Skip to main content
Article
Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs
arXiv
  • N. Sirica, Los Alamos National Laboratory
  • Peter P. Orth, Iowa State University and Ames Laboratory
  • M. S. Scheurer, Harvard University
  • Y. M. Dai, Los Alamos National Laboratory
  • M.-C. Lee, Los Alamos National Laboratory
  • P. Padmanabhan, Los Alamos National Laboratory
  • L. T. Mix, Los Alamos National Laboratory
  • L. X. Zhao, Chinese Academy of Sciences
  • G. F. Chen, Chinese Academy of Sciences
  • B. Xu, Chinese Academy of Sciences
  • R. Yang, Chinese Academy of Sciences
  • B. Shen, University of California, Los Angeles
  • C.-C. Lee, Tamkang University,
  • H. Lin, Academia Sinica
  • T. A. Cochran, Princeton University,
  • S. A. Trugman, Los Alamos National Laboratory
  • J.-X. Zhu, Los Alamos National Laboratory
  • M. Z. Hasan, Princeton University and Lawrence Berkeley National Laboratory
  • N. Ni, University of California, Los Angeles,
  • X. G. Qiu, Chinese Academy of Sciences,
  • A. J. Taylor, Los Alamos National Laboratory
  • D. A. Yarotski, Los Alamos National Laboratory
  • R. P. Prasankumar, Los Alamos National Laboratory
Document Type
Article
Publication Version
Submitted Manuscript
Publication Date
1-1-2020
Abstract

Symmetry plays a central role in conventional and topological phases of matter, making the ability to optically drive symmetry change a critical step in developing future technologies that rely on such control. Topological materials, like the newly discovered topological semimetals, are particularly sensitive to a breaking or restoring of time-reversal and crystalline symmetries, which affect both bulk and surface electronic states. While previous studies have focused on controlling symmetry via coupling to the crystal lattice, we demonstrate here an all-electronic mechanism based on photocurrent generation. Using second-harmonic generation spectroscopy as a sensitive probe of symmetry change, we observe an ultrafast breaking of time-reversal and spatial symmetries following femtosecond optical excitation in the prototypical type-I Weyl semimetal TaAs. Our results show that optically driven photocurrents can be tailored to explicitly break electronic symmetry in a generic fashion, opening up the possibility of driving phase transitions between symmetry-protected states on ultrafast time scales.

Comments

This is a pre-print of the article Sirica, N., P. P. Orth, M. S. Scheurer, Y. M. Dai, M-C. Lee, P. Padmanabhan, L. T. Mix et al. "Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs." arXiv preprint arXiv:2005.10308 (2020). Posted with permission.

Copyright Owner
The Author(s)
Language
en
File Format
application/pdf
Citation Information
N. Sirica, Peter P. Orth, M. S. Scheurer, Y. M. Dai, et al.. "Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs" arXiv (2020)
Available at: http://works.bepress.com/peter-orth/39/