Skip to main content
Article
Neural Networks Relating Alloy Composition, Microstructure and Tensile Properties of α/β Processed TIMETAL 6-4
Metallurgical and Materials Transactions A (2013)
  • Peter C. Collins, Ohio State University - Main Campus
  • Santhosh Koduri, Ohio State University - Main Campus
  • Brian Welk, Ohio State University - Main Campus
  • Hamish L. Fraser, Ohio State University - Main Campus
  • Jaimies S. Tiley, Wright Patterson Air Force Base
Abstract
Bayesian neural networks have been developed, which relate composition, microstructure, and tensile properties of the alloy TIMETAL 6-4 (nominal composition: Ti-6Al-4V (wt pct) after thermomechanical processing (TMP) in the two-phase (α + β)-phase field. The developed networks are able to make interpolative predictions of properties within the ranges of composition and microstructural features that are in the population of the database used for training and testing of the networks. In addition, the neural networks have been used to conduct virtual experiments which permit the functional dependencies of properties on composition and microstructural features to be determined. In this way, it is shown that in the microstructural condition resulting from TMP in the two-phase (α + β) phase field, the most significant contribution to strength is from solid solution strengthening, with microstructural features apparently influencing the balance of a number of properties.
Publication Date
2013
DOI
10.1007/s11661-012-1498-5
Publisher Statement
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.
Citation Information
Peter C. Collins, Santhosh Koduri, Brian Welk, Hamish L. Fraser, et al.. "Neural Networks Relating Alloy Composition, Microstructure and Tensile Properties of α/β Processed TIMETAL 6-4" Metallurgical and Materials Transactions A Vol. 44 Iss. 3 (2013) p. 1441 - 1453
Available at: http://works.bepress.com/peter-collins/6/