Skip to main content
Article
Initial value problems for Caputo fractional differential equations
Journal of Fractional Calculus and Applications
  • Paul W. Eloe, University of Dayton
  • Tyler Masthay, University of Dayton
Document Type
Article
Publication Date
1-1-2018
Abstract

Let n ≥ 1 denote an integer and let n - 1 < α ≤ n: We consider an initial value problem for a nonlinear Caputo fractional differential equation of order α and obtain results analogous to well known results for initial value problems for ordinary differential equations. These results include Picard’s existence and uniqueness theorem, Peano’s existence theorem, extendibility of solutions to the right, maximal intervals of existence, a Kamke type convergence theorem, and the continuous dependence of solutions on parameters. The nonlinear term is assumed to depend on higher order derivatives and solutions are obtained in the space of n - 1 times continuously differentiable functions.

Inclusive pages
178-195
ISBN/ISSN
2090-584X
Document Version
Published Version
Comments

This document is made available in compliance with the publisher's policy on self-archiving or with the express permission of the publisher. Permission documentation is on file.

Peer Reviewed
Yes
Disciplines
Citation Information
Paul W. Eloe and Tyler Masthay. "Initial value problems for Caputo fractional differential equations" Journal of Fractional Calculus and Applications Vol. 9 Iss. 2 (2018)
Available at: http://works.bepress.com/paul_eloe/78/