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Abstract. Selecting among competing statistical models is a core challenge in science.
However, the many possible approaches and techniques for model selection, and the conflict-
ing recommendations for their use, can be confusing. We contend that much confusion sur-
rounding statistical model selection results from failing to first clearly specify the purpose of
the analysis. We argue that there are three distinct goals for statistical modeling in ecology:
data exploration, inference, and prediction. Once the modeling goal is clearly articulated, an
appropriate model selection procedure is easier to identify. We review model selection
approaches and highlight their strengths and weaknesses relative to each of the three modeling
goals. We then present examples of modeling for exploration, inference, and prediction using a
time series of butterfly population counts. These show how a model selection approach flows
naturally from the modeling goal, leading to different models selected for different purposes,
even with exactly the same data set. This review illustrates best practices for ecologists and
should serve as a reminder that statistical recipes cannot substitute for critical thinking or for
the use of independent data to test hypotheses and validate predictions.
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Model selection is the Black Hole of Statistics.

A. Ronald Gallant, Liberal Arts Professor of
Economics, Pennsylvania State University, and

Henry A. Latane Distinguished Professor
(emeritus) of Economics, UNC-Chapel Hill

(personal communication)

INTRODUCTION

In 2014, Ecology ran a productive and contentious
Forum titled "P values, hypothesis testing, and model
selection: it’s déjà vu all over again" (Ellison et al. 2014).
We learned a lot from the Forum—about common
misunderstandings, the strengths and weaknesses of

different approaches, and their underlying connections.
But we still had no clear answer to many important
questions. How should we decide among different
approaches to model selection? When should we be
doing model selection vs. using multi-model inference
(e.g., Burnham and Anderson 2002, Ver Hoef and
Boveng 2015)?
We contend that model selection is essential in much

of ecology because ecological systems are often too large
and slow-moving for our hypotheses to be tested
through manipulative experiments at the relevant tem-
poral and spatial scales. Because larch budmoth popula-
tion cycles are a spatiotemporal process spanning all of
western Europe (Bjornstad et al. 2002), an experiment to
decisively test the hypothesis that the cycles are driven
by parasitoids (Turchin et al. 2003) would have to elimi-
nate those parasitoids from an entire continent while
leaving all other factors undisturbed. To test the impor-
tance of dispersal for tropical forest species richness
(Hubbell 2001, Volkov et al. 2003, 2005), we would need
to block all seed dispersal onto Barro Colorado Island
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without affecting any other processes, and then wait
many decades to observe the effect on canopy tree diver-
sity. So instead, to identify the mechanisms underlying
observed patterns and make predictions for planning
and management, we often have to compare and choose
among competing models fitted to imperfect observa-
tional data. Moreover, many manipulative experiments
are designed to answer model-selection questions: Are
the data explained better by a model that includes the
effect of particular covariates or their interactions? For
example, is net primary production co-limited by N and
P (Fay et al. 2015)? Confusion about how to do model
selection is confusion about how to do ecology.
Here we offer a guide to model selection based on the

premise that carefully identifying the goal of an analysis
—exploration, inference, or prediction—clarifies which
model selection approaches should be used. A “best”
model has to be best for some purpose, and different pur-
poses will lead to different best models, even for the same
data set. Much confusion has resulted from comparing
and contrasting model selection methods without explic-
itly first asking: best model for what? Indeed, few books
or papers in the ecology literature clearly specify the pur-
pose of the model or acknowledge that different models
should be selected for different goals (but see Shmueli
2010). This contrasts with the machine learning and sta-
tistical literature, where the modeling goal is often explic-
itly considered (e.g., Breiman 2001, Zou and Hastie 2005,
Hastie et al. 2009, McElreath 2020). We are not the first
to argue that model selection must be tailored to the pur-
pose of the model (Rawlings et al. 1998), but we believe
that the three goals listed above will be particularly useful
for ecologists struggling with model selection.
To illustrate the problems and solutions, we focus on a

common and challenging model selection problem in
ecology: using observational data to link some time-
varying ecological response to interannual variation in
weather. Populations, communities, and ecosystem-level
properties fluctuate through time in response to internal
and external drivers. Internal drivers include intraspeci-
fic density dependence, demographic stochasticity, inter-
specific interactions, and food web dynamics. External
drivers are typically related to environmental conditions,
and weather is perhaps the most variable. Quantifying
the relative impacts of internal forcing versus weather on
ecological dynamics (Andrewartha and Birch 1954,
Nicholson 1954) remains a core goal of ecology with
new relevance as we attempt to predict ecological
responses to climate change.
Unfortunately, detecting relationships between

weather and ecological processes is surprisingly difficult.
One issue is high dimensionality. Important ecological
responses are often measured only one or two times a
year (e.g., total aboveground biomass in permanent
plots at the end of the growing season). But weather
observations and gridded geospatial databases provide
easy access to daily data on precipitation and mean,
maximum, and minimum temperature, or some user-

defined summary of the series such as a frequency com-
ponent (e.g., Elston et al. 2017). When these four vari-
ables are observed daily, we end up with 1,460 weather
measurements over the course of a year. These covariates
may be misaligned (Pacifici et al. 2019) or have com-
pound effects over specific time periods. To link daily
weather data to an annual ecological response in a statis-
tical model, we must either aggregate the weather vari-
ables over some time period (van de Pol et al. 2016), or
fit complex functional linear models to capture peaks of
influence (Teller et al. 2016, Ferguson et al. 2017). In
addition, the effects of some covariates may be nonlin-
ear, making estimation and model selection even harder.
So selection of weather covariates involves choosing (1)
which weather variables to include (mean, maximum, or
minimum temperature?), (2) the time periods when they
matter (spring, summer, or both?), and (3) their func-
tional form (linear, quadratic, logarithmic, etc.). The
number of possible covariates can quickly grow much
larger than the number of independent observations. To
compound the difficulty, few ecological time series are
long enough to offer the power to estimate more than a
few covariate effects (Teller et al. 2016), temporal and
spatial confounding may exist (Hodges and Reich 2010),
and covariates may be collinear.
Because there are so many plausible weather covari-

ates, the chance of finding spurious correlations is high.
The temptation is to conduct an exploratory study and
later portray it as a test of a priori hypotheses, hiding the
multiple comparisons lurking below the surface of the
analysis and undermining reproducibility. Linking
weather to biological responses is therefore a classic
model selection problem, representative of many in ecol-
ogy and other disciplines. In fact, selecting among mod-
els that link weather to biological responses represents
one of the worst-case scenarios for model selection in
ecology: statistical power is low because there are rela-
tively few independent observations (Hodges and Reich
2010), the number of potential covariates is high, and a
priori knowledge of what covariates to use may be lim-
ited.
Our focus on linking weather drivers to ecological

dynamics is also motivated by our own failures. We have
spent years trying to identify which weather covariates
influence the population dynamics of perennial plant
species in semiarid grasslands of the western United
States. We have tried selecting among an a priori set of
covariates via step-wise model selection using both infor-
mation-theoretic criteria and P values (Dalgleish et al.
2011); we have tried detecting peaks of influence in time-
lagged weather covariates using functional linear models
(Teller et al. 2016); and we have tried statistical regular-
ization based on predicting out-of-sample data (Treden-
nick et al. 2017). At best, we have found statistically
significant but weak absolute effects of weather, even
though all our system-specific knowledge tells us that in
semiarid ecosystems plants should perform better when
there is more water available. Even in cases where we did
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find statistically significant weather effects, they only
marginally improved predictive skill (Tredennick et al.
2017, also see Matter and Roland 2017 for similar
results). This paper is our attempt to make lemonade
out of lemons. We want to share what we have learned
from our struggles, and make model selection easier and
more effective for others.
We focus primarily on covariate selection because it is

a very common model-selection problem in ecology,
though it is certainly not the only model-selection prob-
lem. Decisions about covariate transforms, model func-
tional forms, and distributional assumptions all arise in
the process of model checking, an essential part of any
statistical analysis. The approach we advocate here
should also provide guidance for these other aspects of
model selection.

Model selection remains unsettled among statisticians

Ecology is not the only science struggling with model
selection. In fact, it is an active area of research in statis-
tics. Our perspective here follows well-developed contem-
porary statistical frameworks, not only in ecology but
across the sciences. In particular, we emphasize the need
to separate null-hypothesis significance testing from data
exploration. This reflects the mathematical difficulty of
describing how estimates and conclusions might vary
across different data samples. Common statistical tests,
applied to any one model, do not account for the fact
that model selection violates assumptions on which the
calculation and interpretation of P values depend.
One goal of contemporary statistical research is to

develop methods for inference that account for model
selection and associated uncertainty. Current approaches
include selective inference (Taylor and Tibshirani 2015),
stability selection (Meinshausen and Bühlmann 2010),
and other methods (Shen et al. 2004, Lockhart et al.
2014, G’Sell et al. 2016). However, these methods only
apply to particular models and applications (e.g., using
LASSO to select covariates in a linear model). Bayesian
statistics have a more solid theoretical foundation and
methods like Bayesian model averaging offer formal
ways to make inference that explicitly account for model
selection and model selection uncertainty (Hoeting et al.
1999). However, there is currently no consensus in the
statistics community about what constitutes correct
practice, and there likely never will be. On the other
hand, there is broad consensus on what constitutes poor
practice, providing guidelines for model selection that
we discuss here.
Many new approaches seek to extend the set of meth-

ods for which valid inference after model selection is
possible, but they cannot solve the basic problem of
researcher degrees of freedom: all of the implicit choices
researchers make that influence an analysis (Simmons
et al. 2011). For example, given a set of potential covari-
ates and a chosen model-selection method, it may be
possible to obtain valid confidence intervals for the

resulting coefficient estimates, but these will not account
for choices such as data transforms, inclusion or not of
interactions, or even the original choice of model-selec-
tion method. It is always important to understand what
actions in an inference procedure are accounted for in
calculating uncertainty estimates such as P values or
confidence intervals, and what constitutes data explo-
ration beyond those boundaries.

THREE MODELING GOALS IN ECOLOGY: EXPLORATION,
INFERENCE, AND PREDICTION

We contend that ecologists fit statistical models for
three primary purposes: data exploration, inference, and
prediction. These goals are not mutually exclusive,
though some combinations are forbidden or require
independent studies (Fig. 1). In the following sections,
we describe each goal and the model selection
approaches most suited to each.

Exploration

The goal of exploration is to describe patterns in the
data and generate hypotheses about nature. The text-
book caricatures of the scientific method that emphasize
the role of hypothesis testing are typically vague about
where hypotheses come from. Some derive from theory,
but often we arrive at them by induction from empirical
patterns. The inductive approach is especially common
in ecology, where many longstanding research topics
involve identifying the processes driving canonical pat-
terns such as the species-area relationship or body size
scaling relationships. The reliance on exploratory analy-
ses may be especially pronounced in the search for rela-
tionships between weather and ecological processes,
because we often lack a priori biological knowledge and
want to consider many covariates (van de Pol et al.
2016).
The central trade-off in exploratory modeling is the

desire to be thorough vs. the need to avoid spurious rela-
tionships. To avoid missing potentially important rela-
tionships we should cast a wide net, considering all

Prediction InferenceExploration

Independent studies

FIG. 1. Venn diagram showing the (non)overlap of three
modeling goals in ecology: data exploration, inference, and pre-
diction or forecasting.
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plausible associations. Modern statistical computing lets
us examine hundreds of correlations or scatterplots with
a few lines of code. It is also easy to fit large sets of
nested models with different additive and multiplicative
combinations of dozens of potential covariates, and
compare them using some measure of model fit. But
these approaches are prone to type-I errors (false discov-
eries): in a data set with randomly generated “covari-
ates,” we expect one in 20 correlations to be significant
by chance at the α = 0.05 level. Generating hypotheses
based on spurious correlations is a waste of time at best.
Fortunately, there are strategies that help strike a

balance between thoroughness and avoiding false dis-
coveries. Perhaps the most important, if obvious,
strategy is to only consider plausible relationships, but
the list of plausible relationships is often long. In
such cases, methods to correct P values for multiple
testing or multiple comparisons (such as p.adjust in
R) can help reduce the chance of false discoveries.
Finally, if we clearly communicate that our goal is
exploration, meaning the generation but not the test-
ing of hypotheses, the consequences of false discover-
ies are minimized. By assiduously avoiding any claims
of confirmation, we can emphasize that the proposed
hypotheses should not be accepted until they are
tested with independent data.

Inference

The goal of modeling for inference is to evaluate the
strength of evidence in a data set for some statement
about nature. Gaining knowledge through inference
requires alternative a priori hypotheses about how eco-
logical systems function. These hypotheses are formal-
ized as alternative statistical models that are confronted
with data. Inference methods, such as null-hypothesis
significance tests, have been a primary focus of classical
statistical theory. The fact that we need a priori models
to represent each hypothesis puts a hard boundary
between exploration and inference. We cannot formally
test hypotheses on the same data set used to generate
those hypotheses.
Inference does not require validation on independent

data, because the goal is to determine whether or not a
particular data set provides sufficiently strong evidence
for a hypothesis. The risk of false discoveries due to
over-fitting is low because the distinguishing feature of
studies aimed at inference is that contending a priori
hypotheses are formalized as a small set of competing
models, especially in the case of designed experiments.
But what exactly is a “small set?” If the set includes just
two models, we are clearly on safe ground for inference.
Tests of some hypotheses may require three models.
However, as the number of models grows, we should be
increasingly skeptical about whether inference is truly
the goal of the analysis, rather than exploration or pre-
diction.

Statistical inference from a single data set is only one
part of the process of developing scientific knowledge. It
assesses the reliability of statements about a particular
set of data obtained by particular methods under partic-
ular conditions. Any conclusions obtained via statistical
inference thus require replication and validation across a
range of conditions before they are accepted as scientific
fact.

Prediction

Prediction is the most self-explanatory modeling goal.
Research aimed solely at prediction is relatively new in
ecology, but calls for a formal research agenda centered
on prediction and forecasting are accumulating (Clark
et al. 2001, Petchey et al. 2015, Houlahan et al. 2016,
Dietze et al. 2018, Harris et al. 2018). Modeling for pre-
diction overlaps with modeling for exploration and infer-
ence because models that include our best
understanding of a process should produce better fore-
casts (e.g., Hefley et al. 2017b). For example, improved
understanding can reduce the number of parameters in a
model by replacing fitted coefficients with known values
or swapping many potentially associated covariates for a
few causal drivers. Moreover, confronting forecasts with
new data is the ultimate test of our understanding
(Houlahan et al. 2016, Dietze et al. 2018).
However, there is an important difference between

modeling for inference and modeling for prediction, and
recognizing this difference helps illuminate the model
selection path. Consider a fitted regression model,

ŷ¼Xβ̂, (1)

where X is the data matrix, β̂ are the maximum likeli-
hood estimates of the regression coefficients, and ŷ is the
predicted response.
Inference is about β̂ (Gareth et al. 2017, Mullainathan

and Spiess 2017). Which coefficients are non-zero
beyond a reasonable doubt, implying meaningful associ-
ations between covariates and the response? Which non-
zero effects are positive, and which are negative? Which
covariates are more important and which are less impor-
tant? The goal of modeling for inference is to answer
these questions.
Prediction is about ŷ (Gareth et al. 2017, Mul-

lainathan and Spiess 2017). Which model will best pre-
dict values of y for new observations of the covariates in
X?
Critically, the optimal model for prediction may not be

suitable for inference. For example, extensive model selec-
tion to identify the optimal model for prediction compli-
cates the interpretation of P values; regularization (see
"Regularization" in next section) often improves predic-
tion but biases parameter estimates; and machine learn-
ing methods may not provide interpretable coefficients.
Furthermore, when many covariates are correlated, the
optimal model for prediction is likely to include
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covariates having little actual association with the
response (see Information-theoretic approach). Con-
versely, a model that provides reliable inference about
the particular coefficients in β that represent a hypothe-
sis of interest may not be optimal for prediction, if it
excludes other relevant covariates. While understanding
should generally improve predictions, discovering how
to make the best predictions may not always improve
understanding.
A distinguishing feature of modeling for prediction is

the need to test predictive models “out of sample”: using
independent data that were not used to fit the model.
Exploratory modeling can help identify important pre-
dictors even if the causal mechanisms are currently not
understood (Teller et al. 2016, van de Pol et al. 2016),
but without validation on independent data, the predic-
tive skill of the model is unknown.

OVERVIEW OF RELEVANT STATISTICALTECHNIQUES

Before providing worked examples of modeling for
exploration, inference, and prediction, we give brief
descriptions of some statistical techniques we will use. We
focus on frequentist methods. Proponents of a strict
Bayesian framework might argue that separating the
goals of exploration, inference, and prediction does not
make sense. According to this view, testing out-of-sample
performance falls outside Bayesian inference (Lindley
2000). However, most ecologists, and even many statisti-
cians, apply Bayesian methods as a convenient alternative
to fit a hierarchical model with MCMC methods, quan-
tify uncertainty, accommodate nonlinear functions, or
incorporate prior information on model parameters. For
these practical applications of Bayesian methods, our
advice will apply: identifying the purpose of the analysis
remains a critical step in choosing a model selection strat-
egy. We do, however, refer to the literature on Bayesian
model selection methods (especially Hooten and Hobbs
2015) to show parallels between the frequentist methods
we discuss and their Bayesian analogues.

Traditional null-hypothesis significance testing

Traditional null-hypothesis significance testing
(NHST) compares a model of interest against a null
model lacking some feature of the model of interest,
such as a particular covariate. To compare models, we
first need to calculate a summary of the data T, such as a
z score or a t or F statistic. Model selection is based on
the probability of observing a value of T more extreme
than the value calculated from the data, if the model rep-
resenting the null hypothesis is true. This probability is
the P value; a small P value is interpreted as evidence for
the model of interest.
Common statistical programs for ANOVA and regres-

sion by default report tests of a null hypothesis in which
none of the independent variables affects the response
variable. However, it is straightforward to work with

more interesting null models. For example, if we want to
test the hypothesis that winter snowpack negatively
affects the population growth rate of an elk herd, the
null model could include density dependence. We could
then conduct a likelihood ratio test to ask if adding a
snowpack covariate to this model significantly increases
the likelihood of the data relative to the model with den-
sity dependence but not snowpack. The main limitation
of the likelihood ratio test is that it can only be used for
“nested” models, meaning that the covariates in the null
model are also contained in the more complex model.
Bayes factors (Kass and Raftery 1995, Hooten and

Hobbs 2015), a Bayesian analogue to likelihood ratios,
are also used to compare competing statistical models.
Unlike the likelihood ratio test, the competing models
do not need to be nested. Bayes factors are often used
like information criteria to rank models or to weight dif-
ferent models when model averaging (Link and Barker
2006).

Information-theoretic approaches

Null-hypothesis significance testing compares one
model with another. In contrast, information-theoretic
approaches make it possible to compare the weight of
evidence for any number of models. The most popular
information-theoretic criterion in ecology is Akaike’s
Information Criterion (AIC)

AIC ¼ �2� log L Y jθ̂� �� �þ2p, (2)

where θ̂ are the maximum likelihood estimates for model
parameters and p is the number of parameters. Any num-
ber of models, nested or not, are easily ranked based on
AIC values. Proponents of AIC argue that this approach
avoids arbitrary P-value cut-offs (Burnham and Ander-
son 2002), but in practice researchers have relied on
equally arbitrary and less interpretable cut-offs for the
difference in AIC values required to conclude that one
model is more supported by the data than another.
It is important to recognize that AIC was created to

advance the goal of prediction. Akaike’s original pur-
pose was to approximate a model’s out-of-sample pre-
dictive skill, using only the data used to fit the model
(Akaike 1973). This is a desirable feature for ecology,
where data are hard-won and we rarely have enough to
set some aside for model validation. AIC approximates
a model’s out-of-sample skill by relying on an asymp-
totic approximation (Akaike 1973), so the estimate of
information loss relative to the true data generating
function becomes more unreliable as the size of the data
set decreases. This also means that AIC provides relative,
not absolute, measures of model predictive skill.
AIC is more forgiving of possibly spurious covariates

than NHST, leading to models with more covariates,
because of the asymmetry between the effect of omitting
a relevant covariate and the effect of including a spuri-
ous one. Omitting a relevant covariate will limit a
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model’s predictive skill, no matter how much data is
available. However, if a spurious covariate is included,
its impact on predictions will be very small when there
are enough data to get good parameter estimates. This
property of AIC makes it less suitable for inference than
NHST. When circumstance requires its use for inference,
for example to compare non-nested models, results
should be interpreted cautiously. The same is true for all
model-selection criteria based on prediction accuracy,
including the cross-validation methods discussed below.
It is tempting to argue that the model making the best
predictions must be closest to capturing the true mecha-
nisms, but optimal models for prediction often include
many potentially relevant but possibly spurious covari-
ates, without giving any of them much weight in making
projections.
There are several analogous Bayesian information cri-

teria, including the deviance information criterion (DIC;
Spiegelhalter et al. 2002), the Watanabe-Akaike infor-
mation criterion (WAIC; Watanabe 2013), and, most
recently, approximate leave-one-out cross-validation
(LOO-CV; Vehtari et al. [2017]). All have the same goal
as AIC, using only within-sample data to approximate
the model’s out-of-sample predictive accuracy. DIC is
returned by common statistical packages, though WAIC
and LOO-CV are gaining popularity and are recom-
mended in most cases (Gelman et al. 2014, Hooten and
Hobbs 2015, Vehtari et al. 2017, McElreath 2020).

Regularization

Statistical regularization (Appendix S1: Section S2)
refers to a suite of methods that seek to improve predic-
tive accuracy by trading off between bias and variance
in parameter estimates (Hastie et al. 2009). Regulariza-
tion is relatively new to ecologists, even though AIC and
related criteria are special cases (Hooten and Hobbs
2015). The term 2p in AIC (Eq. 2) regulates model com-
plexity by penalizing the log-likelihood based on the
number of model parameters. Without this penalty, any
comparison of nested models will result in the more
complex model being chosen. This favors overly complex
models that makes poor predictions on other data sets
(Hastie et al. 2009).
More generally, regularization involves selecting a

model or estimating parameter values based on a
weighted average of a goodness-of-fit measure and a com-
plexity penalty. For example, in penalized least-squares
regression, regression coefficients β are chosen to mini-
mize

∑
n

i¼1
yi�β0� ∑

p

j¼1
β jxij

 !2

þγrðβÞ (3)

where r is a complexity penalty and the “regularization
parameter” γ ≥ 0 determines the relative importance of

the two terms. Common complexity penalties include
ridge regression (r¼∑p

j¼1β
2
j ) and LASSO (r¼∑p

j¼1 β j

�� ��).
In standard least-squares regression, coefficients are

estimated with no penalty. To regularize the model, we
re-estimate the coefficients with increasing values of the
regularization parameter, which results in shrinking the
estimates towards zero. We then ask which regulariza-
tion parameter value results in the best predictions for
an independent data set.
A key feature of regularization is that coefficient or

parameter values are moved away from the maximum
likelihood or least-squares estimates (Appendix S1:
Fig. S1). Generally, this means the estimates are biased.
This behavior must be considered when interpreting
parameter estimates. Some penalty functions, such as
LASSO, can shrink coefficients to exactly zero, thus per-
forming automated variable selection. With others, such
as ridge regression (Appendix S1: Section S2), coeffi-
cients may take very small values but do not go to zero.
Regularization in Bayesian methods is done by

decreasing the prior variance of the regularized parame-
ters (McElreath 2020). Examples in the ecological litera-
ture include Gerber et al. (2015) and Tredennick et al.
(2017), among others. Indicator variable selection and
Reversible-jump MCMC are fully Bayesian, model-
based methods of model selection. We recommend Hoo-
ten and Hobbs (2015) for a review of these methods.

Model validation

When prediction is the goal, validation against out-of-
sample data is imperative. This means comparing model
predictions with observations that were not used to
“train,” or fit, the model. Out-of-sample validation is
important because it is easy for a model to reproduce
patterns in the training data, but much harder to accu-
rately predict the outcome in another situation, which is
what we expect predictive models to do.
Out-of-sample validation (Appendix S1: Section S3)

begins by randomly splitting the available data into
training and validation sets. The randomization proce-
dure should be stratified to account for temporal, spa-
tial, or other structure in the data, otherwise predictive
errors will be underestimated (Roberts et al. 2017). We
then fit candidate models using the training data, use
each model to make predictions for the validation data,
and quantify model errors using a summary measure
such as root mean squared error. The model with the
lowest error is the best predictive model. Out-of-sample
validation can be used to select among competing mod-
els, or to select the optimal penalty for a regularization
method.
When data sets are too small for out-of-sample valida-

tion, we can use cross-validation. In out-of-sample vali-
dation, the data set is split once and only once into
training and validation sets. In cross-validation the data
set is split multiple times into training and validation
sets. The data splits in cross-validation are often referred
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to as folds: K-fold cross-validation means we do K differ-
ent random splits. This leaves us with K out-of-sample
error scores, which are averaged to obtain the cross-vali-
dation score. In some cases, cross-validation scores can
be calculated or approximated without having to actu-
ally re-fit the model multiple times (e.g., Hastie et al.
2009). Note that cross-validation on small data sets is
not free from problems: the effect of reducing sample
size by removing observations can be substantial and the
errors are correlated but not accounted for. Information
criteria avoid these problems but come with their own
set of limiting assumptions (see Regularization). We pre-
fer cross-validation because the problems are more
transparent and the absolute scores are easier to inter-
pret than the relative scores offered by information crite-
ria.
Bayesian model validation is very similar to what we

describe above. The functions used to quantify the dif-
ference between model predictions and observations
may differ (e.g., posterior predictive loss is common for
Bayesian models), but the approach is the same (Hooten
and Hobbs 2015, McElreath 2020). We urge ecologists
particularly interested in prediction and forecasting to
investigate the importance of choosing appropriate
model scores (Gneiting and Raftery 2007, Hooten and
Hobbs 2015, Dietze et al. 2018).

EXAMPLES

Here, to illustrate how different modeling goals lead
to different data analyses, we reanalyze one dataset as if
we were writing three separate papers, each motivated
by a different modeling goal. For each goal, we use a dif-
ferent subset of model and variable selection techniques
introduced in the previous section, and we arrive at a dif-
ferent “best” model. We list sequential steps not to
emphasize any specific statistical techniques, but rather
to clearly outline the general approach. For example, we

could have built a Prediction model using Random For-
ests instead of ridge regression; the important point is
that for Prediction we optimize out-of-sample prediction
accuracy, while for Inference we conduct an unbiased
test of an a priori hypothesis.
The data are time series of population counts for

subpopulations of an alpine butterfly, Parnassius
smintheus (Roland and Matter 2016a, b). Roland and
colleagues have monitored the size of P. smintheus
populations in 21 alpine meadows at Jumpingpound
and Lusk Ridges, Alberta, Canada (50°570 N,
114°54.30 W) since 1995 (Roland and Matter 2016b).
They used mark–release–recapture methods to estimate
population sizes (Nt) in each year (t) from 1995 to
2015, based on numbers of adults observed in August
of each year. Using these population estimates, they
calculated population growth rate from 1995 to 2014
as Rt = log10(Nt+1/Nt), after adding 0.5 to all Nt before
log-transformation to account for zeros in the data.
Roland and Matter provided these data along with
over 90 potential weather covariates (Table 1 in Roland
and Matter 2016b). We restrict our analyses to 11 out
of the 21 meadows that have observations in every
year of the time series (Fig. 2).
Roland and Matter’s goal was to “identify specific

weather variables that explain variation in population
growth (Rt) from one summer to the next” (Roland
and Matter 2016b:415), which sounds to us like
modeling for exploration. However, they also sought
to gain understanding because they wanted to con-
firm a previous, more general, finding that “winter
weather” influenced P. smintheus population growth,
a finding that is general across many butterfly spe-
cies (Radchuk et al. 2013). Moreover, in a bold pair
of papers, Matter and Roland first made explicit pre-
dictions of summer abundance in response to
observed extreme winter weather (Matter and Roland
2015) and then discussed why those predictions were

TABLE 1. Parameter estimates from the final model, with covariate selection done by dropping terms individually from the full
model.

Covariate Estimate SE t drop1 P Include P (BH) Include (BH) P (Holm) Include (Holm)

(Intercept) −0.10 0.30 −0.33
decextmax 0.05 0.02 2.72 0.00 yes 0.00 yes 0.00 yes
decextmin −0.02 0.00 −5.17 0.00 yes 0.00 yes 0.00 yes
logNt −0.45 0.05 −8.30 0.00 yes 0.00 yes 0.00 yes
marmeanmax −0.04 0.01 −2.46 0.01 yes 0.09 no 0.57 no
maymean 0.23 0.04 5.92 0.00 yes 0.00 yes 0.00 yes
novextmax −0.07 0.01 −5.34 0.00 yes 0.00 yes 0.00 yes
novmeanmax −0.03 0.02 −1.71 0.00 yes 0.00 yes 0.00 yes
octmeanmin 0.05 0.02 3.16 0.05 yes 0.56 no 1.00 no

Notes: The P values shown are from drop1.merMod applied to the full model with test = Chisq, not a t test. P(BH) and P(Holm)
are the drop1 P values adjusted for multiple comparisons using the BH and Holm methods, respectively. decextmax: extreme maxi-
mum temperature in December; decextmin: extreme minimum temperature in December; logNt: (log) population size in the previ-
ous year; marmeanmax: mean maximum temperature in March; maymean: mean temperature in May; novextmax: extreme
maximum temperature in November; novmeanmax: mean maximum temperature in November; octmeanmin: mean minimum tem-
perature in October.
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wrong, even though their models included statistically
significant weather effects (Matter and Roland 2017).
Matter and Roland have used these data for all three
of our modeling goals, making this an ideal data set
for demonstration. We bundled the data for our
examples into an R package called modselr (see Data
Availability). The analyses presented here can be
reproduced using code in the archived version of this
project’s repository (se Data Availability).

Example: Exploration

Define the research question.—If we lack a priori
knowledge about the abiotic factors that regulate P.
smintheus population dynamics, we can use statistical
models to answer the question, “Which weather

covariates are associated with population growth
rates?” We will focus on selecting a model that best
fits the entire data set, and we will consider an arbi-
trarily large set of candidate models, because we are
not primarily concerned about the drawbacks of mul-
tiple comparisons. In a way, modeling for exploration
is an “anything goes” exercise, so long as the results
are clearly reported as a data exploration mission and
the potential for spurious effects is carefully consid-
ered.

Screen many covariates for potential associations.—Data
visualization is a common way to perform an initial
screening – in this case, we could plot population growth
rate Rt against all available weather covariates, possibly
adding a trend line. However, with 96 potential covari-
ates this procedure seemed impractical and subjective.
Instead, we proceeded in two stages: first, we calculated
the correlation coefficient ρ between population growth
rate and each covariate, and second, we plotted the fitted
linear relationships for any response-predictor relation-
ship for which |ρ| > 0.3. The 15 relationships that cleared
this bar all seem potentially important, and variation in
the relationships among subpopulations appears small
(Fig. 3).

Assess statistical evidence more rigorously.—Our next
step was to assess the statistical evidence for each of the
15 potentially important covariates’ influence on the
population growth rate. First, we fit a full model in a lin-
ear mixed-effects framework, in which population
growth rate was the response variable, the covariates
shown in Fig. 3 were the fixed effects, and meadow (sub-
population) was a random effect on the intercept. Next,
we used the stats::drop1() function to perform variable
selection by comparing the full model to a series of
reduced models in which one of the covariates was
dropped. We fit all models using the R function lme4::
lmer() (Bates et al. 2015). We then compared the full
model to each of the reduced models using likelihood
ratio tests. The results indicated that individually drop-
ping seven of the 15 covariates did not significantly
decrease the likelihood relative to the full model (they
had P values > 0.05), so those should be removed from
the model.
We fit a final model with the eight remaining covari-

ates; coefficient estimates are shown in Table 1. The
selected covariates suggest that temperatures in late fall,
early winter, and spring affect population growth, con-
sistent with analyses of the same data by Roland and
Matter (2016b). However, a close look at the estimates
raises questions. Why would the effect of extreme maxi-
mum temperatures on population growth switch from
negative in November (novextmax) to positive in
December (decextmax), while minimum temperature
effects switch from positive in October (octmeanmin) to
negative in December (decextmin)? Similarly, why do
March temperatures (marmeanmax) have negative
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FIG. 2. Time series of Parnassius smintheus butterfly abun-
dance from Roland and Matter, (2016a) for (A) raw population
sizes and (B) log population growth rates. Each line is a subpop-
ulation from one of 11 distinct meadows. N is population size;
R is estimated population growth rate.
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effects on growth while May temperatures (maymean)
have positive effects?

Correct for multiple comparisons.—Since we started with
96 candidate covariates, we have reason to worry that
some of these “significant” covariate effects might have
appeared by chance. We applied two corrections for mul-
tiple comparisons to the drop1 P values from the full
model, using p.adjust in base R, the Benjamini and
Hochberg method (BH), which controls for the expected
proportion of significant results that are spurious, and
the Holm method (holm), which controls for the proba-
bility that one or more significant covariates is actually
spurious. Both methods indicated that an additional two
covariates should be dropped: March mean maximum
and October mean minimum temperature (Table 1). Dis-
carding those two effects helps resolve some of the
apparent inconsistencies in the direction of effects. If we
were writing these results up for publication, we would
make it clear that, given the exploratory nature of our
analysis and extensive model selection, the remaining

covariates effects represent hypotheses that need to be
tested using independent data.

Consider alternative approaches.—The results from
drop-one model selection are conditional on the covari-
ates we considered. We did not consider interactions
among the covariates or covariates aggregated over dif-
ferent time periods, such as mean winter temperature
over the months November to February. A useful tech-
nique when modeling for exploration is a sliding window
analysis to compare models with different temporal
aggregations of the covariates (van de Pol et al. 2016).
The R package climwin is designed for that purpose.
We used the same linear mixed-effects structure as in

the drop-one analysis, where population growth rate (Rt)
is modeled as a function of some weather covariate and
there is a random effect of meadow on the intercept. We
looked only at mean monthly temperatures, but the anal-
ysis could easily be extended to identify the most influ-
ential climate window for any potential weather
variables. We assumed that observations of population

novmeanmax novmeanmin octmean octmeanmax octmeanmin

maymean maymeanmin novextmax novextmin novmean

decextmax decextmin logNt marmean marmeanmax
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FIG. 3. Scatterplots of potential covariates vs. P. smintheus population growth rate (Rt). Covariates were screened before plot-
ting, and only those with correlation higher than the arbitrarily chosen threshold (|ρ|>0.3) were plotted. Lines are fitted linear mod-
els for each subpopulation (meadow). Covariates are defined in Table 1 Notes.
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abundance occurred on 1 June of each year and we
aggregated covariate values using the average over the
specified window. Thus, a climate window that opens in
month 4 (before the population observation) and closes
in month 2 yields an aggregate covariate value that is the
mean of the covariate over the February (month 4),
March (month 3), and April (month 2) values.
The results identify December temperature as

uniquely important, and the effect was positive (Fig. 4).
Models focusing on March–May temperatures also
receive some support (Fig. 4). Both of these findings are
consistent with the results of analysis of single-month
covariates shown in Table 1.

Example: Inference

Formulate competing hypotheses.—Modeling for infer-
ence must begin with a priori hypotheses based on the
literature or deduced from theory. For this example, we
test the hypothesis that extreme high temperatures dur-
ing early winter reduce P. smintheus population growth
rate, but only in years of low snowfall (i.e., a tempera-
ture-by-snowfall interaction). The hypothesis comes
from Roland and Matter (2016b), which found evidence
that butterfly eggs were vulnerable to extreme weather in
early winter, especially in the absence of an insulating
snowpack. This hypothesis does not address the poten-
tial role of spring weather identified in our exploratory
analysis, because here we are starting over as if we had
never conducted that analysis. We ask readers to tem-
porarily ignore the fact that we are testing the hypothesis

with the same data set used to generate it (Roland and
Matter 2016b), but we return to this key point below.

Translate hypotheses into alternative models.—To test
our hypothesis, we first created covariates that represent
the key abiotic drivers. We defined early winter as
November and December and then averaged two
monthly covariates over that time: the maximum temper-
ature and the amount of snow that fell each month. Note
that we chose an arbitrary two-month window for “early
winter.” Other periods are probably equally defensible,
but fitting multiple models with different winter covari-
ates and selecting the “best”wouldweaken our inference.
We then specify the following model:

 xm,tþ1ð Þ ¼ β0,mþβddxm,tþβsnowxsnow,t
þβtempxtemp,tþβint xsnow,t�xtemp,t

� �þ ɛm,t

(4)

where xm,t+1 is the log of population size in meadow m
in year t + 1 xsnow is mean winter snow fall, xtemp is
mean winter extreme maximum temperature, and ϵm,t

are normally distributed residual errors. We included an
interaction term (βint) and accounted for variation
among subpopulations by fitting a random intercept
(β0,m) for each subpopulation m. Last, we included the
effect of current population size xm,t to account for den-
sity dependence. We will compare this full model to an
alternative null, or reduced, model that does not include
the interaction effect.

Fit models.—We fit the model in R using the lme4::lmer
() function (Bates et al. 2015):

lmer(logNtnext ~ logNt +

winter_mean_snow*winter_mean_extmax + (1|

meada), data = test_data).

The estimated coefficients are shown in Appendix S1:
Table S1.

Null-hypothesis significance testing.—To test the hypoth-
esis that snow modifies the effect of winter temperature
on P. smintheus population growth, we compared the full
model described above with the alternative, reduced
model that did not include the interaction effect. We per-
formed a likelihood ratio test using the anova() function.
The results show a significant interaction effect
(χ2 = 25.37, df = 1, P < 0.001), supporting the hypothe-
sis. Rather than interpreting the effects directly from the
coefficients, we generated a profile plot showing the mar-
ginal effect of maximum temperature on population size
during low and high snow years, assuming mean popula-
tion size. Fig. 5 shows a strong negative effect of temper-
ature on population size in low snow years and no effect
in high snow years. We did not test the significance of
the individual main effects because our hypothesis
focused on the snow × temperature interaction.
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FIG. 4. Sliding window analysis for mean temperature. The
colors show the differences in AIC between a no-climate null
model and models fit to temperature averaged over windows that
open and close a certain number of months before June, when
populations are censused.
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The results would provide very strong confirmation of
our hypothesis, except for the obvious problem: we did
not test the hypothesis with independent data, we just
re-analyzed the data set used to propose the hypothesis
(Roland and Matter 2016b). Compounding the issue, the
original analysis screened many covariates, increasing
the potential for false discoveries. The solution would be
to test the hypothesis with data collected from a different
location or time period, or even from an experiment.
Conversely, our analysis of the observational data would
have been a strong test if the hypothesis had come from
an independent source, such as laboratory studies of
butterfly egg physiology.

Example: Prediction

Define the predictive goal.—Our objective is to predict
butterfly population size (on log scale) at time t given
data on log population size in year t − 1 and informa-
tion about weather during the period in between the
observations.

Choose model selection approach.—We chose regular-
ization over AIC for two reasons. The first is conve-
nience: whereas AIC would require us to specify and
fit many different models with different sets of
covariates, regularization offers a way to do variable
selection in one step. Second, we did not want to
rely on AIC’s asymptotic approximation for predic-
tive performance, when we can instead implement
cross-validation in our regularization approach.

Choose model validation approach.—Although we used
cross-validation for model selection, we also wanted to

validate the selected model against independent data.
Therefore, we selected 19 of the 20 yr as a training data
set, holding out the 20th year as a test, or validation,
data set for quantification of predictive error.

Train the model.—We used the glmnet package in R,
which made it easy to compare the results from three dif-
ferent types of regularization: LASSO tends to produce
a small number of strong effects, ridge regression pro-
duces many weak effects, and elastic net is a compromise
between the two (Appendix S1: Section S2). In addition
to weather covariates, which were penalized, all models
included log population size the previous year, and sepa-
rate intercepts for each meadow (implemented as fixed
effects); none of these coefficients were penalized.
We used leave-one-year-out cross-validation within

the training set to find the optimal value of the regular-
ization parameter, γ, as follows. The procedure loops
across all observation years in the training set, holding
out a different year of data, k, on each pass through
the loop. It then fits the regression model at a given γ
value using the remaining years in the training set and
makes out-of-sample predictions for the held-out year k
using the resulting coefficient estimates. This is repeated
over an evenly spaced sequence of γ values from weak
to strong. For each γ, the cross-validation score is the
mean squared error across the K cross-validation folds
(years), ð1=KÞ∑K

K¼1ðyoosk �ŷkÞ2 where yoosk is an out-of-
sample observation (other scores are possible, Hooten
and Hobbs [2015]). γ was chosen to minimize the cross-
validation score. We then refit the model using the
entire training set and the optimal γ, and used that
model to predict population growth in each meadow in
the test set year. The important point is that data from
the test set were not used either to determine the opti-
mal regularization parameter or to estimate coefficients.
As a benchmark for the optimal regularized model, we
fitted a null model without any climate covariates to
the same training data set, and used it to generate a
prediction for the validation set.

Test the model.—With just one year in the validation set,
a comparison of the prediction from the optimal regu-
larized model and the null model has little power. If we
had a longer time series, we could hold out more years
for the validation set. Instead, we repeated the entire
process outlined in the previous two steps 20 times, hold-
ing out one year for testing each time, and computed the
mean squared prediction error for each hold-out year.
We first tried including all 73 climate covariates that

had no missing values, but found that the optimal regu-
larized model made worse out-of-sample predictions
than the null model. This was true whether we used
LASSO, ridge regression, or elastic net. The lesson is
that regularization and internal cross-validation do not
prevent over-fitting when the number of covariates is so
much greater than the number of independent observa-
tions.
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FIG. 5. The model we built for inference shows an interac-
tive effect of early winter maximum temperature and snow on
Parnassius smintheus population size. The predicted growth
rates shown here assume mean population size. Low snow cor-
responds to the 10% quantile for snow fall, and high snow cor-
responds to the 90% quantile.
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Next, we used only the eight climate covariates
identified by our Exploration analysis as potentially
important. Using that subset of climate covariates in
ridge regression, and considering all 20 of our inde-
pendent validation tests, the optimal regularized
model reduced mean squared error by roughly 15%
relative to the null model (0.22 vs. 0.26; Fig. 6). A
model that included all eight climate covariates and
no regularization had larger estimated effects than the
ridge regression model (Fig. 7B) and made worse pre-
dictions than the null model (MSE = 0.33). Thus,
despite strong statistical evidence that winter weather
influences butterfly population growth (Appendix S1:
Table S1), the climate covariates had only modest
value for prediction. Unfortunately, this seems to be a
fairly common finding (Tredennick et al. 2017, Harris
et al. 2018).
After completing this analysis, we wondered if incor-

porating the process-level understanding gained in our
inference example might improve the predictions. We
repeated the analysis after adding additional covariates
to capture the early winter snow × temperature interac-
tion. Mean squared error actually increased slightly rela-
tive to the model with the eight covariates reported in
the preceding paragraph (not shown). Repeating the
analysis using only the covariates featured in the infer-
ence example led to a much larger loss of predictive
accuracy. These results are reminders that an under-
standing of process does not always translate directly
into improved predictive skill.
For the butterfly data set, ridge regression performed

better than LASSO or elastic net, indicating that popu-
lation growth may be responding to many weak weather
signals, rather than a few strong ones. Ridge regression
tended to aggressively shrink even the largest coefficients
(Fig. 7B), whereas LASSO shrunk weak effects to zero
but did not shrink the strong effects as much.
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FIG. 6. Comparison of out-of-sample predictions of butterfly population size, on the log scale, from a no-climate null model
and a ridge regression that included eight climate covariates. The black 1:1 line shows perfect agreement between observations and
predictions. Different hold-out years are shown by different color–symbol combinations. Mean squared errors were 0.26 for the null
model and 0.22 for the ridge regression model.
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Our demonstration analysis only produced point pre-
dictions. However, forecasting best practices call for
quantitative estimates of uncertainty around predictions
(Harris et al. 2018). We did not do this because there is
currently no agreed-upon method for calculating the
uncertainty in predictions from a model obtained from
LASSO-type regularization, at least when using frequen-
tist approaches. A Bayesian approach makes it easy to
calculate uncertainty estimates, even with a regularized
model, but caution is required in models with random
effects. For example, hierarchical Bayesian models can
absorb total uncertainty in the system in different com-
ponents, making regularization difficult as one part of
the system is squeezed and another part inflates. New
statistical methods such as the “group LASSO” are
emerging to tackle regularization of hierarchical models
(Yuan and Lin 2006, Kyung et al. 2010, Hefley et al.
2017a). For non-hierarchical models, we urge those
interested in making forecasts and quantifying uncer-
tainty to seriously consider empirical Bayesian
approaches to regularization, reviewed by Hooten and
Hobbs (2015).

GUIDANCE

Our focus on articulating the modeling goal prioritizes
purpose over any particular statistical techniques for

model selection. For each goal, various statistical tech-
niques are appropriate, but not every statistical tech-
nique is appropriate for each goal (Table 2). For data
exploration, almost any statistical tool can be justified.
Some useful tools for model and variable selection are
listed in Table 3. But an exhaustive search for statistical
relationships should be balanced by an effort to focus on
plausible relationships and findings should be communi-
cated honestly, avoiding inferential claims. Corrections
for multiple comparisons can help maintain this bal-
ance.
Modeling for inference requires a very small set of

candidate models, directly linked to a priori hypotheses.
If you have more than a handful of candidate models, it
is likely that you are actually still in the exploration
phase, or you may be more interested in prediction than
inference. For inference, candidate models should ideally
be evaluated with null-hypotheses significance testing or
by comparing Bayes factors. Information theoretic
approaches can be used when candidate models are not
nested, but with the caveat that tools like AIC are
designed to approximate predictive performance, and
may be less conservative than NHST about retaining
additional covariates or other terms.
For prediction, the specific tool used for model

selection is less important than the approach used to
validate predictions. Quantifying predictive skill using

TABLE 2. Model selection guidance.

Parameter Exploration Inference Prediction

Purpose generate hypotheses test hypotheses forecast the future accurately
Priority thoroughness avoid false positives minimize error
A priori
hypotheses

not necessary essential not necessary, but may inform model
specification

Emphasis on
model selection

important minimal important

Key statistical
tools

any null hypothesis significance tests AIC; regularization; machine learning;
cross-validation; out-of-sample validation

Pitfalls fooling yourself with over-
fitted models with spurious
covariate effects

misrepresenting exploratory tests
as tests of a priori hypotheses

failure to rigorously validate prediction
accuracy with independent data

TABLE 3. Some computing resources for model selection in R and Python.

Language Package Statistical techniques Citation

R glmnet regularization via LASSO, ridge regression, and
elastic net; cross-validation

Friedman et al. (2010)

R hiernet LASSO regularization with hierarchy restrictions on
inclusion of interaction terms

Bien et al. (2013)

R glmmLASSO LASSO for generalized linear mixed-effects models Grolls (2017)
R climwin moving window analysis for time-indexed covariates Bailey and van de Pol (2016)
R loo cross-validation and model scoring with MCMC;

stratified blocking for validation sets
Vehtari et al. (2020)

Python scikit-learn machine learning; regularization via LASSO, ridge
regression, and elastic net; cross-validation

Pedregosa et al. (2011)
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independent data is essential. Predictive modeling
often requires extensive model selection, for which
information theoretic and regularization techniques
are well-suited.
The biggest danger is mixing modeling goals. It is often

tempting to do inference after extensive model selection:
taking reported P values from a final model at face value,
even though the model was the result of extensive data
exploration, or extensive model selection based on pre-
diction accuracy (AIC or cross-validation). In fact, many
published studies pursue all three goals simultaneously.
At least one of us has committed this sin more than once:
Adler and Levine (2007) and Dalgleish et al. (2011) use
long-term observational data to study the effects of
weather on species richness and plant vital rates, respec-
tively. Both papers pursue fairly extensive variable selec-
tion, then draw inferences from the best models, and
finally suggest that the results will improve predictions of
ecological impacts of climate change. If we could write
those papers over, we would either make the exploratory
nature of the analyses much clearer, or we would cross-
validate to quantify predictive accuracy. We would cer-
tainly be far less casual about inference, because the
parameter uncertainty resulting from extensive model
selection is not accounted for in the P values from the
final models.
Students may be discouraged by the message that rig-

orous generation and evaluation of hypotheses, or vali-
dation of predictive skill, often requires more than one
data set. Fortunately, there are many creative ways to
combine multiple data sets. Hypotheses generated from
observational data sets can be tested with experiments
(Adler et al. 2018) or vice versa, or predictions can be
tested with data collected at new locations (Sequeira
et al. 2016) or from different time periods (Veloz et al.
2012). Distributed experiments (Borer et al. 2014) offer
additional opportunities: data from a subset of sites can
be held out for hypothesis testing or model validation.
Meta-analysis is another approach for combining multi-
ple data sets for the purpose of inference.
Our recommendations may also disappoint readers

hoping for one-size-fits all solutions or simple statistical
recipes. Each research problem and statistical analysis is
unique, and shortcuts can never replace critical thinking.
There are undoubtedly cases in which the best approach
will be to ignore our advice! But we cannot imagine how
time spent clearly articulating the purpose of the model
could ever be time wasted.
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