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Here we try to find “the best joints for carving up” the phenomenon of accelerated-motion so as to obtain (i)
the least need for extended-networks of synchronized-clocks as well as (ii) the greatest frame-independence.
The acceleration four-vector’s invariant magnitude, and a number of other quantities from the traveler’s
point of view, show promise for broadening student understanding (and perhaps even practical application)
of accelerated motion perspectives at both low and high speeds.
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I. INTRODUCTION

Relativists have long expressed unhappiness with
coordinate-acceleration and coordinate-force (for good
reason1,2), but have also pointed out that general-
relativity makes a case for the local-validity of Newton’s
laws in all frames3–5 provided that we consider geomet-
ric (frame-dependent or “connection-coefficient”) forces
as well as proper-forces whenever we find ourselves in
a non-“free-float” trajectory6. In this paper we explore
an approach to accelerated motion designed to be: (i)
the most frame-independent, and (ii) the least in need
of synchronized-clock arrays. These latter might be dif-
ficult to come by on accelerated platforms and in curved
spacetime.

The first proper-time derivative of an accelerated trav-
eler’s 4-vector position has lightspeed c as its invari-
ant magnitude. Here we simply define simultaneity us-
ing bookkeeper coordinates and then examine the sec-
ond proper-time derivative of position, as seen from the
proper reference-frame3 of that accelerated traveler.

In the process we show: (a) that the distinction be-
tween proper and geometric forces is already quite useful
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FIG. 1. Two views of proper (red) and geometric (dark blue)
forces on leaving a stop sign.

for introductory physics, (b) that via the metric equa-
tion a lot can be done with only a single extended map-
frame of yardsticks and synchronized clocks, and (c) that
the traveler’s view of anyspeed-acceleration is less frame-
variant than the map perspective. We also exploit the
frame-invariance of proper-force in an empirical observa-
tion exercise on the electrostatic origin of magnetism,
which provides some visceral experience with length-
contraction at the same time.

II. FRAME DEPENDENCE & SYNCHRONY

The value of frame-independence in the modeling of
relativistic-motion and curved-spacetime goes without
saying. The frame-invariance of lightspeed c (the mag-
nitude of the velocity 4-vector Uλ ≡ dXλ/dτ) has
been central to our understanding of spacetime from
the beginning7. Proper-time (the magnitude of the dis-
placement 4-vector Xλ) is finding increasing use by
introductory text authors as we speak.

The Lorentz-transform view of proper-time, of course,
is that it is time-passing on the synchronized clocks of a
tangent but co-moving free-float-frame in flat spacetime.
The metric equation’s view of proper-time is simpler but
more general, i.e. as a quantity measured on a single
clock under any conditions i.e. accelerated or not, in
curved space-time or not.

Proper-time is frame-invariant in the sense that its
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TABLE I. Accelerated-motion definitions in flat (3+1)D spacetime. Note that acceleration/force magnitudes are spacelike,
while the others are timelike along a traveler’s worldline, and that we’ve defined x and y as spatial coordinates || and ⊥ to the
direction of proper-acceleration 3-vector ~α.

4-vector magnitude time-components || to spatial 3-vector ~α ⊥ to spatial 3-vector ~α

power/force ΣFo ≡ dpo
dτ

P
c

= ( 1
c
) dE
dτ

F|| ≡
dp||
dτ

F⊥ ≡ dp⊥
dτ

acceleration α = ΣFo
m

c dγ
dτ

= P
mc

= γ P
mc

dw||
dτ

=
F||
m

= γ
f||
m

dw⊥
dτ

= F⊥
m

= γ f⊥
m

energy/momentum mc E
c

= γmc p|| = mw|| p⊥ = mw⊥

velocity c cγ ≡ c dt
dτ

= E
mc

w|| ≡ dx
dτ

=
p||
dτ

= γv|| w⊥ ≡ dx
dτ

= p⊥
dτ

= γv⊥

coordinate cτ ct x y

TABLE II. Relationship between variables: Here τ is traveler-time elapsed from “turnaround” (when γ ≡ γo) for as long as

proper acceleration ~α doesn’t change, and γ± ≡
√

(γo ± 1)/2. The right arrow → denotes the non-relativistic limit.

4-vector invariant time-components/c || to spatial 3-vector ~α ⊥ to spatial 3-vector ~α

accel. α dγ
dτ

= α
c
γ+ sinh

[
ατ
cγ+

]
→
(
α
c

)2
τ

dw||
dτ

= α cosh
[
ατ
cγ+

]
→ α dw⊥

dτ
= αγ− sinh

[
ατ
cγ+

]
→ 0

velocity c γ = γ2
− + γ2

+ cosh
[
ατ
cγ+

]
→ 1 w|| = cγ+ sinh

[
ατ
cγ+

]
→ ατ w⊥ = c

√
2γ− cosh

[
ατ

2cγ+

]2
→ v⊥

coord. τ t = γ2
−τ + γ

3/2
+

c
α

sinh
[
ατ
cγ+

]
→ τ x = γ2

+
2c2

α
sinh

[
ατ

2cγ+

]2
→ 1

2
ατ2 y = γ+γ−cτ + γ+

c2

2α
sinh

[
ατ
cγ+

]
→ v⊥τ

value may be agreed upon using any general-relativistic
book-keeper coordinates that we choose. These book-
keeper coordinates are alone used to define extended si-
multaneity (i.e. the global place and time of events),
while the frame-invariance of proper-time drastically im-
proves the transformation-properties of quantities differ-
entiated with respect to it. The proper-velocity 3-vector
~w ≡ d~x/dτ (which unlike coordinate velocity ~v ≡ d~x/dt
adds vectorially with appropriate rescaling of the “out-of-
frame” component) and the proper-acceleration 3-vector
(discussed here) are cases in point.

The topic of this paper is in particular the frame-
invariant magnitude of the acceleration 4-vector, in
standard notation3:

Aλ :=
DUλ

dτ
=
dUλ

dτ
+ ΓλµνU

µUν (1)

and uses for this vector’s components (as power/force)
when they are multiplied by frame-invariant rest-mass
m. Here free-float or geodesic trajectories have Aλ = 0,
so that we can think of coordinate acceleration dUλ/dτ
as a sum of proper and geometric terms, the latter
depending on local space-time curvature through the
64-component affine-connection Γλµν which gives rise to
“apparent” forces in accelerated coordinate-systems and
curved space-time. As usual greek indices run from
0 (time-component) to 3 (space-components) and obey
the Einstein summation convention when repeated in a
product. Because this proper-acceleration four-vector
becomes purely space-like in a frame instantaneously-
comoving with our traveler, its physical interpretation is
simply the proper-force/mass felt to be “pressing on” our
traveler, as well as the 3-vector proper-acceleration8–10 ~α
seen by free-float observers in the co-moving frame.

In addition to a preference here for frame-invariance,
the concept of simultaneity is a messy one in acceler-
ated frames (e.g. using radar-time methods11) as well

as in curved spacetime. Hence we take a “metric-first”
approach to kinematics here by choosing a single “book-
keeper” coordinate-system in terms of which both “map-
time” t and “map-position” ~x are measured. Siimultane-
ity will be defined in terms of synchronized (but not al-
ways local e.g. in the case of Schwarzschild “far-time”)
clocks in this book-keeper frame.

In addition purely space-like vectors, along with frame-
invariants, may be described as “synchrony-free” to use
a word employed by William Shurcliff when discussing
proper-velocity12,13 ~w ≡ d~x/dτ = ~p/m. These are quan-
tities whose operational-definition does not require an ex-
tended network of synchronized-clocks, something of lim-
ited availability around gravitational-objects (like earth),
and impossible to find on platforms (like spaceships) un-
dergoing accelerated motion. The time-like energy of a
moving object via its dependence on the Lorentz-factor
γ ≡ dt/dτ is (like “mixed objects” such as coordinate-
velocity ~v ≡ d~x/dt) not synchrony-free, because it re-
quires map-time t data from clocks at multiple locations.

The “traveler’s point of view” that we argue offers the
most direct way to communicate about an accelerated
traveler is the frame that Misner, Thorne and Wheeler3

refer to as “the proper reference frame of an accelerated
traveler”. One can always convert these to expressions
written in terms of bookkeeper variables like map-time
t and coordinate-velocity ~v, but we show here that the
algorithmically-simplest way to describe the effects of the
local space-time metric on motion (following the critera
above) involves the parameterization described here.

III. LOW SPEED APPLICATIONS

For applications at low speed, telling students about
proper-forces as distinct from geometric-forces (that act
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on every ounce of a object’s being) is a good start in
preparing them for the value of Newton’s laws in both
free-float and accelerated frames. The simple example of
a car leaving a stop-sign is illustrated by the animation14

screen capture in Fig. 1, which shows the red proper-
force seen by observers in both frames as pressing on the
driver’s back while the car accelerates. This of course is
canceled only in the car frame by a geometric force which
(like gravity) acts on every ounce of the driver’s being.

We also recommend telling them that time itself is de-
pendent on a given clock’s location and state of motion,
with the “speed of map-time” relative to a traveler’s clock
(i.e. dt/dτ) an important clue to the traveling-clock’s
energy (potential and/or kinetic). These things may be
done at the outset, followed by the assertion that intro-
ductory physics texts by default refer to map-time (t)
since traveler-time (τ) differences at low speed are neg-
ligible, and they traditionally treat gravity as another
proper-force even though we now know that it too is a
geometric-force, caused not by a traveler’s motion but
by gravity’s curvature of space-time around massive ob-
jects. Traditional treatments often further focus only
on application of Newton’s laws from “inertial-frame”
perspectives, in which case geometric-forces (other than
gravity) can be ignored. With these minor “metric-
first” changes to the introduction, traditional introduc-
tory physics treatments remain perfectly self-consistent
and intact.

IV. BRINGING IN THE METRIC

In order for teachers to feel grounded when address-
ing introductory issues in context of an intimidating
Riemann-geometry framework, it is crucial that the con-
sequences of their assumptions be easy to for them to
verify. Thankfully the metric-equation, unlike Lorentz
transforms, requires only one bookkeeper frame whose
time-variable may (or may not) be possible to asso-
ciate with time’s passage on clocks synchronized across a
meaningful region of spacetime.

Our first step, namely choosing the metric parameter-
ization to describe a specific problem, is especially im-
portant because it defines both the meaning of measur-
ments and our (perhaps implicit) definition of simultane-
ity. This is good news for introductory teachers, since
its bad enough to be talking about different times on dif-
ferent clocks, without having to also be juggling multiple
definitions of simultaneity.

For general relativity applications in a world where
time is measured on watches, and distances are measured
with yardsticks, whenever possible we will seek met-
ric parameterizations whose time-variable corresponds to
clocks that can be synchronized. We therefore follow
Newton in flat-space settings by choosing a set of free-
float (e.g. inertial or un-accelerated) frame variables like
coordinate-time t and coordinate-position ~x to describe
accelerated motion.

As teachers, once we have a metric and a corre-
sponding definition of what simultaneity means, we are
back on familiar territory. The caveat is that frame-
independence may be attributed only to four-vector mag-
nitudes, and no longer to time-intervals, distances, or
rates of momentum-change. For the flat-space (1+1)D
case, for instance, the proper time-interval δτ and deriva-
tives with respect to τ yield the following frame-invariant
magnitudes:

(cδτ)2 = (cδt)2 − (δx)2, (2)

with the lightspeed constant c

c2 =

(
c
δt

δτ

)2

−
(
δx

δτ

)2

, (3)

and proper-acceleration α:

−α2 =

(
c
δ2t

δτ2

)2

−
(
δ2x

δτ2

)2

. (4)

Given this, the challenge of finding the integrals of the
motion e.g. for constant acceleration is much like that
challenge of showing that x = 1

2at
2 via the same deriva-

tive relations, but using Newton’s assumptions that

coordinate-intervals and coordinate-acceleration a ≡ δ2x
δt2

are frame-invariant. Simple-form versions of the metric-
based integrals are tabulated in context of the discussions
to follow.

V. ANY SPEED APPLICATIONS

Table I defines notation for describing accelerated mo-
tion in (3+1)D flat spacetime. Table II shows the in-
stantaneous relationship between these varables (also at
low speed), as parameterized by the “traveler-time τ and
Lorentz-factor γo from turnaround” were the instanta-
neous proper acceleration to remain constant (cf. Ap-
pendix A). In both tables, only values in the “time-
components” column rely on synchrony between map-
frame clocks at more that one location. Values in the
spatial-coordinate columns to the right are synchrony-
free, while values in the column to the left are frame-
invariant as well.

Of course a map-frame observer’s measurements of
map-position as a function of map-time (along with deliv-
erables like inferred coordinate-forces) will be parameter-
ized in terms of synchrony-dependent map-time instead
of frame-invariant traveler-time. Although map-frame
observers can calculate synchrony-free quantities like
momentum and proper-velocity in terms of synchrony-
dependent parameters, it will take extra steps going to
there from what they measure, and perhaps also going
from there to what they want to infer.

If on the other hand the traveler measures their “felt
proper-acceleration”, as well as the rates at which they
pass “map-landmarks” on their route, the equations to
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FIG. 2. Two views of proper force on a moving charge from a neutral current-carrying wire, with 40 millisecond time-steps
between after-images. The shorter light-arrow in the wire-frame is the coordinate-force f ≡ dp/dt = Fo/γ⊥. Effects of the
depicted forces on the charge-motion are ignored, as is the B-field in the moving-charge frame which has no effect.

everything else are simpler and organically related as
shown in Table II. Plus, everything that the traveler
measures and reports on (except for elements in the time-
component column of the table) will either be synchrony-
free or frame-invariant.

The connection between the traveler control-
parameters and Table II is reinforced if we imagine
long-distance travel in a spacecraft with traveler control
over thust (i.e. proper-force) magnitude and direction.
The table connects proper-acceleration’s magnitude and
direction to instantaneous values of “proper-time from
turnaround” and v⊥, which in turn are related via the
same table to navigational objectives (like the x and y
values for the turnaround-point itself).

Although variable-rearrangement is complicated rela-
tive to the low-speed case via “gamma-factor” coupling
between directions, a wide range of puzzles involving
high-speed navigation in free-space may be addressed
with this table. Of most interest perhaps to beginning
students are of course the possibilities that relativity
opens up for constant proper-acceleration (e.g. 1 “gee”)
round-trips between distant locations. Not only are these
equations even simpler than the (3+1)D case, but the
real limiting factor (namely the payload to launch-mass
ratio) is quite simple to calculate as well.

A practical classroom application of the frame-
independence of proper-force in this context involves an
empirical observation exercise for students interested in
the electrostatic origins of the magnetic force between
moving charges. In essence, students are asked to take
data in real time from animations (cf. Fig. 2) show-
ing neutral-wire and moving-charge perspectives on the
proper-force felt by the moving charge15.

Simple ratios (in either space or time) allow students to
quantify the length-contraction, the currents and charge
densities from these two perspectives, and a variety of
other physical quantities. In order to see significant dif-
ferences in these quantities from the two perspectives,
of course, charge velocities have to be relativistic. Since
velocities are also perpendicular to observed forces, a sig-
nificant difference between the coordinate-force observed
in the neutral wire frame, and the proper-force felt by
the moving charge, also shows up.

VI. DISCUSSION

As mentioned above, extended arrays of synchronized
clocks are difficult to come by in curved spacetime (cf.
the relativistic corrections needed to make global posi-
tioning estimates accurate). They are perhaps even more
difficult to come by on accelerated platforms (cf. discus-
sions of accelerated-frame “Rindler coordinates”).

“Lorentz-transform first” analyses of any-speed motion
of course require at least two relativistically co-moving
frames of synchronized clocks. No wonder accelerated
motion is of little interest in that context.

“Metric-first” approaches require only one such map-
frame, since proper-time on traveler clocks is a frame-
invariant. The integrals of constant proper-acceleration,
especially in (1+1)D e.g. as α = ∆w/∆t = c∆η/∆τ =
c2∆γ/∆x where η ≡ sinh[wc ], are also quite manageable.
As shown Table III, which is a (1+1)D version of Tables
I and II combined, the general magnitude-inequality be-

tween coordinate-force ~f ≡ d~p/dt (where we are using
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TABLE III. Relationships between variables for acceleration in (1+1)D flat-spacetime: Here τ is traveler-time elapsed from
“turnaround” for as long as proper acceleration α doesn’t change. The right arrow → shows simplification when ατ � c.

4-vector invariants time-components/c space-components

acceleration α ≡ ΣFo
m

dγ
dτ

= P
mc2

= γP
mc2

= α
c

sinh
[
ατ
c

]
→
(
α
c

)2
τ dw

dτ
= ΣF

m
= γΣf

m
= α cosh

[
ατ
c

]
→ α

velocity c γ ≡ dt
dτ

= E
mc2

=
√

1 + (w
c

)2 = cosh
[
ατ
c

]
→ 1 w ≡ dx

dτ
= p

m
= γv = c sinh

[
ατ
c

]
→ ατ

coordinate τ t = c
α

sinh
[
ατ
c

]
→ τ x = c2

α

(
cosh

[
ατ
c

]
− 1
)
→ 1

2
ατ2

TABLE IV. Relationship between variables for acceleration in (1+1)D gravity: Here τ is traveler-time from “turnaround” for
fixed proper acceleration, while as usual g ≡ GM

r2
and rs ≡ 2GM

c2
. Here ' neglects changes in g and → assumes that ατ � c.

4-vector invariants time-components/c space-components

acceleration α ≡ ΣFo
m

dγ
dτ

= P
mc2

= γP
mc2
' α−g

c
sinh

[
(α−g)τ

c

]
→
(
α
c

)2
τ dw

dτ
= ΣF

m
= γΣf

m
' (α− g) cosh

[
(α−g)τ

c

]
→ (α− g)

velocity c γ ≡ dt
dτ

= E
mc2

==

√
1+( w

c
)2

1− rs
r
→
√

1
1− rs

r
w ≡ dr

dτ
= p

m
= γv ' c sinh

[
(α−g)τ

c

]
→ (α− g)τ

coordinate τ t ' c
α−g sinh

[
(α−g)τ

c

]
→ τ r ' c2

α−g

(
cosh

[
(α−g)τ

c

]
− 1
)
→ 1

2
(α− g)τ2

the relativistic momentum ~p) and proper-acceleration ~α,

namely |Σ~f | ≤ |m~α|, also becomes the more familiar-
looking signed-equality Σf = mα.

The approach also works in curved-spacetime. Table
IV illustrates for the “radial-only” Schwarzschild case us-
ing the exact Lorentz-factor from Hartle4, even though
the integration (even in the Newtonian case) is simplest
if we can ignore variations of g with r. The competition
between velocity-related, and gravitational, time-dilation
e.g. for GPS-system orbits is nonetheless quite clear.

Just as in flat-spacetime, the metric equation in gen-
eral associates a set of {t, x, y, z} bookkeeper-coordinates
with each event. In the Schwarzschild case, however,
clocks can only be synchronized at fixed-r. Hence a radar-
time model11 (or some such) of extended-simultaneity
might be needed to answer the question “What time is
it now at radius r?”

The good news for the case of Schwarzschild (and other
steady-state metrics) is that γ ≡ dt

dτ = E
mc2 can be defined

regardless of one’s model for extended-simultaneity. Al-
though in general momentum ~p ≡ d~x

dτ remains synchrony-
free, definitions of synchrony-dependent energy may en-
counter significant complication when the bookkeeper
time-derivative dt

dτ becomes dependent on extended-
simultaneity.

We further show that frame-invariance (where all
frames agree) is quite valuable for illustrations. The
synchrony-free nature of proper-velocity and momentum,
as well as of force-components described as derivatives
using proper-time τ instead of map-time t, also lead to
a simpler and more robust picture of accelerated motion
when examined from the point of view of the accelerated
traveler.
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Appendix A: derivations

The entries in Table II suggest a robust (3+1)D gen-
eralization of hyperbolic velocity-angle (or rapidity) for
high-speed motion with respect to a “free-float-frame”,
namely that η ≡

√
2/(γo − 1)ατ/c where γo is the

“turnaround” Lorentz-factor at τ = 0, so we should say a



6

few words here about their origin. One might for exam-
ple begin with the equations for coordinate acceleration
in terms of proper acceleration from Levy16, written in
the form:

~a ≡

[
a||
a⊥

]
=

[
(
v||
v )2 + γ( v⊥v )2

−(γ − 1)
v||v⊥
v2

]
α

γ3
(A1)

.
Note that in this form the coordinate-velocity ra-

tios can be replaced by proper-velocity ratios, mak-
ing the equation one which simply relates coordinate-
acceleration ~a components to the proper-acceleration 3-
vector ~α through the fractional-velocity components par-
allel and perpendicular to ~α.

Using this in the expression for 4-vector acceleration in

terms of coordinate velocity and acceleration 3-vectors,
namely:

A ≡ dU

dτ
=

[
cdγ
dτ
d~w
dτ

]
=

[
γ4
(
~v·~a
c

)
γ2~a+ γ4

(
~v·~a
c

)
~v
c

]
(A2)

one can obtain the energy-integral differential equation:

c2

α
γ̈ =

(
1 + γ + ( cα γ̇)2

1 + γ

)
α (A3)

where the dot refers to differentiation with respect to
proper-time τ , and w|| = (c2/α)dγ/dτ . This integrates
pretty quickly to the contents of Table II. Table III en-
tries then follow directly for the (1+1)D case by letting
γo → 1.


