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Web Appendix A: Matrix Expressions for the Pseudo-F Statistic

As in McArdle and Anderson (2001), we begin by taking as given an n × p matrix Y of p-

dimensional outcomes, whose columns have mean zero. In the slightly modified setup of our

paper, we are also given projection matrices H1, H2 and H determining full and reduced

models. The univariate F statistic for the ith component is

(‖ŷi‖2 − ‖ŷi.1‖2)/m2

‖ε̂i‖2/(n−m)
, (A.1)

where ŷi and ŷi.1 are the vectors of fitted values under the full and reduced model for the

ith component, respectively, and ε̂i denotes the residuals from the full model.

The pseudo-F statistic is then the sum, over i, of the numerators in (A.1), divided by the

sum of the denominators, which equals[
tr(Ŷ

T
Ŷ )− tr(Ŷ

T

1 Ŷ 1)
]
/m2

tr(R̂
T
R̂)/(n−m)

=

[
tr(Ŷ Ŷ

T
)− tr(Ŷ 1Ŷ

T

1 )
]
/m2

tr(R̂R̂
T
)/(n−m)

, (A.2)

where

Ŷ = HY , Ŷ 1 = H1Y , R̂ = (I −H)Y , (A.3)

and where the equality in (A.2) follows from the identity tr(BC) = tr(CB). Substituting

(A.3) into (A.2), and using the just-cited identity and the idempotence of H , H1, and I−H ,

yields
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tr
[
(H −H1)Y Y T

]
/m2

tr
[
(I −H)Y Y T

]
/(n−m)

=
tr(H2Y Y T )/m2

tr
[
(I −H)Y Y T

]
/(n−m)

. (A.4)

As McArdle and Anderson (2001) note, Y Y T is equal to the matrix G defined at the

beginning of Section 3.2 of our paper, whence (A.4) equals the pseudo-F statistic

tr(H2G)/m2

tr[(I −H)G]/(n−m)
. (A.5)

The permuted-data pseudo-F statistic is obtained by replacing G with Gπ = EπGET
π

in (A.5), where Eπ is a permutation matrix as in the paper. In some settings, however,

permuting the raw data is not the optimal way to perform a permutation test. Testing

interactions between two factors, in particular, has been much discussed in the permutation

test literature. Anderson and ter Braak (2003) recommend permuting residuals of the reduced

model (Freedman and Lane, 1983). This means, in terms of our setup, that Ŷ 1 denotes fitted

values with the interaction excluded, and that we refit the model with pseudo-data

Ŷ π = Ŷ 1 + Eπ(Y − Ŷ 1).

This formulation presupposes an outcome matrix Y . When G is not positive definite, the

distance matrix does not correspond to Euclidean distances among rows of such a matrix,

so there are no actual residuals to permute. However, one can define a pseudo-F statistic for

“virtual” permutation of residuals, by adapting McArdle and Anderson’s (2001) development

as follows:

(1) substitute Ŷ π for Y in (A.4) and write the resulting statistic as

tr(H2Ŷ πŶ
T

π H2)/m2

tr
[
(I −H)Ŷ πŶ

T

π (I −H)
]
/(n−m)

; (A.6)

(2) observe that

H2Ŷ π = H2H1Y + H2Eπ(I −H1)Y = H2Eπ(I −H1)Y and

(I −H)Ŷ π = (I −H) [H1 + Eπ(I −H1)] Y = (I −H)Eπ(I −H1)Y ,

where we have used the equalities H2H1 = 0 and HH1Y = H1Y ;
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(3) substitute the above into (A.6); and

(4) replace Y Y T with G as above.

These steps result in the permuted-residuals pseudo-F statistic

tr
[
H2Eπ(I −H1)G(I −H1)E

T
π

]
/m2

tr
[
(I −H)Eπ(I −H1)G(I −H1)E

T
π

]
/(n−m)

.

We remark that, as one would expect, this expression reduces to that for the permuted-data

pseudo-F statistic in the m1 = 0 case.

Web Appendix B: Proofs

We shall require the following lemma, which provides two alternative forms for the pseudo-F

statistic of equations (5) and (6).

Lemma 1:
m2

n−m
F ∗ =

tr(H2A)

tr(−HA)
=

1
2n

∑n
i=1

∑n
j=1 d2

ij − tr(H1A)

tr(−HA)
− 1. (A.7)

If m1 = 0 then

m− 1

n−m
F ∗ =

1
2n

∑n
i=1

∑n
j=1 d2

ij

tr(−HA)
− 1. (A.8)

Proof. It is easy to show that the Hk’s, as well as I −H , are all idempotent and mutually

orthogonal. By repeated use of these properties, and of the identity tr(BC) = tr(CB), we

can infer from (5) that

m2

n−m
F ∗ =

tr(H2A)

tr[(I −H)A]
.

Since tr(A) = 0, this quantity equals the second expression in (A.7). The third expression

in (A.7) equals the second since

tr(H2A) = tr[(H −H0 −H1)A] = tr(HA) +
1

2n

n∑
i=1

n∑
j=1

d2
ij − tr(H1A). (A.9)

(A.8) follows easily from (A.7).

Proof of Theorem 1

Let F ∗
π denote the value of F ∗ for the permuted outcomes, i.e.,
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F ∗
π =

tr(H2GπH2)/m2

tr[(I −H)Gπ(I −H)]/(n−m).
(A.10)

To prove the equivalence of F ∗ and tr(−HA) it suffices to show that, given (11) and (12),

tr(−HAπ) is a decreasing function of F ∗
π . But this follows since, by (A.7),

m2

n−m
F ∗

π + 1 =
1
2n

∑n
i=1

∑n
j=1 d2

π(i)π(j) − tr(H1Aπ)

tr(−HAπ)
=

1
2n

∑n
i=1

∑n
j=1 d2

ij −K

tr(−HAπ)
.

Proof of Proposition 1

Given that m1 = 0, (11) holds automatically (with K = 0), so it suffices to prove (12). In

case (i), for any π ∈ Π, tr(−HAπ) = 1
2

∑n
i=1

∑n
j=1 hijd

2
π(i)π(j) > 0. In case (ii), for any π, Gπ

is positive semidefinite by (10) and the positive semidefiniteness of G. Since Gπ is positive

semidefinite, so are the two matrices whose traces appear in the numerator and denominator

in (A.10). Thus each of these matrices has a nonnegative trace. It follows that F ∗
π > 0; by

(A.8) this implies that again tr(−HAπ) > 0. We conclude that Theorem 1 applies in either

of the two cases.

Proof of Proposition 3

We shall (1) verify the conditions of Theorem 1, and infer that the pseudo-F statistic is

equivalent to tr(−H2A); then (2) show that tr(−H2A) is equivalent to the MRBP statistic.

Step 1. We first prove (11). By (14),

tr(H1A) =
1

2bg

bg∑
i=1

bg∑
j=1

d2
ij −

1

2g

bg∑
i=1

∑
j∼bi

d2
ij. (A.11)

For the randomized block design, only within-block permutations are permitted. Expression

(A.11) is invariant to such permutations, and is less than 1
2bg

∑bg
i=1

∑bg
j=1 d2

ij. Thus (11) holds.

We next prove (12). Using (16) and the triangle inequality, we obtain

2tr(−HAπ) =
1

g

bg∑
i=1

∑
π(j)∼gπ(i)

d2
π(i)π(j) +

1

b

bg∑
i=1

∑
j∼bi

d2
π(i)π(j) −

1

bg

bg∑
i=1

bg∑
j=1

d2
π(i)π(j)

>
1

g

bg∑
i=1

∑
π(j)∼gπ(i)

d2
π(i)π(j) +

1

b

bg∑
i=1

∑
j∼bi

d2
π(i)π(j) (A.12)
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− 1

bg

bg∑
i=1

bg∑
j=1

d2
π(i)kij,π

− 1

bg

bg∑
i=1

bg∑
j=1

d2
kij,ππ(j),

where kij,π is the unique observation belonging to the same group as observation π(i) and

the same block as observation π(j). For given i and π, the bg values of kij,π comprise b copies

of π(j) for each j such that π(j) ∼g π(i). Thus the third term of (A.12) cancels with the

first. Similarly the fourth term cancels with the second. Hence (12) holds. By Theorem 1, the

pseudo-F statistic is equivalent to tr(−HA), which is in turn equivalent to tr(−H2A), since

by (A.9) and (11), these two expressions differ by a quantity that is permutation-invariant.

Step 2. By (15), 2tr(−H2A) = 1
b

∑bg
i=1

∑
j∼gi d

2
ij − 1

bg

∑bg
i=1

∑bg
j=1 d2

ij. The second term on

the right side is permutation-invariant, so tr(−H2A) is equivalent to the first term, which

is proportional to the MRBP statistic (4) with dissimilarity ∆ij = d2
ij.

Combining steps 1 and 2, we conclude that the pseudo-F and MRBP tests are equivalent.

Web Appendix C:

A non-metric squared distance for which the conclusion of Proposition 3 does not hold

Consider a randomized block design with two groups and two blocks, with distance matrix

D =



0 1 1 2

1 0 2 1

1 2 0 1

2 1 1 0


, where block 1 consists of the first two observations and group 1

consists of observations 1 and 3. This distance function is a metric but its square is not.

There exist within-block permutations such that both the pseudo-F statistic and the MRBP

statistic (based on squared distances as in Proposition 3) are larger for the permuted data

than for the real data. In other words, applying such a permutation results in a pseudo-F

statistic that is nominally less consistent with the null, but an MRBP statistic that is more

consistent. We say “nominally” because in this (admittedly artificial) instance the pseudo-
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F statistic is negative, and hence difficult to interpret. At any rate the two tests are not

equivalent for the given distances.
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