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Abstract. In [23] Xia introduced a simple dynamical density basis for par-
tially hyperbolic sets of volume preserving diffeomorphisms. We apply the

density basis to the study of the topological structure of partially hyperbolic

sets. We show that if Λ is a strongly partially hyperbolic set with positive
volume, then Λ contains the global stable manifolds over α(Λd) and the global

unstable manifolds over ω(Λd).

We give several applications of the dynamical density to partially hyperbolic
maps that preserve some acip. We show that if f is essentially accessible and µ

is an acip of f , then supp(µ) = M , the map f is transitive, and µ-a.e. x ∈ M

has a dense orbit in M . Moreover if f is accessible and center bunched, then
either f preserves a smooth measure or there is no acip at all.

1. Introduction. Let M be a closed, connected, n-dimensional manifold, r > 1
and f ∈ Diffr(M) be a Cr diffeomorphism on M . A compact f -invariant subset
Λ ⊂ M is said to be partially hyperbolic if there are a continuous Tf -invariant
splitting of TxM = Esx ⊕ Ecx ⊕ Eux for every x ∈ Λ, a smooth Riemannian metric g
on M for which we can choose continuous positive functions ν, ν̃, γ and γ̃ on Λ with
ν, ν̃ < 1 and ν < γ ≤ γ̃−1 < ν̃−1 such that, for all x ∈ Λ and for all unit vectors
v ∈ Esx, w ∈ Ecx and v′ ∈ Eu,

‖Tf(v)‖ ≤ ν(x) < γ(x) ≤ ‖Tf(w)‖ ≤ γ̃(x)−1 < ν̃−1(x) ≤ ‖Tf(v′)‖. (1)

The notation here is taken from [10]. Such a metric is called adapted (see [16]). If
both Es and Eu are nontrivial, then we say Λ is strongly partially hyperbolic. In
particular the map f is called a (strongly) partially hyperbolic diffeomorphism if
M itself is a (strongly) partially hyperbolic set. It is well known that Es and Eu

are uniquely integrable and tangent to the stable lamination Ws and the unstable
lamination Wu respectively.

In [23] Xia introduced a simple dynamical density basis for general partially
hyperbolic sets. Namely let δ > 0, W s(x, δ) be the local stable manifold through
x ∈ Λ of radius δ. Let Bsn(p) = fnW s(f−np, δ) for each p ∈ Λ and n ≥ 0. The
collection of sets S = {Bsn(p) : n ≥ 0, p ∈ Λ} is called the stable basis on Λ (see
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[23]). Let A ⊂ Λ be a measurable subset. A point p ∈ A is said to be an S-density
point of A if

lim
n→∞

mW s(p)(B
s
n(p) ∩A)

mW s(p)(Bsn(p))
= 1,

where mW s(p) is the leaf-volume induced by restricting the Riemannian metric on

W s(p). Let Ads be the set of S-density points of A. Following [23] we have:

Proposition. Let r > 1, f ∈ Diffr(M) and Λ be a partially hyperbolic set with
positive volume. For each measurable subset A ⊂ Λ, m-a.e. point in A is an
S-density point of A, that is, m(A\Ads) = 0. In words, S forms a density basis.

This simply defined density basis turns out to be useful in the study of the
topological structure of (partially) hyperbolic sets. There is an extensive literature
discussing the topology of (partially) hyperbolic sets. We just name a few that
are closely related to the results here. Bowen showed in [5], there exists C1 horse-
shoe of positive volume (It is also showed in [6] that this fat horseshoe can not
exist among the C2 diffeomorphisms). In [2] Alves and Pinheiro showed that for
a diffeomorphism f ∈ Diffr(M), if Λ is a partially hyperbolic set that attracts a
positive volume set, then Λ contains some local unstable disk (hence Λ cannot be
a horseshoe-like set). Under a much stronger setting, we can get a useful charac-
terization that serves well for later applications. More precisely let α(x) be the set
of accumulation points of {fnx : n ≤ 0} of x ∈ M . For E ⊂ M , let α(E) be the
closure of

⋃
x∈E α(x). Similarly we can define ω(x) and ω(E). We let Adu denote the

set of unstable density points if Λ is strongly partially hyperbolic and Ad = Ads∩Adu.
Similarly m(A\Ad) = 0 for each measurable subset A ⊂ Λ. Then we have

Theorem A. Let f ∈ Diffr(M) for some r > 1 and Λ be a partially hyperbolic set
with positive volume. Then Λ contains the global stable manifolds over α(Λds), that
is, W s(x) ⊂ Λ for each x ∈ α(Λds).

In particular if Λ is a strongly partially hyperbolic set with positive volume, then
Λ contains the global stable manifolds over α(Λd) and the global unstable manifolds
over ω(Λd).

The argument here relies on the bounded distortion estimates and the absolute
continuity of stable and unstable laminations, which fail for C1 maps. See [5,
20]. Although α(Λd) is nonempty, the volume of α(Λd) could be zero (even in the
hyperbolic case). In fact Fisher [13] constructed several hyperbolic sets Λ with
nonempty interior such that α(Λd) are repellers and ω(Λd) are attractors (hence
their volume must be zero).

A point x is said to be backward recurrent if x ∈ α(x), and to be recurrent if
x ∈ α(x) ∩ ω(x). An interesting case is when most points are recurrent. This will
hold in particular if µ(Λ) > 0 for some absolutely continuous invariant probability
measure (acip for short) µ� m. For simplicity we assume that Λ = suppµ.

Corollary B. Let f ∈ Diffr(M) for some r > 1 and Λ a strongly partially hyperbolic
set supporting some acip µ. Then Λ is bi-saturated, that is, for each point p ∈ Λ,
the global stable manifolds and the global unstable manifolds over p lie in Λ.



PARTIALLY HYPERBOLIC SETS AND ACIP 1437

In particular we give a dichotomy for maps f ∈ Diffr(M): either f is a transitive
Anosov diffeomorphism, or each f -invariant hyperbolic set Λ is acip-null, that is,
µ(Λ) = 0 for every acip µ.

Theorem C. Let f ∈ Diffr(M) for some r > 1, µ be an acip and Λ be a hy-
perbolic set with positive µ-measure. Then Λ = M and f is a transitive Anosov
diffeomorphism on M .

The similar result has been proved if the acip µ assumed to be equivalent tom (see
[4, 23]). Moreover it is proved in [6] that for a Cr transitive Anosov diffeomorphism,
the acip must have Hölder continuous density with respect to the volume and be an
ergodic (indeed Bernoulli) measure, see Remark 2. Also note that the condition
that Λ has positive µ-measure for some acip is nontrivial and see [13] for counter-
examples.

Theorem C motivates the analogous generalizations from hyperbolic dynamics
to accessible partially hyperbolic dynamics. Recall that an f -invariant measure µ
is said to be weakly ergodic if for µ-a.e. x, O(x) is dense in supp(µ). Following
generalizes the well known result of Brin [7] to the presence of acip.

Theorem D. Let f ∈ SPHr(M) for some r > 1 be essentially accessible. If there
exists some acip µ of f , then supp(µ) = M , the map f is transitive, and the acip
µ is weakly ergodic. In particular O(x) is dense in M for µ-a.e. x ∈M .

In the following we assume r = 2 for simplicity. Burns and Wilkinson proved
in [10] that if a map f ∈ SPH2(M) is center bunched, then every measurable bi-
essentially saturated set is essentially bi-saturated. Applying this to acip we have

Proposition. Let f ∈ SPH2(M) be essentially accessible and center bunched. If
there exists some acip µ, then µ must be equivalent to the volume. In particular µ
is ergodic.

Note that the arguments in [10] still work if f ∈ SPHr(M) for r > 1, as long
as we assume strong center bunching (see [10, Theorem 0.3]). So our results also
extend to this setting. Then applying the cohomology theory developed in [22], we

show that the acip is a smooth measure, that is, the density dµ
dm of µ with respect

to m is Hölder continuous on M , bounded and bounded away from zero.

Theorem E. Let f ∈ SPH2(M) be accessible and center bunched. If there exists
some acip, then the acip must have Hölder continuous density with respect to the
volume of M . In words, either f preserves some smooth measure or there is no acip
for f .

Combining the results in [12] we have the following direct corollary:

Corollary F. The set of maps that admit no acip contains a C1 open and dense
subset of C2 strongly partially hyperbolic and center bunched diffeomorphisms. In
particular the set of maps that admit no acip contains a C1 open and dense subset
of C2 strongly partially hyperbolic diffeomorphisms with dim(Ec) = 1.

Finally we remark that although the volume measure need not be f -invariant,
there always exists some f -invariant measures. The density argument combines the
dynamics of acip and the dynamics of volume on M . This is why most results of



1438 PENGFEI ZHANG

volume-preserving partially hyperbolic systems have parallel generalizations to the
systems with acip.

2. Dynamical density basis for partially hyperbolic sets. In this section we
will consider Cr diffeomorphisms for some r > 1 and partially hyperbolic invariant
sets with positive volume. More precisely let M be a closed and connected smooth
manifold. Each Riemannian metric g on M induces a (geodesic) distance d on M
and a normalized volume measure m on M . Let B be the Borel σ-algebra of M . A
Borel probability measure µ on M is said to be absolutely continuous with respect
to m, denoted µ � m, if µ(A) = 0 for each set A ∈ B with m(A) = 0, and to
be equivalent to m if µ � m and m � µ. It is evident for any other Riemannian
metric g′ compatible with g, the induced volume of g′ is equivalent to m.

Let f ∈ Diffr(M) for r > 1 and Λ be a compact partially hyperbolic invariant set
with positive volume. In the following we always assume that the stable subbundle
Es is nontrivial on Λ and m is the normalized volume measure on M induced by
some Riemannian metric adapted to the invariant splitting (see [16]).

Since r > 1, it is well known that the stable bundle Es is Hölder continuous over
Λ (the Hölder exponent may be much smaller than r−1, see [9]) and is tangent to the
stable lamination Ws over Λ. (A lamination over Λ is a partial foliation which may
not foliate an open neighborhood of Λ, see [17].) In case that Λ = M , Ws turns
out to be a foliation. As in the hyperbolic case, the family Ws is transversally
absolutely continuous (see [8, 9, 1]). We use W s(x, δ) to denote the local stable
manifold through x ∈ Λ centered at x and of radius δ in the stable leaf W s(x).
It is worth to point out that the definition of density point given by (3) dose not
depend on the choice of δ (see Remark 1). By slightly increasing ν and decreasing
δ if necessary, we can assume that for each x ∈ Λ the following holds:

if p, p′ ∈W s(x, δ), then d(fp, fp′) ≤ ν(p)d(p, p′). (2)

In particular we have fW s(x, δ) ⊆W s(fx, δ ·ν(x)) for all x ∈ Λ.
Before moving on, let’s fix some notations as in [10]. Let S ⊂M be a submanifold

of M , mS be the volume measure on S induced by the restricted Riemannian
metric g|S on S. In particular if S = W s(x), we abbreviate the induced measure
as ms,x. Denote ms,x(A) the restricted submanifold measure for a measurable
subset A ⊆ W s(x). This should not be confused with conditional measures. Let
η = min{‖Tf(v)‖ : v ∈ TM with ‖v‖ = 1} and ν = supp∈Λ ν(p). Clearly 0 < η ≤
ν(p) ≤ ν < 1 by compactness. For each p ∈ Λ we let pi = f ip for i ∈ Z, ν0(p) = 1
and νn(p) = ν(pn−1) · · · ν(p0) for n ≥ 1. Let Bsn(p) = fnW s(p−n, δ). Since Λ is
f -invariant, we have Bsn(p) ⊂W s(p, δ ·νn(p−n)).

Since each stable manifold is a Cr submanifold of the Riemannian manifold M
and f is Cr for r > 1, the stable Jacobian Js(f, x) of the restricted map Tf :
TxW

s(p) → TfxW
s(fp) (for x ∈ W s(p, δ) and p ∈ Λ) is well defined and Hölder

continuous with uniform Hölder exponent and Hölder constant. That is, there
exist α > 0 and C0 > 0 such that for any p ∈ Λ and x, y ∈ W s(p, δ) we have
|Js(f, x) − Js(f, y)| ≤ C0d(x, y)α. Also there exists J∗ ≥ 1 such that 1/J∗ ≤
Js(f, x) ≤ J∗ for all x ∈ W s(p, δ) and p ∈ Λ. Decreasing δ again if necessary we

assume C1 =
∏∞
k=0

(1+J∗C0δ
ανkα)

(1−J∗C0δανkα)
<∞.

Let S = {Bsn(p) : n ≥ 0, p ∈ Λ} be the stable basis of Λ. It is easy to see that
{Bsn(p) : n ≥ 0} forms a nesting sequence of neighborhoods of p ∈ Λ relative to
W s(p, δ) and Bsn(p) shrinks to p as n → ∞. Note that the basis here is in the
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leafwise sense and may have infinite eccentricity. The proposition below states that
the stable basis S behaves well in the sense of [19]:

Proposition 1. The following properties hold for the stable basis S:

1. For any p ∈ Λ, ms,p(B
s
n(p))→ 0 if and only if n→∞.

2. For any k ≥ 0, there exists ck ≥ 1 such that
ms,p(Bsn(p))
ms,p(Bsn+k(p)) ≤ ck for all p ∈ Λ,

n ≥ 0.
3. There exists L ∈ N such that for any p, q ∈ Λ, n ≥ 0, if Bsn+L(p)∩Bsn+L(q) 6=
∅, then Bsn+L(p) ∪Bsn+L(q) ⊆ Bsn(p) ∩Bsn(q).

The properties listed above appeared in [19] (in a general setting) and is named
to be volumetrically engulfing (also see [23] for example). The proof mainly uses
the distortion estimates of Cr maps.

Let A ∈ BΛ be a measurable subset of Λ. Recall that a point x ∈ A is said to be
an S-density point of A if

lim
n→∞

ms,p(B
s
n(p) ∩A)

ms,p(Bsn(p))
= 1. (3)

Let Ads be the set of S-density points of A.

Remark 1. For different δ’s, the induced stable bases are internested (see [10,
Lemma 2.1] for details). So the definition of S-density point given by (3) is inde-
pendent of the choice of the radius δ of the local stable manifolds and the choice of
the adapted Riemannian metric on M .

For each A ∈ BΛ and each p ∈ Λ, A ∩W s(p, δ), the intersection of two Borel
measurable subsets, is a Borel measurable subset of the submanifoldW s(p, δ). (Note
that if A is Lebesgue measurable, above relation will hold for m-a.e. p ∈ Λ by
Fubini’s Theorem.) Let us denote Adp the set of S-density points of A ∩W s(p, δ).

Clearly we have Ads =
⋃
p∈ΛA

d
p.

Proposition 2. Let f ∈ Diffr(M) for some r > 1 and Λ be a partially hyperbolic
set with positive measure. For each subset A ∈ BΛ, we have

1. for each p ∈ Λ, ms,p-a.e. point in W s(p, δ) ∩ A is an S-density point of A:
ms,p(W

s(p, δ) ∩A\Adp) = 0.

2. m-a.e. point of A is an S-density point of A: m(A\Ads) = 0.

Moreover if A ∈ BΛ is f -invariant, so is Ads.

Proof. The first item follows by applying Theorem 3.1 in [19] for the stable basis
S to each intersection A ∩W s(p, δ). Proposition 1 ensures that S forms a density
basis in this leafwise sense.

Using the absolute continuity of the stable foliation Ws and the relation Ads =⋃
p∈ΛA

d
p, we have m(A\Ads) = 0. Hence S also forms a density basis in the ambient

sense.
For the last item, we note that each local leaf W s(s, δ) is a Cr submanifold of M

and the restriction of f on local stable manifolds is diffeomorphic onto their images.
So p ∈ Λ is an S-density point of A ∩W s(p, δ) (or equally, of A) if and only if fp
is an S-density point of A ∩W s(fp, δ). This completes the proof.
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3. The topological structure of partially hyperbolic sets. In this section
we give some descriptions of the topological structure of partially hyperbolic sets
with positive volume. As in Section 2 we let M be a closed connected manifold,
f ∈ Diffr(M) for some r > 1 and Λ a partially hyperbolic set with positive volume.

Given a Borel subset A ⊂ Λ, we consider the family of functions ηn on Λ as

ηn(x) = ms,x(Bsn(x)\A)/ms,x(Bsn(x)).

The following result shows the increasing occupation of an invariant set A in the
local stable manifolds along the backward iterates of an S-density point of A.

Lemma 3.1. There exists a constant C ≥ 1 such that given an f -invariant subset
A ∈ BΛ, ms,x−n(W s(x−n, δ)\A) ≤ C · ηn(x) for each x ∈ Λ and n ≥ 0.

Proof. We only need to adapt the notations in [23, Lemma 3.2], since the proof is
essentially the same. Let A be an invariant subset of Λ and x ∈ Λ be fixed. Let Bkn =
fkW s(x−n, δ) and Dk

n = Bkn\A for each 0 ≤ k ≤ n. Note that B0
n = W s(x−n, δ) is a

local stable leaf and Bnn = Bsn(x) is an element in the stable basis S. Then using the
constant C5 given by [23, Page 816], we have ms,x−n(D0

n) ≤ C5 ·ηn(x) ·ms,x−n(B0
n).

Applying B0
n = W s(x−n, δ) and D0

n = W s(x−n, δ)\A, we finish the proof with a
uniform constant C = C5 ·maxp∈Λms,p(W

s(p, δ)).

Recall that α(x), the α-set of x, is the set of accumulation points along the
backward orbit {x, f−1x, · · · }. Let α(E) be the closure of

⋃
x∈E α(x). Note that

for each point x ∈ Λ and each subset E ⊂ Λ, the sets α(x) and α(E) are compact
f -invariant subsets of Λ.

Theorem 3.2. Let f ∈ Diffr(M) for some r > 1 and Λ a partially hyperbolic set
with positive volume. Then Λ contains the global stable manifolds over α(Λds).

Proof. First let us consider y ∈ α(x) for some x ∈ Λds . Pick a sequence of times
ni → +∞ such that x−ni → y (clearly all these points are in Λ). By Lemma 3.1 we
have ms,x−n(W s(x−n, δ)\Λ) ≤ C ·ηn(x). (Note that ηn(x)→ 0 as n→∞.) Passing

to a subsequence if necessary, we can assume that W s(x−ni , δ)∩Λ contains a 1
i -dense

subset Ex−ni ,i
of W s(x−ni , δ). Let E = lim supi→∞Ex−ni ,i

:=
⋂
k≥1

⋃
i≥k Ex−ni ,i

.
It is clear that E ⊂ Λ since Λ is compact. By continuity of the stable manifolds, E
contains a dense subset of W s(y, δ), and hence W s(y, δ) ⊂ E. So W s(y, δ) ⊂ Λ for
each y ∈ α(x) and each x ∈ Λds .

Still by the compactness of Λ, W s(y, δ) ⊂ Λ for each y ∈ α(Λds). By the invariance
of Λ and α(Λds), the global stable manifolds W s(y) ⊂ Λ for each y ∈ α(Λds).

If Λ is a strongly partially hyperbolic set, we can also consider the unstable
density basis U = {Bun(p) = f−nWu(fnp, δ) : n ≥ 0, p ∈ Λ}. Let Adu be the set
of U-density point of A and Ad = Ads ∩ Adu. Following exactly the same line as in
Section 2 we get m(A\Ad) = 0 for each measurable subset A of Λ. Similarly we
consider the ω-sets ω(x) and ω(E). For strongly partially hyperbolic sets we have

Theorem 3.3. Let f ∈ Diffr(M) for some r > 1 and Λ a strongly partially hy-
perbolic set with positive volume. Then Λ contains the global stable manifolds over
α(Λd) and the global unstable manifolds over ω(Λd).

So every partially hyperbolic set with positive volume is far from being a topo-
logical horseshoe-like set. Although the sets α(Λd) and ω(Λd) are always nonempty,
we do not know how large they could be and when they could intersect with each
other. This can be improved if we require that Λ admits some recurrence.
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Definition 3.4. A point x is said to be backward recurrent if x ∈ α(x). The
definition of forward recurrent is analogous. A point is said to be recurrent if it is
both backward and forward recurrent.

Definition 3.5. Let E be a measurable subset of Λ. Then E is said to be s-
saturated if for each x ∈ E, W s(x) ⊂ E. Similarly we can define u-saturated sets.
Then the set E is bi-saturated if it is s-saturated and u-saturated.

Corollary 1. Let f ∈ Diffr(M) for some r > 1 and Λ be a strongly partially
hyperbolic set supporting some acip µ. Then Λ is bi-saturated.

Proof. By Poincaré recurrence theorem [15, Theorem 3.3], we have that µ-a.e. x ∈ Λ
is recurrent, that is, µ(RecΛ) = 1 where RecΛ is the set of recurrent points in Λ.
Also we have µ(Λ\Λd) = 0 since µ � m and m(Λ\Λd) = 0. So µ(Λd ∩ RecΛ) = 1
and the closed set α(Λd) contains Λd∩RecΛ, which is a subset of full µ-measure and
hence dense in suppµ = Λ. So α(Λd) = Λ and the set Λ is s-saturated by Theorem
3.3. Similarly we can show Λ is u-saturated. This completes the proof.

4. Regularity of acip: Hyperbolic case. In this section we consider the hyper-
bolic sets. We show that if a hyperbolic set is of positive acip-measure, then the
map is a transitive Anosov diffeomorphism. It is well known that for a transitive
Anosov diffeomorphism, the acip is not only equivalent to the volume, but also has
a smooth density with respect to the volume. This motivates the generalization to
partial hyperbolic systems in next section.

Theorem 4.1. Let f ∈ Diffr(M) for some r > 1, µ be an acip and Λ be a hy-
perbolic set with positive µ-measure. Then Λ = M and f is a transitive Anosov
diffeomorphism on M .

Proof. By considering Λµ = Λ∩ supp(µ) and µ|Λµ if necessary, we can assume that
Λ = supp(µ). By Corollary 1, we have that Λ is bi-saturated. By the uniform
hyperbolicity of Λ, there exists ε > 0 such that B(x, ε) ⊂

⋃
y∈Wu(x,δ)W

s(y, δ) ⊂ Λ

for each x ∈ Λ. So the set Λ is both closed and open, whence coincides with
the whole manifold M . Since M is a hyperbolic set, the map f is an Anosov
diffeomorphism. Moreover f is transitive since M = Λ = supp(µ) ⊂ Ω(f) ⊂M (by
spectral decomposition theorem, see [6]).

Remark 2. Spectral decomposition theorem actually implies that f is mixing.
Moreover by Corollary 4.13 and Theorem 4.14 in [6], µ coincides with the equilib-
rium state µφu of the potential φu(x) = − log(Ju(f, x)), and has Hölder continuous
density with respect to m. Furthermore the smooth measure µ is ergodic and
Bernoulli.

Remark 3. The regularity of f ∈ Diffr(M) for some r > 1 is an essential assump-
tion in a two-fold sense. In [20] Robinson and Young constructed a C1 Anosov dif-
feomorphism with non-absolutely continuous stable and unstable foliations, which
does have some closed invariant set with positive volume. In [5] Bowen constructed
a C1 horseshoe ΩB for some fB ∈ Diff1(M) with positive volume and absolutely
continuous local stable and unstable laminations, such that fB dose preserve the
restriction mΩB

1 (although fB is not volume–preserving).

1This follows from his construction that the Jacobian J(fB , x) = 1 for every point x ∈ ΩB .
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5. Regularity of acip: Partially hyperbolic case. In this section we show anal-
ogous results in Section 4 hold for accessible strongly partially hyperbolic systems.
Namely, let f ∈ SPHr(M) for some r > 1 be a Cr strongly partially hyperbolic dif-
feomorphism and m be the volume measure associated to some Riemannian metric
adapted to the partially hyperbolic splitting. LetWs be the stable foliation tangent
to the stable bundle and Wu the unstable foliation tangent to the unstable bundle.

Definition 5.1. Let E be a measurable subset of M . Then E is said to be essen-
tially s-saturated if there exists an s-saturated set Ês with m(E4Ês) = 0. Similarly
we can define essentially u-saturated sets. The set E is essentially bi-saturated if

there exists a bi-saturated set Êsu with m(E4Êsu) = 0, and bi-essentially saturated
if E is essentially s-saturated and essentially u-saturated.

Definition 5.2. A strongly partially hyperbolic diffeomorphism f : M → M is
said to be accessible if each nonempty bi-saturated set is the whole manifold M .
The map f is essentially accessible if every measurable bi-saturated set has either
full or zero volume.

Theorem 5.3. Let f ∈ SPHr(M) be essentially accessible. If there exists some
acip for f , then the support of the acip is the whole manifold and the map f is
transitive.

Before the proof, we mention that there exists a C1 open set U ⊂ SPH1(M) such
that each f ∈ U is accessible but non-transitive (see [18]).

Proof. Let µ be an acip of f . Then the support supp(µ) of µ is a strongly partially
hyperbolic set supporting µ, whence is a bi-saturated set by Corollary 1. Essential
accessibility of f implies that m(supp(µ)) = 1. Hence supp(µ) = M since supp(µ)
is closed.

Suppose on the contrary that f is not transitive. That is, there exists an f -
invariant nonempty open set U such that M\U 6= ∅. So the set Λ = M\U is
f -invariant, closed with nonempty interior. Hence µ(Λ) > 0 and µ|Λ is again an
acip. Corollary 1 implies that Λ is bi-saturated. Since f is essentially accessible,
we have m(Λ) = 1 and m(U) = 0. This contradicts the openness of U .

Generally for a transitive map f , the set Tranf of points with dense orbit could
be measure-theoretically meagre (although topologically residual). In [21, Section
5.7] they extracted the following property which can be viewed as a stronger form
of transitivity (or a weaker form of ergodicity).

Definition 5.4. An f -invariant measure µ is said to be weakly ergodic if the set of
points with dense orbit in supp(µ) has full µ-measure.

Clearly ergodicity implies weak ergodicity, and weak ergodicity implies the tran-
sitivity of the subsystem (f, supp(µ)). In the following we show some analogous
results in [7, 11, 21] hold for acip. To this end let us introduce some necessary

notations. Let µ be an acip of f ∈ SPHr(M) for some r > 1 and φ = dµ
dm

be the Radon-Nikodym derivative of µ relative to m. Note that the Jacobian
Jf : M → R, x 7→ Jac(Df : TxM → TfxM) is a Hölder continuous function on
M , bounded and bounded away from 0. For each measurable subset A ⊂ M we
have:∫

A

φ(x)dm(x) = µ(A) = µ(fA) =

∫
fA

φ(y)dm(y) =

∫
A

φ(fx)Jf (x)dm(x).
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So the following holds:

φ(fx)Jf (x) = φ(x) for m− a.e. x ∈M. (4)

Let us consider the set E = {x ∈ M : φ(x) > 0}. Clearly E is measurable and
m(E) > 0. By (4) we see that E is also f -invariant. Restricted to the set E, the
measure m|E is equivalent to µ. So ‘(P) for m-a.e. x ∈ E’ is the same as ‘(P) for
µ-a.e. x ∈ E’. In this case we will say ‘(P) a.e. x ∈ E’ for short.

Proposition 3. Let f ∈ SPHr(M), µ be an acip, φ be the Radon-Nikodym deriv-
ative of µ and E = {x ∈M : φ(x) > 0}. Then E is bi-essentially saturated.

Note that all essential saturations are defined with respect the volume. If f is
volume preserving, then every invariant set is always bi-essentially saturated by the
Hopf argument. See [9, Lemma 6.3.2] and [21, Theorem 5.5].

Proof. It suffices to prove that E is essentially s-saturated. Let Bsn(x) = fnW s(x−n,
δ) and Eds be the set of S-density points of E. By Proposition 2 we have m(E\Eds ) =
0.

Consider the functions ηn(x) = mW s(x)(B
s
n(x)\E)/mW s(x)(B

s
n(x)) for n ≥ 1. So

ηn(x)→ 0 as n→ +∞ for a.e. x ∈ E. For each ε > 0, there exists a subset Eε ⊂ E
with m(E\Eε) < ε on which ηn converges uniformly to zero. Note that a.e. x ∈ Eε
is recurrent. For a recurrent point x ∈ Eε, let {ni : i ≥ 1} be an increasing sequence
of the forward recurrent times of x with respect to Eε, that is, fnix ∈ Eε for each
i.

By Lemma 3.1, there exists a uniform constant C ≥ 1 such that for the point
y = fnix and n = ni the following holds:

mW s(x)(W
s(x, δ)\E) ≤ C · ηni(fnix).

Passing ni to ∞ we have mW s(x)(W
s(x, δ)\E) = 0 for a.e. x ∈ Eε.

Since ε can be arbitrary small, we have mW s(x)(W
s(x, δ)\E) = 0 for a.e. x ∈ E.

Since E is f -invariant and f is smooth between leaves of Ws, mW s(x)(f
−nW s(fnx,

δ)\E) = 0 for each n ≥ 1 and a.e. x ∈ E. Hence mW s(x)(W
s(x)\E) = 0 for

a.e. x ∈ E. It follows from the absolute continuity of Ws that E is essentially
s-saturated. Similarly we can show E is essentially u-saturated. This completes the
proof.

Theorem 5.5. Let f ∈ SPHr(M) be essentially accessible. Then every acip is
weakly ergodic. In particular if µ is an acip, then the orbit O(x) is dense in M for
µ-a.e. x ∈M .

This result is well known if the system is volume preserving (see [7, 11, 21]). The
idea of the proof is similar to Lemma 5 in [11]. Also see Proposition 5.17 in [21].

Proof. Let φ be the Radon-Nikodym derivative of µ with respect to m and E =
{x ∈M : φ(x) > 0}. Then E = supp(µ) = M by Theorem 5.3 since f is essentially
accessible. By Proposition 3, we have E is bi-essentially saturated.

Step 1. We will show that for each open ball B, O(x) ∩ B 6= ∅ for m-a.e. point
x ∈ E. To the end we first consider G(B), the subset of points x which has a
neighborhood U of x such that O(y)∩B 6= ∅ for m-a.e. y ∈ U ∩E. Evidently G(B)
is a nonempty open subset (and f -invariant).
Claim. G(B) is bi-saturated. So m(G(B)) = 1 since f is essentially accessible.
Proof of Claim. Let us prove G(B) is s-saturated. It suffices to show that q ∈
G(B) for each q ∈ W s(z, δ) and each p ∈ G(B), where the size δ is fixed. So the
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justification lies in a local foliation box X of Ws around p. Note that we can (and

we do) replace E by its saturate Ês in the definition of G(B) since E is essentially
s-saturated. For a point x ∈ X, denote W s

X(x) the component of W s(x) ∩X that
contains x. Let U be a small neighborhood of p with O(y) ∩ B 6= ∅ for m-a.e.

y ∈ U ∩ Ês. Let R be the set of recurrent points z ∈ U ∩ Ês whose orbits enter

B. Note that m(U ∩ Ês\R) = 0 since m|E is equivalent to the invariant measure µ

and m(E4Ês) = 0. So we can pick a smooth transverse T of Ws
X in U such that

T ∩W s
U (p) 6= ∅ and mT (Ês\R) = 0, where mT is the induced volume on T (It is

helpful to keep in mind that Ês is not only essentially s-saturated, but s-saturated).
Now we have

(I) For each x ∈ R and y ∈ W s
X(x), we have O(y) ∩ B 6= ∅. This follows from

that d(fnx, fny)→ 0 and the point x is recurrent: the orbit of x will enter B
infinite many times.

(II) The set
⋃
x∈T∩RW

s
X(x) has full m-measure in the set

⋃
x∈T∩ÊsW

s
X(x). This

follows from that both sets are measurable and Ws
X -saturated, Ws

X is a

transversally absolutely continuous foliation of X and mT (Ês\R) = 0.
(III) The set

⋃
x∈T W

s
X(x) contains an open neighborhood V of q. This follows

from that the holonomy maps along Ws
X are homeomorphisms.

Also note that
⋃
x∈T∩ÊsW

s
X(x) =

(⋃
x∈T W

s
X(x)

)
∩ Ês. So O(y)∩B 6= ∅ for m-a.e.

y ∈ V ∩ Ês. This implies q ∈ G(B) and hence G(B) is s-saturated. Similarly we
have G(B) is also u-saturated and hence m(G(B)) = 1 by the essential accessibility
of f . This completes the proof of Claim.

Now let F(B) = {x ∈ E : O(x)∩B 6= ∅}. We need to show that m(E\F(B)) = 0.
To derive a contradiction we assume m(E\F(B)) > 0 and let p ∈ G(B) be a
Lebesgue density point of E\F(B) (here we use m(G(B)) = 1). So there exists an
open neighborhood U of p such that O(x) ∩ B 6= ∅ for a.e. x ∈ U ∩ E. Then we
have m(U ∩ E\F(B)) = 0. But this is impossible since we choose p as a Lebesgue
density point of E\F(B). So we have m(E\F(B)) = 0 for each open ball B.

Step 2. Since M is compact, there exists a countable collection of open balls
{Bn : n ≥ 1} which forms a subbasis of the topology on M . Let F(Bn) be given
by Step 1. We have m(E\F ) = 0 where F =

⋂
n≥1 F(Bn). Now for each x ∈ F ,

O(x) ∩ Bn 6= ∅ for each n ≥ 1. So the orbit O(x) is dense in M for each point
x ∈ F . Equivalently we see µ-a.e. x ∈M has a dense orbit. So the acip µ is weakly
ergodic. This completes the proof.

Next we recall a famous conjecture due to Pugh–Shub [19]:

Conjecture. If f ∈ SPH2
m(M) is volume preserving with essential accessibility

property, then (f,m) is ergodic.

Similarly we can ask: if f ∈ SPHr(M) is essentially accessible and preserves
some acip µ, is µ an ergodic measure? This is closely related to the uniqueness of
acip. Clearly the ergodicity follows if there is a unique acip. On the other hand,
let us assume that exist two acip’s: µ = φm and ν = ψm. Let E = {x : φ(x) > 0}
and F = {x : ψ(x) > 0}. If m(E4F ) > 0 we can further assume E and F are
disjoint. Proposition 3 implies that both E and F are bi-essentially saturated (and
nontrivial). In particular none of them can be essentially bi-saturated.

We do not know whether such example can exist, or generally a bi-essentially sat-
urated set is automatically essentially bi-saturated. However Burns and Wilkinson
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showed that a sufficient condition for the later property is center bunching. From
now on we assume r = 2 for simplicity.

Definition 5.6. A strongly partially hyperbolic diffeomorphism f is center bunched
if the functions ν, ν̃ and γ, γ̃ given in (1) can be chosen so that: ν < γγ̃ and ν̃ < γγ̃.

Proposition 4 (Corollary 5.2 in [10]). Let f ∈ SPH2(M) be center bunched. Then
every measurable bi-essentially saturated subset is essentially bi-saturated.

Corollary 2. Let f ∈ SPH2(M) be essentially accessible and center bunched. If
there exists some acip, then the acip must be equivalent to the volume. Moreover
the acip µ is ergodic.

Proof. Let µ be an acip and φ be the Radon-Nikodym derivative of µ with respect
to m. We showed that E = {x ∈ M : φ(x) > 0} is bi-essentially saturated.
Center bunching implies that E is also essentially bi-saturated. Since f is essentially
accessible and m(E) > 0, m(E) = 1 and hence µ is equivalent to the volume m. So
the acip is unique and hence ergodic.

Remark 4. In [10], a map f is said to be volume preserving if f preserves some
invariant measure µ that is equivalent to the volume. They proved that if f ∈
SPH2(M) is essentially accessible, center bunched and preserves some µ equivalent
to the volume, then the measure µ is ergodic (and Kolmogorov). By Corollary 2,
we also see that if f ∈ SPH2(M) is essentially accessible and center bunched, then
either f is volume preserving in the broad sense, or there exists no acip at all.

Followed by Corollary 2 we get that the density φ = dµ
dm of an acip is positive a.e.

on M . Now we use Cohomology Theory developed in [22] to improve the regularity
of the Radon-Nikodym derivative of µ. Namely let ψ : M → R be a potential on
M and consider the cohomological equation on M :

ψ = Ψ ◦ f −Ψ. (5)

Proposition 5 (Theorem A, part II and III, in [22]). Let f ∈ SPH2(M) be acces-
sible, center bunched, and volume-preserving in the broad sense. Let ψ : M → R
be a Hölder continuous potential. If there exists a measurable solution Ψ such that
(5) holds for a.e. x ∈M , then there is a Hölder continuous solution Φ of (5) with
Φ = Ψ a.e. x ∈M .

Now we let f ∈ SPH2(M) be essentially accessible and center bunched, µ be an

acip. Let ψ = − log Jf , φ = dµ
dm and Ψ = log φ. Now ψ is a C1 function and Ψ is a

well defined measurable function on M . Corollary 2 implies that Ψ is a measurable
solution of the cohomological equation (5). Then applying Proposition 5 we get a
Hölder continuous solution Φ of (5) which coincides with Ψ a.e.. It is evident that
µ = eΦm and the derivative eΦ is bounded and bounded away from zero on M .
Such a measure µ is called a smooth measure. So we have

Theorem 5.7. Let f ∈ SPH2(M) be accessible and center bunched. If there exists
some acip, then the acip must have a Hölder continuous derivative with respect to
the volume of M which is also bounded and bounded away from 0. In words, either
f preserves a smooth measure or there is no acip of f .

In particular center bunching holds whenever Ec is one-dimensional. As a corol-
lary, we obtain:
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Corollary 3. Let f ∈ SPH2(M) be accessible and dim(Ec) = 1. Then either f
preserves a smooth measure or there is no acip of f .

Let CB2(M) ⊂ SPH2(M) be the collection of C2 strongly partially hyperbolic
diffeomorphisms that are center bunched. Clearly CB2(M) forms an open subset
of SPH2(M). Applying Theorem 5.7 and the result in [12] we have

Theorem 5.8. The set of maps that admit no acip contains a C1 open and dense
subset of CB2(M). In particular the set of maps that admit no acip contains a
C1 open and dense subset of C2 strongly partially hyperbolic diffeomorphisms with
dim(Ec) = 1.

The main obstruction for C2 denseness in Theorem 5.8 is that we do not know
whether stable accessibility is C2 dense in SPH2(M).

Proof. Dolgopyat and Wilkinson proved in [12] that there is a C1 dense subset of
stably accessible diffeomorphisms in SPH2(M) (also C1 dense in CB2(M)). Starting
with arbitrary f ∈ CB2(M), we first perturb it to a stably accessible one, say
f1. By C1 closing lemma, there exists f2 ∈ CB2(M) close to f1 that has some
periodic point. We can assume that f2 is also stably accessible since we can make
it arbitrary close to f1. By Franks’ Lemma [14] we can assume that the periodic
point p is hyperbolic with period k and the Jacobian of Tfk2 : TxM → TxM has
absolute value different from 1. These properties hold robustly for all maps in a
small neighborhood U ⊂ CB2(M) of f2.

Let g ∈ U and pg be the continuation of p. By the choice of U , we know that
g is accessible and center bunched. If g admits some acip µ, then by Theorem 5.7
µ = φm for some Hölder continuous function φ which is bounded and bounded
away from zero. By Equation (4) we have φ(pg) = Jgk(pg)φ(gkpg) = Jgk(pg)φ(pg).
This is impossible sice |Jgk(pg)| 6= 1 and φ(pg) 6= 0. So each g ∈ U admits no acip.

Hence there exists an open set U of maps C1 close to f in which each map admits
no acip. This finishes the proof.

Remark 5. It is well known that among C2 Anosov diffeomorphisms the ones that
admits no acip are open and dense, see [6, Corollary 4.15]. This is due to the fact
that there are many periodic points for every Anosov diffeomorphisms. Recently
Avila and Bochi [3] proved that a C1-generic map in C1(M,M) has no acip. In
particular a C1-generic map in Diff1(M) has no acip.
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