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exhibiting disorientation signs as shown by their 
droopy tail (right Figure 10).  This lasted for about 
4 min. All zebrafish were active again after 5 min. 
It is important to note that these effects were 
induced by the centrifugation process and not by 
using any of the neuroactive or neurotoxic 
substances that commonly provoke this type of 
behavior (Weichert et al., 2017; Lee and Freeman, 
2014). 

Furthermore, as illustrated in Figure 11, the 
exposure of zebrafish larvae to centrifugation 
revealed that this stressor led to the formation of 
more chaotic patterns of zebrafish movement as 
compared to the well-defined trajectories of fish 
not exposed to centrifugation as observed during 
30 min data collection process with the 
DanioVision® (Noldus) behavioral tracking 
system. 

Radial and Tangential Angular Velocity Maps 

Figure 12 depicts various contour map 
representations of the radial and tangential 
velocities in mm/s for representative wells for a 
given condition. Figure 12A and Figure 12B show 
the radial and tangential velocities for wells C4 
and C8, respectively. The maximum radial 
velocities were 80.58 mm/s and 87.28 mm/s, and 
the maximum tangential velocities recorded were 
77.99 mm/s and 118.4 mm/s, respectively for 
these wells. Similarly, for wells E1 and E5 (Figure 
12C and Figure 12D) the radial velocities were 
105.6 mm/s and 43.2 mm/s, while the tangential 
velocities were 156.3 mm/s and 49.85 mm/s. The 
radial velocities for D3 and D6 wells (Figure 12E 
and Figure 12F) were 56.29 mm/s and 52.24 
mm/s, and the tangential velocities were 35.38 
mm/s and 44.91 mm/s, respectively. The means of 
the radial velocities for each well (C4, C8, E1, E5, 
D3, and D6) were 0.86 mm/s, 1.81 mm/s, 0.52 
mm/s, 0.46 mm/s, 0.34 mm/s, and 0.44 mm/s, 
respectively. The means of the tangential 
velocities for these wells were 3.63 mm/s, 30.54 
mm/s, 3.43 mm/s, 3.30 mm/s, 3.27 mm/s, and 
3.30 mm/s, respectively. Note that both radial and 
tangential velocities are notably smaller for the 
larvae exposed to 25ºC if compared with those 
velocities for larvae exposed at reference or 
higher than reference temperatures. The sum of all 
the radial and tangential velocities for each 
condition was analyzed. For instance, the sum of 
the radial velocities for larvae exposed to 32ºC is 

greater than that for larvae at reference 
temperature and for larvae at 25ºC.  A smaller 
difference is observed between 32ºC and 28.5ºC 
conditions, which may explain better adaptability 
of the larvae at slightly larger temperatures than at 
lower temperatures. This behavior is consistent 
for other wells. 

DISCUSSION 
There is a significant interest in using ISS for 

both conducting research and habitation for the 
next decades. However, such missions are 
currently burdened by the severe consequences 
space has on human health. Therefore, there is a 
great need for effective multidisciplinary studies 
comprised of both basic and applied science 
aimed at producing effective countermeasures 
against the deleterious influences of spaceflight on 
the human body (Alwood et al., 2017). 

In this study, we have shown that exposing 
zebrafish larvae to the same physiological 
stressors they would encounter during the actual 
suborbital flight leads to alteration of their 
behavior, but does not affect their survival. 
Furthermore, this study provided an insightful 
contribution to various stressor-based effects on 
the zebrafish larvae to establish a risk assessment 
of the model organism Danio rerio when 
designing future suborbital and orbital 
spaceflights. Our study is currently being 
extended by using clinostats as a ground lab 
research platform that will give us further 
understanding on the behavior of these organisms 
under different microgravity levels. 

Although zebrafish is a diurnal animal that is 
active during the light phase of the light-dark 
circadian cycle (Facciol et al., 2017), our light 
study indicated that zebrafish were more active in 
the dark. Some literature suggests (Serra et al., 
1999; Maximino et al., 2010) that zebrafish have a 
natural preference for a dark environment. 
However, there is a contradiction to this 
observation in the field as some studies report 
zebrafish preference for brighter light 
environments (Champagne et al., 2010; Gerlai et 
al., 2000). Despite the observed differences 
among investigators, it was important to us to 
confirm that zebrafish are capable of adapting to 
alterations in light conditions and also to 
determine light preferences so that proper future 
housing cubes can be made.  
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A: C4 well B: C8 well 

C: E1 Well  D: E5 Well 

E: D3 Well  F: D6 Well 

Figure 12. Contour maps for radial and tangential velocities at various temperatures in different wells: (A) 
Well C4 at 32ºC. (B) Well C8 at 32ºC. (C) Well E1 at 28.5 ºC.  (D) Well E5 at 28.5ºC. (E) Well D3 at 25ºC. (F) 
Well D6 at 25ºC  
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It is well established that water temperature 
affects the swimming performance of the fish. Our 
thermal study revealed the differences in zebrafish 
movement patterns when they were exposed to 
various temperatures at various time durations. 
More specifically, zebrafish exposed to 32°C 
formed well-defined trajectories as well as were 
the most active as compared to those exposed to 
28.5°C and 25°C. Our finding is consistent with 
the literature suggesting that zebrafish exhibit the 
highest swimming capacity when they are raised 
at 31°C, as compared to the worst performance at 
22°C, and moderate activity at 28°C (Sfakianakis 
et al., 2011).  

Next, we assessed zebrafish behavior after 
administering centrifugation test, the critical phase 
of the suborbital spaceflight. Our results 
demonstrate that zebrafish are exhausted initially 
as observed by their upside down swimming. Our 
observation of zebrafish avoiding swimming into 
certain areas could be explained by the gravitaxis 
(bottom dwelling and diving to the “safer” lower 
regions) as an indicator of physiological reaction 
to stress (Blaser et al., 2010; Stewart et al., 2010). 
Importantly, the recovery processes took only 
approximately 5 min until larvae were active 
again. Previous studies (Ijiri, 1995) on medaka 
fish showed that exposure to microgravity for 
about 15 days made the fish forget how to swim 
under normal gravity conditions on Earth, and the 
fish took 3 days to readapt. During this study, the 
fish were studied by relying on visual rather than 
on vestibular cues without being forced to swim 
aberrantly due to microgravity. 

Finally, we computed the radial and tangential 
velocities of zebrafish exposed to various thermal 
phases. Our data suggests that lower radial and 
tangential velocities were observed for zebrafish 
exposed at 25°C as compared to higher 
temperatures with a slight difference between 
32°C and 28.5°C conditions. Based on our 
previous observation of zebrafish being more 
active at higher temperatures, they tend to move 
in more defined and predictable patterns with 
higher tangential velocities. 

Given zebrafish are very sensitive to various 
stressors, our team is currently designing a life 
support system that will be tested and integrated 
in our next suborbital payload. Some of the 
hardware will include state-of-the-art sensors to 

measure the environmental conditions and a 
microcontroller to regulate our desired conditions. 
The technology development will be discussed in 
a subsequent manuscript. 

Altogether, our study confirms the likelihood 
of zebrafish larvae surviving the suborbital flight. 
Subsequent research efforts will be devoted to 
further investigate the responses of zebrafish in 
various microgravity environments (e.g., Moon, 
Mars, ISS), and from hypergravity to these 
microgravity levels using various simulation 
systems (Van Loon, 2016). Our long term goal is 
to continue research efforts in achieving 
advancements in human health exposed to space. 
Given the similarity of the zebrafish genome to 
humans, our goal is to use zebrafish larvae as a 
stepping stone for our future suborbital space 
experiments. Results from our studies and similar 
studies focusing on space-induced alterations on 
muscle atrophy could identify the mechanisms 
mediating these changes, which in turn could lead 
to the synthesis of new drugs or treatments 
benefiting not only the space travelers, but also 
patients on Earth with musculoskeletal disorders. 
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