Skip to main content
Article
Formation of short-range magnetic order and avoided ferromagnetic quantum criticality in pressurized LaCrGe3
Ames Laboratory Accepted Manuscripts
  • Elena Gati, Iowa State University and Ames Laboratory
  • John M. Wilde, Iowa State University and Ames Laboratory
  • Rustem Khasanov, Paul Scherrer Institute
  • Li Xiang, Iowa State University and Ames Laboratory
  • Sachith Dissanayake, Oak Ridge National Laboratory
  • Ritu Gupta, Paul Scherrer Institute
  • Masaaki Matsuda, Oak Ridge National Laboratory
  • Feng Ye, Oak Ridge National Laboratory
  • Bianca Haberl, Oak Ridge National Laboratory
  • Udhara Kaluarachchi, Iowa State University and Ames Laboratory
  • Robert J. McQueeney, Iowa State University and Ames Laboratory
  • Andreas Kreyssig, Iowa State University and Ames Laboratory
  • Sergey L. Bud’ko, Iowa State University and Ames Laboratory
  • Paul C. Canfield, Iowa State University and Ames Laboratory
Publication Date
2-4-2021
Department
Ames Laboratory; Physics and Astronomy
OSTI ID+
1764370
Report Number
IS-J 10409
DOI
10.1103/PhysRevB.103.075111
Journal Title
Physical Review B
Abstract

LaCrGe3 has attracted attention as a paradigm example of the avoidance of ferromagnetic (FM) quantum criticality in an itinerant magnet. Here, we combined thermodynamic (specific heat and thermal expansion), transport, x-ray, and neutron scattering as well as μSR measurements to obtain insights on the temperature-pressure phase diagram of LaCrGe3. Consistent with previous studies of the phase diagram by transport measurements, our thermodynamic data shows clearly that the FM transition at TFM changes its character from second order to first order when it is suppressed to low temperatures by pressure. In addition, previous studies demonstrated that for high pressures a new phase occurs below T2, which was proposed to be a long-wavelength antiferromagnetic state (AFMq). In this paper, we provide evidence from our thermodynamic data that this phase transition is preceded by yet another phase transition at T1>T2. Our μSR data indicate that full magnetic volume fraction is only established below T2, but that this magnetism is characterized by a short correlation length. Within the experimental resolution, our neutron-scattering data is not able to identify any magnetic Bragg peaks. Overall, the microscopic magnetic data is therefore consistent with the formation of FM clusters in the proximity of the avoided FM quantum critical point in LaCrGe3. This conclusion is at odds with the previous proposal of AFMq order and raises questions on the role of disorder in this stochiometric compound.

DOE Contract Number(s)
AC02-07CH11358; AC02-06CH11357; NA0001974; FG02-94ER14466
Language
en
Publisher
Iowa State University Digital Repository, Ames IA (United States)
Citation Information
Elena Gati, John M. Wilde, Rustem Khasanov, Li Xiang, et al.. "Formation of short-range magnetic order and avoided ferromagnetic quantum criticality in pressurized LaCrGe3" Vol. 103 Iss. 7 (2021) p. 075111
Available at: http://works.bepress.com/paul_canfield/441/