Skip to main content
Positivity Results on Ribbon Schur Function Differences
European Journal of Combinatorics
  • Peter McNamara, Bucknell University
  • Stephanie von Willigenburg
Publication Date
There is considerable current interest in determining when the difference of two skew Schur functions is Schur positive. We consider the posets that result from ordering skew diagrams according to Schur positivity, before focussing on the convex subposets corresponding to ribbons. While the general solution for ribbon Schur functions seems out of reach at present, we determine necessary and sufficient conditions for multiplicity-free ribbons, i.e. those whose expansion as a linear combination of Schur functions has all coefficients either zero or one. In particular, we show that the poset that results from ordering such ribbons according to Schur positivity is essentially a product of two chains.
Citation Information
Peter McNamara and Stephanie von Willigenburg. "Positivity Results on Ribbon Schur Function Differences" European Journal of Combinatorics (2009) p. 1352 - 1369
Available at: