Skip to main content
Statistical identifiability and the surrogate endpoint problem, with application to vaccine trials.
Biometrics (2010)
  • Peter B. Gilbert
  • Julian Wolfson, University of Minnesota - Twin Cities
Given a randomized treatment Z, a clinical outcome Y , and a biomarker S measured some fixed time after Z is administered, we may be interested in addressing the surrogate endpoint problem by evaluating whether S can be used to reliably predict the effect of Z on Y . Several recent proposals for the statistical evaluation of surrogate value have been based on the framework of principal stratification. In this paper, we consider two principal stratification estimands: joint risks and marginal risks. Joint risks measure causal associations of treatment effects on S and Y , providing insight into the surrogate value of the biomarker, but are not statistically identifiable from vaccine trial data. While marginal risks do not measure causal associations of treatment effects, they nevertheless provide guidance for future research, and we describe a data collection scheme and assumptions under which the marginal risks are statistically identifiable. We show how different sets of assumptions affect the identifiability of these estimands; in particular, we depart from previous work by considering the consequences of relaxing the assumption of no individual treatment effects on Y before S is measured. Based on algebraic relationships between joint and marginal risks, we propose a sensitivity analysis approach for assessment of surrogate value, and show that in many cases the surrogate value of a biomarker may be hard to establish, even when the sample size is large.
  • Estimated likelihood; Identifiability; Principal stratification; Sensitivity analysis;
Publication Date
Citation Information
Peter B. Gilbert and Julian Wolfson. "Statistical identifiability and the surrogate endpoint problem, with application to vaccine trials." Biometrics (2010)
Available at: