. These ideas are illustrated with cortical thickness data from a longitudinal neuroimaging study.
Copyright c© 2017 John Wiley & Sons, Ltd.

Keywords: Accelerated longitudinal design, Cortical thickness, Design effect, Effective degrees of
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1. Introduction

Of the four objectives in the United States National Institute for Mental Health’s current strategic plan for research (1), the
second is to “chart mental illness trajectories to determine when, where, and how to intervene.” One of the two proposed
strategies to attain this objective is to “characterize the developmental trajectories of brain maturation and dimensions of
behavior to understand the roots of mental illnesses across diverse populations.” When studying developmental trajectories
in psychiatry, or in other areas of biomedical research, a key question is the relative difficulty of estimating the process
of interest on the basis of cross-sectional versus longitudinal data. Our aim here is to examine this fundamental question,
from both theoretical and empirical perspectives.

The importance of longitudinal data for studying developmental processes in psychiatry is often noted (2; 3). In the
study of the human cerebral cortex and its development in childhood and adolescence, the application area that motivated
the present work, important discoveries have been gleaned from longitudinal studies (4; 5). Intuitively, if one wishes to
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understand the trajectory of structural changes in the brain, then indeed one needs to follow the individuals under study
over time.

On the other hand, studies of “neurodevelopmental trajectories” are often concerned not with individual change but
rather with a population mean of a quantity of interest, such as cortical thickness, as a function of age (6). For estimating a
mean, it is well known that the use of clustered observations, such as longitudinal observations with uniform correlation,
results in inflated variance. Specifically, when estimating a scalar mean or effect based on clusters of m observations
having intraclass correlation ρ, the variance is inflated by

1 + (m− 1)ρ (1)

relative to a cross-sectional data set with the same total number of observations. The quantity (1) has been called the
“design effect” in the survey sampling literature (7), or the “inflation factor” in the literature on cluster-randomized
clinical trials (8), and it is often used for sample size planning. Intuitively, observing the same individuals repeatedly
implies redundant data, and formula (1) represents the cost of this redundancy. When ρ = 0 the design effect equals 1
since there is no redundancy; in the limit as ρ→ 1 (complete redundancy) it tends to m; and for intermediate values it
increases linearly with ρ.

In order to understand more fully the statistical advantages, and disadvantages, of longitudinal designs for studying
developmental trajectories, in this paper we shall investigate whether an inflation factor such as (1) applies when the
estimand is not a scalar but a function.

After introducing our formal framework in section 2, in section 3 we derive a general expression for the relative
efficiency of cross-sectional versus longitudinal data for function estimation. This expression allows for varying numbers
of observations per individual, as occurs in most realistic settings. In section 4 we consider the special case of a fixed
number of observations per individual, and find that the relative efficiency generalizes the classical formula (1) in an
interesting manner. Whereas our development up to section 4 concerns parametric models such as linear or polynomial
regression, section 5 considers penalized regression such as spline smoothing. Our notion of relative efficiency is extended
to penalized smoothing, but the fact that cross-sectional and longitudinal smooths can have different effective degrees of
freedom makes the situation more complex. Some of the ideas are illustrated with a cortical thickness data set in section 6
and a simulation study in section 7. Section 8 offers some concluding remarks.

2. Setup

In the longitudinal setting we have n individuals, the ith of whom is observed at ages ti1 < . . . < timi ∈ T for some
interval T , with responses yi1, . . . , yimi . Typically T represents a wide range of ages, and we sample individuals whose
ages vary across this range and follow them over a much shorter time span; this is known as an accelerated longitudinal
design (9; 10). We consider the simple random-intercept model

yij = xT (tij)β + ui + εij (2)

for i = 1, . . . , n, j = 1, . . . ,mi. Here x(·) = [x1(·), . . . , xK(·)]T denotes a set of basis functions, and β = (β1, . . . , βK)T

is the corresponding coefficient vector; the random effects ui (i = 1, . . . , n) are independently and identically distributed
(iid) as N(0, σ2

u); and the errors εij are iid N(0, σ2
ε). The mean function is then taken to be f(t) = x(t)Tβ. In

neurodevelopmental applications, polynomial models such as the quadratic model x(t) = (1, t, t2)T are popular. An
alternative would be a spline basis x(t) = [b1(t), . . . , bK(t)]T , but splines are usually combined with penalization, an
approach that we consider below in section 5. The random effects structure in (2) is admittedly very restrictive; see the
remarks in the first paragraph of section 8.
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Let N =
∑n

i=1mi. To express (2) in matrix form, define the N -dimensional vectors y =

(y11, . . . , y1m1 , . . . , yn1, . . . , ynmn)T and ε = (ε11, . . . , ε1m1 , . . . , εn1, . . . , εnmn)T , and the N ×K matrix X with
rows xT (tij) ordered in the same way. Let Z be the N × n matrix whose kth column consists of 1’s for observations
from the kth individual and 0’s elsewhere, and let u = (u1, . . . , un)T . We can then write (2) in the standard linear mixed
effects model form y = Xβ +Zu+ ε. Our model implies Var(y|X) = σ2

uZZ
T + σ2

εIN . Let σ2
T = σ2

u + σ2
ε and define

ρ = σ2
u/σ

2
T ; equivalently ρ is the correlation (conditional on x) among repeated observations. We can then write

Var(y|X) = σ2
TΣ(ρ) (3)

where
Σ(ρ) = ρZZT + (1− ρ)IN . (4)

The best linear unbiased estimate (BLUE) of the coefficient vector, β̂ = [XTΣ(ρ)−1X]−1XTΣ(ρ)−1y, has variance-
covariance matrix

Var(β̂) = σ2
T [XTΣ(ρ)−1X]−1. (5)

In practice, the variance components are estimated, usually by restricted maximum likelihood, giving an empirical BLUE;
hence ρ is also estimated, and thus the notation ρ̂ would be more appropriate in (5). Nevertheless, it is conventional to
ignore estimation error in relative efficiency measures such as (1), so in line with this convention we treat the asymptotic
variance-covariance matrix (5) as exact (see (11) regarding small-sample correction).

Taking ρ = 0 in (3) and (5) gives the formulas Var(y|X) = σ2
T IN , Var(β̂) = σ2

T (XTX)−1 that would obtain if, instead
of longitudinal data, we were to estimate β by ordinary least squares using N independent cross-sectional observations
with error variance σ2

T and the same responses and design matrix as above. In this mathematical sense, cross-sectional
data can be viewed as a special case of the above longitudinal setup, with ρ = 0. This observation plays a key role in what
follows.

3. Relative efficiency for parametric function estimation

3.1. A definition of relative efficiency

When interest centers on estimating not a scalar quantity but an entire trajectory, it is appropriate to consider some sort
of aggregate of variance along the function f(·) = x(·)Tβ. The most convenient aggregate variance to work with, which
corresponds to the V -optimality criterion in experimental design (12), is

AVXTX(ρ) =

n∑
i=1

mi∑
j=1

Var[f̂(tij)]. (6)

In Appendix A, we prove that
AVXTX(ρ) = σ2

T tr[XTX{XTΣ(ρ)−1X}−1], (7)

and show that this criterion is one of a class of aggregate variances

AVG(ρ) = σ2
T tr[G{XTΣ(ρ)−1X}−1] (8)

for Gram matrices G—for example, taking the integral, rather than the sum, of the variance of f̂ .
From the last paragraph of section 2, the aggregate variance for the cross-sectional scenario is given by taking ρ = 0

in (7), i.e., by AVXTX(0). We can thus define the relative efficiency of a cross-sectional versus a longitudinal design, as a
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function of ρ,
rXTX(ρ) = AVXTX(ρ)/AVXTX(0). (9)

This can be thought of as a generalization of (1) from scalar to function estimation. More generally, an aggregate variance
of the form (8) yields a relative efficiency measure rG(ρ) = AVG(ρ)/AVG(0).

3.2. An alternative formula for rXTX(ρ)

A useful alternative expression rXTX(ρ) can be derived under the assumption, which we shall adopt henceforth, that

X is of rank K. (10)

One can then find (e.g., by QR or singular value decomposition of X) an N ×K matrix U with such that

UTU = IK (11)

and
X = UW (12)

for some nonsingular K ×K matrix W . Let γ1(ρ) ≥ . . . ≥ γK(ρ) be the eigenvalues of

A(ρ) = UTZΞ(ρ)ZTU , (13)

where

Ξ(ρ) = Diag
{

ρ

1 + (m1 − 1)ρ
, . . . ,

ρ

1 + (mn − 1)ρ

}
. (14)

Then, as shown in Appendix B,

AVXTX(ρ) = σ2
T (1− ρ)

K∑
k=1

1

1− γk(ρ)
. (15)

Using either (7) or (15), we obtain
AVXTX(0) = σ2

TK, (16)

so the relative efficiency (9) becomes

rXTX(ρ) =
1− ρ
K

K∑
k=1

1

1− γk(ρ)
. (17)

3.3. Limit of rXTX(ρ) as ρ→ 1

As noted in the Introduction, the classical design effect (1) tends to m as ρ→ 1. It is instructive to contrast this with the
limit of rXTX(ρ) as ρ→ 1, which we now derive. In addition to (10) we assume that

col(X) ∩ col(Z) = {c1N : c ∈ R}, (18)

where col(·) denotes column space. To see that this is a rather mild assumption, observe that 1N = Z1n ∈ col(Z), and
1N ∈ col(X) when X is constructed from a polynomial basis including an intercept, or from a B-spline basis; hence in
these cases {c1N : c ∈ R} ⊆ col(X) ∩ col(Z). For the former to be a proper subset of the latter, there must be a nonzero
vector orthogonal to 1N that belongs to both column spaces, and this seems to be rare in practice.

We show in Appendix C that if (10) and (18) hold then

lim
ρ→1

rXTX(ρ) = m̄/K. (19)
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This result implies that when m̄ < K, the use of longitudinal data deflates the aggregate variance, rather than inflating it,
for sufficiently large ρ. Moreover, when all individuals have a fixed number m of observations (henceforth, “the fixed-m
case”), (19) says that as ρ→ 1, the limit of rXTX(ρ) equals the limit of design effect (1) divided by K. The next section
examines the relationship between rXTX(ρ) and (1) for general ρ in the fixed-m case.

4. The fixed-m case

When m is fixed, rXTX(ρ) has a simpler form and can be written as the classical design effect (1) times an adjustment
factor that is less than or equal to 1. This suggests that the redundancy cost of longitudinal data is lower for function
estimation than for estimating a scalar. In this section we derive the adjustment factor and show that it can depend quite
strongly on the specific longitudinal design that is chosen.

4.1. An adjustment factor

When m1 = . . . = mn = m, (14) reduces to Ξ(ρ) = ρ
1+(m−1)ρIn and so γk(ρ) = ρ

1+(m−1)ρζk where ζ1 ≥ . . . ≥ ζK ≥ 0

are the eigenvalues of UTZZTU . By (17),

rXTX(ρ) =
1

K

K∑
k=1

1− ρ
1− ρ

1+(m−1)ρζk

= [1 + (m− 1)ρ]

 1

K

K∑
k=1

1− ρ
1 + (m− ζk − 1)ρ

 ,
i.e., rXTX(ρ) equals the classical design effect (1) times the adjustment factor

a(ρ) ≡ 1

K

K∑
k=1

1− ρ
1 + (m− ζk − 1)ρ

. (20)

In Appendix D we show that a(ρ) is a decreasing function of ρ, and that under a weaker assumption than (18), namely

1 ∈ col(X) ∩ col(Z), (21)

we obtain the bounds
1

K
+

(K − 1)(1− ρ)

K[1 + (m− 1)ρ]
≤ a(ρ) ≤ 1, (22)

resulting in bounds on the relative efficiency:

1 + (m/K − 1)ρ ≤ rXTX(ρ) ≤ 1 + (m− 1)ρ. (23)

The upper bound rG(ρ) = 1 + (m− 1)ρ can be shown to hold not only forG = XTX , but for general nonsingular Gram
matrices G. Two special cases provide some insight into these bounds:

1. Suppose that, for i = 1, . . . , n, the ith individual is observed m times at some fixed time point ti. Then, as shown
in Appendix D, the upper bound rXTX(ρ) = 1 + (m− 1)ρ is attained for all ρ ∈ [0, 1), resulting in a limit of m,
rather than m

K , as ρ→ 1. This does not contradict result (19) since in this case (18) does not hold. On the other hand,
since the left-hand expression in (23) tends to m

K as ρ→ 1,we see that when (19) does hold, rXTX(ρ) approaches
its lower bound as ρ→ 1.
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Figure 1. Relative efficiency rG(ρ) for accelerated longitudinal designs withm = 2, 3, 4, 5 observations per individual, where G corresponds to (1) variance summed over the
design points (G = XTX) and (2) variance integrated over the age range. Left: a short (0.5-year) study; the linear function 1 + (m− 1)ρ for eachm is shown for comparison.
Right: a longer (3-year) study.

2. When K = 1, the lower and upper bounds in (23) are both equal to 1 + (m− 1)ρ. This equality can in fact be used
to deduce the classical formula (1). In particular, taking X = 1N = 1nm, our function estimation setting reduces to
estimating a scalar mean, and rXTX(ρ) reduces to the classical design effect 1 + (m− 1)ρ.

4.2. Application to accelerated longitudinal designs

As noted above in section 2, accelerated longitudinal designs allow us to estimate a growth trajectory over a wide age range
by following individuals of various ages over a shorter time span. This time span, i.e. the length of the study, turns out to
have a crucial impact on the adjustment factor (20). When the study period is very short, we have an approximate version
of the upper bound scenario in special case 1 of the previous subsection. Thus rXTX(ρ) remains near 1 + (m− 1)ρ for all
but the highest values of ρ, and then drops precipitously to the lower bound m

K . For a longer study, the adjustment factor
is generally much less than 1 even for quite low ρ.

These ideas are illustrated with simulated data in Figure 1. For different values of ρ ∈ [0, 1) and for m = 2, 3, 4, 5, we
simulated m observation ages ti1, . . . , tim from 10–30 years for each of n = 100 individuals. We considered quadratic
fits, i.e., K = 3 and basis function vector x(t) = (1, t, t2)T , and computed rXTX(ρ) as well as rG(ρ) where G represents
variance integrated over the age range (see Appendix A). The left panel shows rG(ρ) values for a very short study of length
0.5 years, i.e., the maximum value of tim − ti1 is 0.5; the right panel assumes a longer study, of length 3 years. (Appendix
E provides details of this simulation study, and a similar figure for longer study periods of up to 15 years.) The relative
efficiency tracks 1 + (m− 1)ρ up to high values of ρ for the short study depicted in the left panel, but is much lower for
the longer study depicted at right. In accordance with (19), rXTX(ρ) tends to m/3 as ρ→ 1, although this is less clearly
seen in the left panel. The results in the left panel are virtually identical for summed versus integrated variance. But as
remark 2 in Appendix A would lead us to expect, for given m, rG(ρ) tends to be somewhat lower for integrated than for
summed variance. This figure is reminiscent of the relative efficiency curve of (13) for designed experiments, although he
considered generalized variance of polynomial parameters rather than aggregate variance.
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To summarize, rXTX(ρ) is bounded by two linear functions of ρ: above by the classical design effect 1 + (m− 1)ρ and
below by 1 + (mk − 1)ρ. For very short studies it is near the upper line for most values of ρ, dropping toward the lower
bound only for ρ near 1. For longer studies it is closer to the lower bound line throughout the range of ρ values.

5. Penalized spline smoothing

For estimating trajectories of brain development, many authors takeK =2, 3 or 4 and fit a linear, quadratic or cubic model,
respectively. But lifespan changes in the brain are often not well represented by polynomials, and moreover polynomial
fits are highly dependent on the age range of the data (14; 15). In view of these limitations of polynomial models, it is
increasingly common for neurodevelopmental trajectories to be estimated by penalized splines (16; 6; 17).

Let x(t) = [b1(t), . . . , bK(t)]T be a basis of K spline functions, such as B-splines, and let P be a positive semidefinite
K ×K matrix such that βTPβ is an index of the “roughness” of f(t) = x(t)Tβ. For example, if P = (pij)1≤i,j≤K =

[
∫
x′′i (t)x′′j (t)dt]1≤i,j≤K then the above quadratic form equals

∫
f ′′(t)2dt. Here K is typically quite high; to avoid an

overfitted estimate f̂(·) = x(·)T β̂, we add a roughness penalty λβTPβ, for some λ > 0, to the criterion used to estimate
β: the sum of squared errors in the cross-sectional case, or the best linear unbiased prediction (BLUP) criterion (16) in
the longitudinal case. We now define summed variance AVλXTX(ρ) for the penalized case, which gives rise to the relative
efficiency

rλXTX(ρ) = AVλXTX(ρ)/AVλXTX(0). (24)

To proceed we must decide how to define the (estimated) variance-covariance matrix of the fixed effects, a somewhat
subtle matter due to the bias in penalized estimation of β (16; 18). Here we employ the posterior variance of (17), which
in our notation is

Var(β|y) = σ2
T

[
XTΣ(ρ)−1X +

λ

1− ρ
P

]−1

, (25)

a direct generalization of (5); this motivates the definition

AVλXTX(ρ) = σ2
T tr

[
XTX

{
XTΣ(ρ)−1X +

λ

1− ρ
P

}−1
]
. (26)

Assuming (10), (18) as before, in Appendix F we show that rλXTX(ρ) as defined by (24), (26) satisfies

lim
ρ→1

rλXTX(ρ) ≤ m̄/DFλ, (27)

where DFλ the effective degrees of freedom of the spline smooth. This limit result resembles (19), but DFλ replaces K and
the equality becomes an inequality.

6. Smoothing with cross-sectional versus longitudinal data in practice

6.1. Relative efficiencies for cortical thickness trajectories

The relative efficiency rλXTX(ρ) assumes a hypothetical scenario in which we have cross-sectional and longitudinal data
sets, each with the exact same design matrix X . Such a pair of data sets would essentially never arise in practice, at least
in a biomedical study for which the ages determining X depend to some extent on random sampling. We can, however,
illustrate some of the above ideas approximately by considering cross-sectional and longitudinal subsamples of a larger
data set.
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Figure 2. Ratios r̃ of posterior variances summed over the design points, for longitudinal versus cross-sectional nonparametric models fitted to the cortical thickness data. These
ratios are approximate versions of rλ

XTX
(ρ) and accordingly are plotted against estimated ρ. Each of the 300 points represents a vertex (brain location). Left: Ratios obtained

with REML-based smoothness selection. Color legend refers to effective df of the cross-sectional model. The putative approximate upper bound 1 + (m̄− 1)ρ, shown as a black
line, is exceeded by a wide margin for many of the points. Right: Ratios obtained with fixed degrees of freedom, as explained in the text.

Our data consist of cortical thickness measurements derived by magnetic resonance imaging in a sample of individuals
age 3–31. As described elsewhere, the images were acquired as part of a longitudinal study of typical brain development
at the U.S. National Institute of Mental Health (21), and cortical thickness was estimated at approximately 80 000
brain locations, known as vertices, using the Montreal Neurological Institute’s CIVET pipeline (22). The participants
were grouped in families, and some were scanned repeatedly. In total, 1181 images were acquired for 615 individuals
belonging to 398 families. We obtained a cross-sectional subsample by randomly selecting one image from each of the
398 families, and a longitudinal subsample (characterized by within-person, but not within-family, dependence) by taking
all observations for 197 of the individuals in the cross-sectional subsample, the total number of images being again 398.
For each of 300 randomly chosen vertices we performed penalized spline smoothing for both subsamples: nonparametric
regression with a 15-dimensional P -spline basis (23) for the cross-sectional subsample, and a nonparametric mixed effects
model with the same spline basis for the longitudinal subsample. We then computed, for each vertex, a real-data analogue
r̃ of rλXTX(ρ); see Appendix G for a derivation of r̃.

Although r̃ is not quite the same as rλXTX(ρ), in view of the upper bound in (23) one might expect that the points (ρ̂, r̃)

for the 300 vertices, where ρ̂ is determined by the variance component estimates for the given longitudinal fit, would
generally lie below the linear function

ρ 7→ 1 + (m̄− 1)ρ (28)

where m̄ = 398/197 is the mean number of observations per participant in the longitudinal subsample. But the left panel
of Figure 2 shows that many of these points lie far above the line. This is mainly due to different degrees of smoothing,
as determined by restricted maximum likelihood (REML) (discrepancy 3 in Appendix G). Specifically, the effective df of
the longitudinal fits tends to be higher than that of the cross-sectional fits, as seen in the left panel of Figure 3. When we
instead fix the smoothing parameter for the cross-sectional model so as to yield the same df as for the longitudinal model,
most of the points lie below, or at least not far above, line (28), as seen in the right panel of Figure 2.
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Figure 3. Left: Effective df of cross-sectional versus longitudinal fits for cortical thickness at each of 300 randomly chosen vertices; the line of identity is displayed for reference.
Center: Spaghetti plot for one of the 300 vertices, along with curve fits based on the longitudinal data (red) and on 10 cross-sectional subsets thereof (green). Right: Same data with
random effect estimates subtracted off (see the text), along with the curve fit based on the longitudinal data as well as±2 standard error bands (dashed curves).

6.2. The role of effective degrees of freedom

The df for a nonparametric mixed-effects model is given by (17) as

tr

[
XTΣ(ρ)−1X

{
XTΣ(ρ)−1X +

λ

1− ρ
P

}−1
]
,

which is very similar to expression (26) for AVλXTX(ρ). Thus high df and high aggregate variance go hand-in-hand. In
terms of our example, then, we would expect the ratios of df for the longitudinal versus the cross-sectional fits, for the 300
vertices, to resemble the corresponding values of r̃; and indeed the correlation between the two is 0.935.

The lesson here may be this: when automatic (e.g., REML-optimal) smoothness selection is used for both cross-sectional
and longitudinal models, as in the left panel of Figure 2, the whole notion of a relative efficiency generalizing (1) is largely
irrelevant. The longitudinal fit may indeed have higher variance, but only as a side effect of higher df—and the higher df
may arise because the longitudinal fit detects features of the mean function that a cross-sectional fit would miss.

A possible example of this phenomenon is displayed in the middle panel of Figure 3, where cortical thickness values are
plotted against age for a vertex for which the longitudinal fit (red curve) had markedly higher df than the cross-sectional.
Specifically, the longitudinal fit (df=3.58) detects a peak around age 10, whereas the cross-sectional fit (df=2.22) indicates
near-linear decline throughout the age range studied. In addition to the cross-sectional sample of size 398 as described
in section 6.1, we estimated the mean function using 10 cross-sectional subsamples of the longitudinal sample, each of
which comprised one randomly sampled observation for each of the 197 individuals. The resulting estimates, shown in
green in the middle panel of Figure 3, all appear quite similar: in each case the mean is found to decrease approximately
linearly, rather than attaining a peak. Thus the monotonic decrease, as opposed to detecting a peak, appears to be a stable
“non-feature” of cross-sectional fits to these data.

Writing the responses as yij = f̂(tij) + ûi + ε̂ij where hats denote estimates from the longitudinal model, we see that
the responses with the estimated (or “predicted”) random effects removed are given by f̂(tij) + ε̂ij . The plot of these
adjusted responses in the right panel of Figure 3 offers stronger evidence of an initial increase to a peak than can be
gleaned from the middle panel. This illustrates the intuitive notion that longitudinal data makes function estimation more
precise by separating within- from between-subject variation. Still, the wide pointwise credible intervals suggest that the
conclusion of an initial increase should be adopted only very tentatively.
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If the peak found only by the longitudinal fit is real, and if discrepancies of this sort between longitudinal and cross-
sectional results are common, then the implications for the study of cortical development may be profound. The general
finding that mean cortical thickness increases to a peak and then declines has been attributed to a process of synaptic
pruning (4). Disparities in the estimated timing of the peak between children with attention deficit/hyperactivity disorder
(ADHD) and controls gave rise to an influential theory that attributes ADHD to a neurodevelopmental delay (5). But a
recent review of the evidence (24) pointed out that many studies find continuous thinning of the cortex from very early
ages, rather than detecting a peak. (It has also been suggested that putative early peaks may be an artifact resulting from
motion effects (25)). Thus the very existence of a peak in mean cortical thickness is a key open question in developmental
neuropsychiatry. Related to this substantive question is the methodological question of whether an early peak is apt to be
detected with longitudinal data but missed with cross-sectional data, as Figure 3 might lead one to suspect. To shed some
light on the latter question, we turn to a small simulation study.

7. A comparative simulation study

To compare the efficacy of cross-sectional versus longitudinal data for detecting a subtle peak of the sort suggested by
Figure 3, we simulated data resembling the cortical thickness data set (see Appendix H for details). The true function,

f(t) = 3.1− 0.02t− 0.001 exp[0.53(15− t)], (29)

is given by the black curve in each of the first two panels of Figure 4. This was chosen to have f(t) ≈ 3.1− 0.02t, i.e.,
essentially linear decline, for t ≥ 15, but a somewhat subtle increase to a peak for younger ages.

Cross-sectional and longitudinal models were fitted to each of 294 data sets. A plot of the respective df for each of
the 294 pairs of models (not shown) is similar to the left panel of Figure 3. For 91 of the model pairs, the longitudinal
df exceeded the cross-sectional df by at least 0.5. The function estimates for a random sample of 30 of these 91 pairs
are shown in the first two panels of Figure 4. Most of the cross-sectional fits are at least approximately linear and miss
the peak. The longitudinal fits fare somewhat better, but still not terribly well, at detecting the peak. The pointwise mean
squared estimation error comparison in the lower panel shows that the longitudinal fits significantly outperform the cross-
sectional ones at the left end of the age range where the peak occurs. This clear superiority of the longitudinal estimates
is observed only for this subset of the data set, i.e., those pairs of models for which the longitudinal fits have markedly
higher df.

These results imply that a subtle feature such as an early peak may indeed be more readily detected with a longitudinal
sample than with a cross-sectional sample of the same size; and that this occurs specifically when a longitudinally-based
smooth has higher df than a cross-sectional one. As discussed in section 6.2, such a higher-df fit is apt to have higher
aggregate variance, but that may be a price worth paying for greater sensitivity to features of the function of interest.

8. Discussion

The “trajectory” f(·) that we have been concerned with estimating is a population mean, say of cortical thickness, as
a function of age. It might be objected that such a mean can be representative of few if any individuals’ trajectories of
change (2; 26; 6), and that the simple random effects structure in (2) does not capture this individual variation. But in
some settings, including most longitudinal brain imaging studies, there are too few observations per subject to estimate
individual change with any precision, and the mean function may be the most useful estimand available (e.g., 5). It would
be of interest to extend our results to more complex scenarios, including random slopes, multiple levels of nesting and
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Figure 4. Test function (thick black curve) along with 30 estimates thereof based on cross-sectional data (top panel) and longitudinal data (middle panel), selected from among 91
simulation replicates in which the longitudinal fit markedly higher df. The bottom panel displays pointwise differences in mean squared estimation error for these 91 replicates,
along with±2 standard error bars for the difference.

non-symmetric error distributions. In addition, ongoing work is examining the use of functional principal component
analysis to better characterize bona fide individual trajectories.

Whereas our study of relative efficiency has taken the design matrix X (and Z) as given and considered AVG(ρ) as
a function of ρ, the field of optimal design is concerned with the choice of X . Depending on the choice of G and of
nomenclature, AVG(0) might be the criterion for an I-, V - or IV -optimal (12) or Q-optimal (27) cross-sectional design;
see (28) and (29) for recent contributions to optimal design for functional data. In neuroimaging and other biomedical
studies of growth trajectories, we generally cannot “optimally design” the participants’ ages. But one lesson for study
planning that emerges from our work is that the comparative efficiency of a longitudinal design may be improved by
increasing the duration of follow-up (see Figure 1). In practice, of course, relative efficiency is only one of many factors
to consider in designing a study. For instance, a longitudinal design often has the advantage that follow-up observations
are much less costly than initial enrollment of participants; on the other hand, in longitudinal neuroimaging studies, it can
be very challenging to ensure that a given brain region is truly the same region across repeated observations (6).

The relative efficiency rXTX(ρ), a function-estimation analogue of the design effect (1), can be extended to
nonparametric regression via penalized smoothing (section 5). But the very notion of relative efficiency presupposes a
fixed model dimension K, whereas with penalized smoothing the effective model dimension depends on the smoothing
parameter and may differ for cross-sectional versus longitudinal models. We have seen that a longitudinally-based
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smooth may have higher effective dimension than a comparable fit based on cross-sectional data. When this occurs,
the longitudinal function estimate may have higher aggregate variance, but this disadvantage may be offset by a more
accurate fit. In sum, more work is needed to understand when and why a longitudinal design leads to improved accuracy
in function estimation.
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Appendix A. A class of aggregate variances

We first show that expression (6) for AVXTX(ρ) is equal to (7):

n∑
i=1

mi∑
j=1

Var[f̂(tij)] =

n∑
i=1

mi∑
j=1

Var[x(tij)
T β̂]

=

n∑
i=1

mi∑
j=1

x(tij)
TVar(β̂)x(tij)

= σ2
T

n∑
i=1

mi∑
j=1

x(tij)
T {XTΣ(ρ)−1X}−1x(tij) (by (5))

= σ2
T tr

 n∑
i=1

mi∑
j=1

x(tij)x(tij)
T {XTΣ(ρ)−1X}−1


= σ2

T tr[XTX{XTΣ(ρ)−1X}−1],

as required.
To extend our development to more general aggregate variance measures, observe that the matrix XTX in (7) is a

Gram matrix G = [〈xk, x`〉]1≤k,`≤K , where 〈·, ·〉 is the inner product 〈xk, x`〉 =
∑n

i=1

∑mi
j=1 xk(tij)x`(tij), i.e., N times

the L2 inner product with respect to the empirical distribution of the tij’s. Other inner products defined for the basis
functions x1, . . . , xK would yield other aggregate variances of the general form (8). In particular, if 〈·, ·〉 denotes L2 inner
product with respect to Lebesgue measure on T , then by a similar argument to the above, AVG(ρ) =

∫
T Varf̂(t)dt, the

integrated variance. Focusing on a particular age range of interest, such as around a putative peak (as in sections 6 and 7),
can be accommodated by changing the domain of integration. Alternatively, if 〈f, g〉 is the L2 inner product with respect
to Lebesgue measure of the derivatives f ′, g′, then AVG(ρ) =

∫
T Varf̂ ′(t)dt where f̂ ′(t) = d

dt f̂(t). The inner product in
this case is degenerate in the sense that 〈f, f〉 = 0 does not imply f = 0.

Two general remarks are in order.

1. Clearly AVG(ρ) depends not only onG but also onX and (via Σ(ρ)) on Z. But to keep the notation simple, we take
X and Z as given, and the notation reflects only the dependence on G and ρ.

2. The following heuristic argument suggests that for most other Gram matricesG, rG(ρ) ≤ rXTX(ρ). We can assume
without loss of generality that G is scaled so that det[G(XTX)−1] = 1. Given positive definite K ×K matrices
A,B, the quantity

Dld(A,B) = tr(AB−1)− log det(AB−1)−K,
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sometimes called the LogDet divergence, belongs to the class of non-negative dissimilarity measures known as
Bregman divergences (30). We have AVG(0) = σ2

T [K +Dld(G,X
TX)], and thus AVG(0) attains its minimal value

σ2
TK when G = XTX . Consequently, taking G = XTX will tend to make the ratio rG(ρ) = AVG(ρ)/AVG(0)

relatively high compared to other choices for G, as illustrated in section 4.2.

Appendix B. Proof of (15)

By (7), (11) and (12),

AVXTX(ρ) = σ2
T tr[W TW {W TUTΣ(ρ)−1UW }−1]

= σ2
T tr[W {W TUTΣ(ρ)−1UW }−1W T ]

= σ2
T tr[{UTΣ(ρ)−1U}−1]. (A.1)

By (4), (14) and the Sherman-Morrison-Woodbury identity, for 0 ≤ ρ < 1,

Σ(ρ)−1 = (1− ρ)−1
[
IN −ZΞ(ρ)ZT

]
.

Substituting into (A.1) leads to

AVXTX(ρ) = σ2
T (1− ρ)tr[{IK −UTZΞ(ρ)ZTU}−1]

= σ2
T (1− ρ)

K∑
k=1

1

1− γk(ρ)
.

Appendix C. Proof of (19)

In what follows, let v1(ρ), . . . ,vK(ρ) be orthonormal eigenvectors of A(ρ) (13) corresponding to eigenvalues γ1(ρ) ≥
. . . ≥ γK(ρ) respectively. To derive the limit (19) we require the following lemma.

Lemma 1 Assume (10) and (18). Then

(a) γ1(1) = 1, and this eigenvalue is attained by the eigenvector

v1(1) = N−1/2UT 1N ; (A.2)

(b) for ρ ∈ [0, 1), γ2(ρ) ≤ γ2(1) < 1;

(c) γ1(·) is continuously differentiable at ρ = 1, and γ′1(1) = 1/m̄ where m̄ = N/n, i.e., the mean of m1, . . . ,mn.

Proof of Lemma 1. For (a), first note that Ξ(1) = Diag{m−1
1 , . . . ,m−1

n } = (ZTZ)−1, soA(1) = UTZ(ZTZ)−1ZTU

and thus
γ1(1) = max

‖v‖=1
vTUTZ(ZTZ)−1ZTUv ≤ max

‖w‖=1
wTZ(ZTZ)−1ZTw = 1. (A.3)

To see that this upper bound is attained by v1(1) = N−1/2UT 1N , observe that (18) implies

col(U) ∩ col(Z) = {c1N : c ∈ R}. (A.4)

Thus
A(1)(UT 1N ) = UTZ(ZTZ)−1ZTUUT 1N = UTZ(ZTZ)−1ZT 1N = UT 1N . (A.5)
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For (b), if γ2(1) = 1 then

1 = v2(1)TA(1)v2(1) = [Uv2(1)]TZ(ZTZ)−1ZT [Uv2(1)].

Since ‖Uv2(1)‖ = 1, the above impliesUv2(1) ∈ col(Z). By (A.4) we must haveUv2(1) = ±N−1/21N ; premultiplying
by UT gives v2(1) = ±v1(1), a contradiction. It follows that γ2(1) < 1.

Let M(ρ) be the K × (K − 2) matrix with columns v3(ρ), . . . ,vK(ρ). By Theorem 3.17 of (31),

γ2(ρ) = min
‖w‖=1,

M(ρ)Tw=0

wTA(ρ)w

≤ min
‖w‖=1,

M(ρ)Tw=0

wTA(1)w (A.6)

since A(1)−A(ρ) is positive definite for ρ ∈ [0, 1). By the Courant-Fischer theorem (e.g., Theorem 3.18 of (31)),

γ2(1) = max
C∈RK×(K−2):
CTC=IK−2

min
‖w‖=1,

CTw=0

wTA(1)w ≥ min
‖w‖=1,

M(ρ)Tw=0

wTA(1)w.

Combining this with (A.6) gives γ2(ρ) ≤ γ2(1) < 1.
For (c), the fact that 1 is a simple eigenvalue of A(1) allows us to apply the implicit function theorem to deduce that

γ(·) is continuously differentiable at 1 (32; 33). In particular, using (A.2) and letting A′(·),Ξ′(·) denote elementwise
differentiation with respect to ρ,

γ′1(1) = v1(1)TA′(1)v1(1)

= N−11TNU [UTZΞ′(1)ZTU ]UT 1N
= N−11TNZΞ′(1)ZT 1N . (A.7)

But ZT 1N = (m1, . . . ,mn)T and

Ξ′(1) = Diag
{

1

[1 + (m1 − 1)ρ]2
, . . . ,

1

[1 + (mn − 1)ρ]2

}∣∣∣∣∣
ρ=1

= Diag{m−2
1 , . . . ,m−2

n },

so (A.7) leads to γ′1(1) = n/N = 1/m̄. 2

We can now prove (19) by rewriting (15) as AVXTX(ρ) = σ2
T

∑K
k=1

1−ρ
1−γk(ρ) . Lemma 1(b) then implies that the k ≥ 2

summands vanish as ρ→ 1. Combining this with l’Hôpital’s rule and Lemma 1(c) yields

lim
ρ→1

AVXTX(ρ) = σ2
T lim
ρ→1

1− ρ
1− γ1(ρ)

=
σ2
T

limρ→1 γ′1(ρ)
=

σ2
T

γ′1(1)
= σ2

T m̄.

Dividing by (16) gives (19).

Appendix D. Proofs of the claims in section 4.1

When m is fixed as assumed in section 4, UTZZTU = mUTZ(ZTZ)−1ZTU . Arguing as in (A.3), the largest
eigenvalue ζ1 of this matrix satisfies

ζ1 ≤ m. (A.8)

This, combined with the fact that the adjustment factor has derivative a′(ρ) = 1
K

∑K
k=1

ζk−m
[1+(m−ζk−1)ρ]2 , establishes the

claim that a(·) is a decreasing function of ρ.
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When (21) holds, ζ1 = m, since the bound (A.8) is attained with eigenvectorUT 1N as in (A.5). Since a(ρ) is increasing
with respect to ζk for k = 1, . . . ,K, its highest possible value is attained when

ζ1 = . . . = ζK = m; (A.9)

jn this case, by (20), the upper bounds in (22) and (23) are attained.
In particular, in special case 1 of section 4, we can write X = S ⊗ 1m where S = [xk(ti)]1≤i≤n,1≤k≤K and Z =

In ⊗ 1m. Given a singular value decomposition S = U∗D∗V
T
∗ , we can then take U = U∗ ⊗ (m−1/21m), so

UTZZTU = [UT
∗ ⊗ (m−1/21Tm)](In ⊗ 1m)(In ⊗ 1Tm)[U∗ ⊗ (m−1/21m)]

= mUT
∗U∗

= mIK .

Thus (A.9) holds, and the upper bound rXTX(ρ) = 1 + (m− 1)ρ is attained as claimed.
At the opposite extreme, when ζ2 = . . . = ζk = 0, the adjustment factor attains its lowest possible value, given by the

left-hand expression in (22). Multiplying by 1 + (m− 1)ρ, followed by some algebra, yields the lower bound for rXTX(ρ)

given in (23).

Appendix E. Details of the simulation study in section 4.2, and results for longer study periods

For m = 2, 3, 4, 5, we simulated 100m× 3 design matrices X1, . . . ,X299 with rows of the form (1, tij , t
2
ij)

T . The ages
tij for each design matrix were generated by (i) simulating age in years at study entry (ti1) for 100 participants from
the uniform distribution on [10, 30− L], where L is the study length in years (0.5 or 3), and (ii) obtaining follow-up
times ti2, . . . , tim by drawing ti2 − ti1, . . . , tim − ti1 from the uniform distribution on [0, L]. Then, for a = 1, . . . , 299,
we computed rG(ρ) with X = Xa and ρ = a

300 , and these are plotted against ρ in Figure 1. Since the simulated ages
are marginally approximately uniform on [10, 30], G corresponding to integration over [10, 30] is roughly proportional to
XTX . This helps explain why the differences between rG(ρ) and rXTX(ρ) in both panels of the figure are minor. For age
distributions that are farther from uniform, larger differences might be observed.

Figure A.1 shows that for longer study periods of 5, 10 and 15 years, the differences between relative efficiency based
on summed versus integrated variance are more pronounced. Continuing the trend observed in Figure 1, relative efficiency
decreases as study length increases. For a 15-year study, rXTX(ρ) is seen to be a nearly linear function lying not far above
the lower bound 1 + (m/K − 1)ρ given by (23).

Appendix F. Proof of (27)

Taking ρ = 0 in (26) yields AVλXTX(0) = σ2
T tr[XTX(XTX + λP )−1]. But the trace in this expression equals that of the

smoother or “hat” matrix X(XTX + λP )−1XT for the cross-sectional fit, and that trace is a standard way to define the
effective degrees of freedom DFλ of the fit (19; 20), so

AVλXTX(0) = σ2
T DFλ. (A.10)

By (26), AVλXTX(ρ) ≤ AVXTX(ρ), and by (A.8), the latter quantity converges to σ2
T m̄ as ρ→ 1. Dividing by (A.10) gives

(27).

Appendix G. Approximate relative efficiency for real data

As noted at the beginning of section 6, rλXTX(ρ) presupposes a hypothetical design matrix X occurring in both cross-
sectional and longitudinal scenarios. In our case we have, for each vertex, distinct design matrices Xc and X` for the
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Figure A.1. Relative efficiency rG(ρ) as in Figure 1, but for study periods of 5 years (left), 10 years (middle) and 15 years (right).

cross-sectional and longitudinal samples, respectively. These are not identical, but they share 197 observations, so we
expect that XT

cXc ≈XT
` X` and we take Ḡ = 1

2 (XT
cXc +XT

` X`) as a surrogate for XTX . We then define, for each
vertex, an approximate relative efficiency

r̃ =
tr(ḠV `

p)

tr(ḠV c
p)
. (A.11)

Here V `
p is the posterior variance-covariance matrix for the longitudinal model, given by (25) whereX = X` and model-

based estimates are used for ρ and λ; and V c
p is the variance-covariance matrix for the cross-sectional model, which is

likewise derived from (25) with ρ = 0. These variance-covariance matrices are included in the output from the packages
mgcv (34; 17) and gamm4 (35) for R (36), which were used to fit the cross-sectional and longitudinal models respectively.
Ratio (A.11) is a real-data analogue of rλXTX(ρ), but differs from it in several respects:

1. We use Ḡ instead of the hypothetical matrix XTX appearing in both the numerator and denominator of the ratio
(24) defining rλXTX(ρ).

2. In computing (A.11), the total variance σ2
T on which the posterior variance depends is estimated separately for the

longitudinal and cross-sectional subsamples, and thus does not cancel as in rλXTX(ρ).

3. The smoothing parameter λ is also estimated separately for the two subsamples, using REML (37; 34).

Appendix H. Details of the simulation study in section 7

The real data analysis included overlapping cross-sectional and longitudinal data sets, each consisting of 300 vertices
from each of 398 brain images. For the simulation study we used the ages tij from the longitudinal data set, excluding
3 observations with age< 5 and 1 observation with age> 30, for a total of 394 ages for 196 individuals. Each set of
responses was generated from the model yij = f(tij) + ui + εij with f given by (29) and ui, εij drawn independently
from the N(0, σ̂2

u) and N(0, σ̂2
ε) distributions, respectively, where σ̂2

u, σ̂
2
ε are the estimates for one of the vertices. This

was repeated for 294 of the 300 vertices studied in section 6.1; the other 6 were excluded due to unusually high σ̂2
ε

values. For each of the 294 sets of responses, we fitted a “cross-sectional” nonparametric regression model treating the
394 observations as independent, and a “longitudinal” nonparametric model with random subject effects. As in section 6.1,
the models were implemented with the mgcv and gamm4 packages using a 15-dimensional P -spline basis.
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