Skip to main content
Presentation
Random Neural Networks for the Adaptive Control of Packet Networks
Artificial Neural Networks - ICANN 2006: 16th International Conference, Athens, Greece, September 10-14, 2006 Proceedings, Part I
  • Michael Gellman, Imperial College
  • Peixiang Liu, Nova Southeastern University
Event Location / Date(s)
Athens, Greece / September 10-14, 2006
Document Type
Conference Proceeding
Presentation Date
9-10-2006
ISSN or ISBN
0302-9743
Disciplines
Description
The Random Neural Network (RNN) has been used in a wide variety of applications, including image compression, texture generation, pattern recognition, and so on. Our work focuses on the use of the RNN as a routing decision maker which uses Reinforcement Learning (RL) techniques to explore a search space (i.e. the set of all possible routes) to find the optimal route in terms of the Quality of Service metrics that are most important to the underlying traffic. We have termed this algorithm as the Cognitive Packet Network (CPN), and have shown in previous works its application to a variety of network domains. In this paper, we present a set of experiments which demonstrate how CPN performs in a realistic environment compared to a priori-computed optimal routes. We show that RNN with RL can autonomously learn the best route in the network simply through exploration in a very short time-frame. We also demonstrate the quickness with which our algorithm is able to adapt to a disruption along its current route, switching to the new optimal route in the network. These results serve as strong evidence for the benefits of the RNN Reinforcement Learning algorithm which we employ.
DOI
10.1007/11840817_33
Citation Information
Michael Gellman and Peixiang Liu. "Random Neural Networks for the Adaptive Control of Packet Networks" Artificial Neural Networks - ICANN 2006: 16th International Conference, Athens, Greece, September 10-14, 2006 Proceedings, Part I (2006) p. 313 - 320
Available at: http://works.bepress.com/peixiang-liu/17/