Robots in the classroom: Differences in students’ perceptions of credibility and learning between “teacher as robot” and “robot as teacher”

Autumn Edwards, Western Michigan University
Chad Edwards, Western Michigan University
Patric R Spence, University of Kentucky
Christina Harris, University of Kentucky
Andrew Gambino, Pennsylvania State University - Main Campus

Available at: https://works.bepress.com/patric_spence/64/
Robots in the classroom: Differences in students’ perceptions of credibility and learning between “teacher as robot” and “robot as teacher”

Autumn Edwards a,*, Chad Edwards a, Patric R. Spence b, Christina Harris b, Andrew Gambino c

a Western Michigan University, USA
b University of Kentucky, USA
c Penn State University, USA

Abstract

Advancements in technology are bringing robotics into interpersonal communication contexts, including the college classroom. This study was one of the first to examine college students’ communication-related perceptions of robots being used in an instructional capacity. Student participants rated both a human instructor using a telepresence robot and an autonomous social robot delivering the same lesson as credible. However, students gave higher credibility ratings to the teacher as robot, which led to differences between the two instructional agents in their learning outcomes. Students reported more affective learning from the teacher as robot than the robot as teacher, despite controlled instructional performances. Instructional agent type had both direct and indirect effects on behavioral learning. The direct effect suggests a potential machine heuristic in which students are more likely to follow behavioral suggestions offered by an autonomous social robot. The findings generally support the MAIN model and the Computers are Social Actors paradigm, but suggest that future work needs to be done in this area.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Advancements in technology are bringing robotics into interpersonal aspects of life. No longer are robots confined to factories, laboratories, or battlefields. Robotic technologies are moving towards interpersonal relationships in everyday life, and as such, into higher education (Heo & Kim, 2013; Li, Kizilcec, Bailenson, & Ju, 2016). In addition to robotics, computer software and networks have advanced to a point where displacing technology (e.g., Skype) is a feasible option for instruction (Allen & Seaman, 2010; Garner & Buckner, 2013). The benefits of displacing technologies are convenience for students and instructors, as well as cost and time effectiveness. For example, Borup, West, and Graham (2012) demonstrated that students in displaced instruction situations felt more connected when video was used than when video was not used. Li et al. (2016) argued that social robots and virtual agents might “improve the accessibility of pedagogical content” (p. 1223). The use of robots for displacing technologies is relatively new.

A robot is a machine that can do the work of a person and that works automatically or is controlled by a computer (Merriam-Webster.com). There are several ways robots can be used in the classroom. Uses are dependent on the capabilities of the robot technology, as well as the pedagogical needs of the instructional situation. Currently, robots in the classroom are being used in four basic ways: (a) robot as classroom teacher, (b) robot as companion and peer, (c) robot as care-eliciting companion, and (d) telepresence robot teacher (Sharkey, 2016). The present study focuses on the first and last scenarios, as they pertain directly to the use of robots in the role of instructor.

Robots can be used to enable computer-mediated communication (CMC) between an instructor and students. For instance, a physically remote instructor can operate a telepresence robot (videoconferencing on a mobile platform) to interact with the class.
Alternatively, robots can be used to enable human-machine communication (HMC) between students and a robot instructor. For example, an autonomous social robot can be placed in the position of information source and provide direct instruction to students. The two scenarios may be considered teacher as robot and robot as teacher, respectively. The former uses “displacing” technologies by enabling mediation of a distant human instructor through a robot. The latter involves “replacing” technologies by substituting a robot instructor for a human.

An important difference between the two types of classroom robots is agency. Is the source of instruction a human or a machine? The source of instruction with a telepresence robot is a human operator who uses the robot as a medium through which to interact with students. On the other hand, a social robot is autonomous, meaning it can act within bounds to achieve goals without any explicit human control. Therefore, a social robot is an agent, or source of instruction in its own right. The question that arises is whether students find these technologies credible and effective in the classroom. And, in a direct comparison, do students perceive the human or the machine robot agent more favorably?

The current study will compare differences in perceptions of credibility and learning between a human instructor using a telepresence robot (teacher as robot) and a social robot acting as a teacher (robot as teacher). Because robot technology is already being used in teaching-learning contexts, it is important to identify and understand students’ reactions and educational experiences. Ultimately, studies like this may help develop best practices for integrating robots into higher education classrooms. The following sections will discuss telepresence robots and social robots in the classroom, using the MAIN model (Sundar, 2008) and Computers are Social Actors paradigm (Reeves & Nass, 1996) to frame the research questions.

1.1. Telepresence robots in the classroom

Although many definitions exist for the term telepresence, this concept can be conceptualized as “a sense of transportation to a space created by technology” that “occurs when a user perceives that he or she is physically present in a remote environment” (Lee, 2004, p. 29). Whereas one can communicate to and with a social robot, one communicates through a telepresence robot. A telepresence robot is a device that allows a person to videoconference on a moveable platform from a remote location. The user has remote control of the robot’s movement and can interact through the screen. Factors such as distance learning and the attempt to keep students engaged in the classroom have led to a push for the incorporation of telepresence robotic forms of instruction (Smith & Mader, 2016). Although few studies have examined telepresence robots in the classroom, empirical work surrounding the use of other forms of telepresence and CMC in education is more plentiful.

Earlier work on telepresence examined the medium of television and how it impacted student-teacher interaction (Hackman & Walker, 1990). Students viewed real-time televised lectures and had access to phones so they could call-in to the lecture with questions or comments if they chose. The researchers found positive correlations among instructor immediacy behaviors (e.g., instructors who prompted student participation, engaged in feedback by taking student phone calls, and portrayed nonverbal behaviors such as smiling, speaking in an engaged voice, and having an open body posture) and overall student satisfaction and learning. In addition, aspects of the chosen system such as the clarity of audio and video transmission were also positively related to satisfaction and learning.

Other research has found interesting, but somewhat conflicting, results. Two meta-analyses conducted by Allen et al. (2002, 2004) found that overall, distance learners (i.e., students who were not physically present with an instructor and engaged in various forms of mediated learning) were less satisfied than their traditional student counterparts, but scored higher on exams and course grades. As Allen et al. (2004) noted, “the use of any means of communication in an educational setting may have a differential impact that favors or disadvantages different persons” (p. 404).

Further, the type of telepresence (e.g., television, online-only) may also have an impact on factors such as student satisfaction and learning. Li et al. (2016) demonstrated that a human instructor could be effective in a MOOC (Massive Open Online Course) context using video presence.

Although research investigating the effects of telepresence robots in the classroom is limited, some studies have indicated positive learning experiences and outcomes. For example, researchers at Carnegie Mellon developed a telepresence robot that allowed a user to virtually attend meetings, classes, and lectures at a distance (Clark & Root, 2011). Based on their case studies, Clark and Root observed that although the interaction was unfamiliar for both parties, participants were able to overcome the unique situation and focus on the tasks at hand. Yun et al. (2011) examined the deployment of Engkey telepresence robots in South Korea. Teachers in the Philippines provided English instruction to elementary students, whose performance was found to improve. Although initial research has indicated there may be potential benefits in regards to telepresence in the classroom (in terms of enabling instruction that would otherwise be prohibited by interactional distance), further research is needed to better identify the possible effects it has on student learning and perceptions of instructor credibility.

1.2. Social robots in the classroom

A social robot is an autonomous, physically embodied robot that interacts and communicates with humans by following social behaviors and rules attached to its role. Social robots overlap in form and function with human beings to the extent that their locally controlled performances occupy social roles and fulfill relationships that are traditionally held by other humans. In the context of education, social robots have been used to provide or supplement instruction in three content areas: (a) language development and acquisition, (b) science education, and (c) technology and computer programming (Mubin, Stevens, Shahid, Al Mahmud, & Dong, 2013).

Several studies have demonstrated the benefits of social robot use in the classroom. For example, children have performed better in math when tutored by a robot (Brown, Kerwin, & Howard, 2013). Social robots have been used to reinforce social behaviors in children with autism (Kim et al., 2013) and to improve student retention rates by incorporating gestures and increasing vocal volume (Szafr & Mutlu, 2012). Park, Kim, and del Pobil (2011) found that robot instructors were perceived as more socially attractive when delivering positive feedback instead of negative feedback to college students.

In the context of robotics, virtual agents have been used in conjunction with mechanical bodies to produce social robots capable of performing tasks. A virtual agent is an animated computer-generated character that can utilize text-to-speech capabilities. Al Moubayed, Beskow, Skantze, and Granström (2012) argued that robots with human-like faces could better display complex infallation. Baxter, a ‘collaborative robot’ employed in industrial and manufacturing fields, combines two arms with an animated screen for a face. Baxter’s abilities to express emotion and signal intention while simultaneously loading, lifting, and packaging enhance social interaction and workplace safety (see...
Research that examines the use of virtual agents in the classroom has produced mixed results. Berry, Butler, and de Rosis (2005) demonstrated that information retention was lower for participants who viewed a virtual agent versus a video of a human. Li et al. (2016) found that although human video lecturers were preferable to virtual agents, virtual agents could be used in the classroom if designed well for student learning. Although the development of robots capable of serving the role of teacher or teaching assistant is in the beginning stages, the use of robots in the classroom is likely to increase dramatically (Park, Kim, & Pobil, 2011).

1.3. Instructor credibility and student learning

The success of robot use in the college classroom—whether teacher as robot or robot as teacher—will depend on the degree to which students can apply the rules of instruction credibility and are able to learn from them. A long-running and extensive line of instructional communication research has demonstrated the importance of teacher credibility in fostering positive educational outcomes. Credibility is defined as “the attitude toward a source of communication at a given time by a communicator” (McCroskey & Young, 1981, p. 24) and is the degree to which the essential side the teachers is to be competent, have character, and demonstrate caring (McCroskey & Tвен, 1999). Student perceptions of credibility can have a tremendous impact on the effectiveness of the instructor (Frymier & Thompson, 1992). McCroskey and Young (1981) stated that “[r]esearch generally has supported the proposition that source credibility is a very important element in the communication process, whether the goal of the communication effort be persuasion or the generation of understanding” (p. 24).

Traditionally, studies on credibility in the classroom have focused on human instructors. Because credibility is an attitude toward source, questions arise as to how students will perceive introducing robot technology into the role of instructor. Sundar’s (2008) MAIN model is geared toward understanding technology effects on credibility by focusing on how the aspects of the technological interface (cues) may trigger cognitive heuristics. According to Sundar, technological affordances including modality (M), agency (A), interactivity (I), and navigability (N) may trigger heuristic cues that influence attributions of credibility. Numerous studies have shown that these medium-based affordances have psychological effects that often lead to increases or decreases in credibility and user behaviors (Gambino, Kim, Sundar, Ge, & Rosson, 2016; Kim & Sundar, 2012). Especially relevant to this study is the agency affordance of the MAIN model, which deals with how the perceived source of information may result in different perceptions of information quality. In an experiment conducted by Sundar and Nass (2001), participants who read identical news stories rated them as higher in quality when they believed “the computer” (versus news editors, other users, or the self) had selected them. Machine sources may trigger a machine heuristic, which leads to attributions of machine characteristics like objectivity.

The Computers are Social Actors (CASA) paradigm was developed from the many studies examining human responses and perceptions to a variety of media (Reeves & Nass, 1996). The paradigm is premised on the idea that people display social reactions to computers and other media (Reeves & Nass, 1996). According to CASA, people apply the same social scripts that guide human-human interaction to human-computer interaction, essentially ignoring the cues that reveal the essential asocial nature of a computer” (Nass & Moon, 2000, p. 83). Kim and Sundar (2012) maintained that individuals use and rely on the same social rules when interacting with computers as they do with other people.

Traditional social science theories and experiments of human-human interaction largely hold up in human-computer interaction (HCI). Similar to interpersonal relationships, HCI has significant emotional (Brave, Nass, & Hutchinson, 2005) and behavioral (Ferdig & Mishra, 2004) outcomes. Reeves and Nass (1996) argued that “people’s responses to media are fundamentally social and natural” (p. 251). Bailenson, Blascovich, Beall, and Loomis (2001) demonstrated that the nonverbal behaviors of an embodied computer agent impacted the distance that individuals maintained in a virtual reality environment. In a group task situation, individuals treated computers as teammates to accomplish a goal (Nass, Fogg, & Moon, 1996). Additionally, research has demonstrated that people may assess and interact with computers differently on the basis of computer vocal qualities (Lee, 2010).

In general, research has indicated that individuals appear to apply the social scripts of human interaction to HCI in similar ways. Although the first CASA studies used a computer as the social actor, more recent studies have expanded social actors to include robots (Edwards, Edwards, Spence, & Westerman, 2016; Lee, Park, & Song, 2005; Park, Kim, & del Pobil, 2011; Spence, Westerman, Edwards, & Edwards, 2014). In the few empirical studies conducting a direct comparison between human-human interaction and HCI, social responses to both conditions have been roughly equivalent (Nass & Moon, 2000).

This study presents an opportunity to examine the unique influence of agent type (human vs. machine; or teacher as robot vs. robot as teacher) on student perceptions of instructor credibility. The MAIN model suggests that a more machine-like instructor may trigger a heuristic that influences credibility. However, research on the Computers are Social Actors (CASA) paradigm might suggest students will respond to the machine and human agents in the same way. Therefore, we present the following research questions:

RQ1. Will participants rate both teacher as robot and robot as teacher as credible?

RQ2. Will instructional agent type (teacher as robot vs. robot as teacher) influence ratings of credibility?

Learning is a critical outcome and one closely associated with credibility (Schrodt et al., 2009). Previous research demonstrates that students learn more from teachers perceived as credible (see, e.g., Pogue & Ahyun, 2006). Students may experience affective learning, defined as the positive attitudes an individual holds towards the subject matter (Kearney, 1994). In addition, students may experience behavioral learning, which Bloom (1956) defined as changes in behavior as a result of being provided alternative information. Both affective and behavioral learning have been positively related with favorable classroom environments and effective education (Christensen & Menzel, 1998; Christophel, 1990; Comstock, Rowell, & Bowers, 1995; Gorham, 1988; Plax, Kearney, McCroskey, & Richmond, 1986; Richmond, McCroskey, Kearney, & Plax, 1987; Sanders & Wiseman, 1990). In order to understand the learning outcomes associated with robot instructors, we pose two additional research questions:

RQ3. Will there be a relationship between instructional agent type (teacher as robot vs. robot as teacher) and (a) affective and (b) behavioral learning?

1 We were able to hold constant the other affordances of the MAIN model—modality cues, interactivity cues, and navigability cues—by using the same robot, verbal script, and motion path in both the teacher as robot and robot as teacher conditions.

Please cite this article in press as: Edwards, A., et al., Robots in the classroom: Differences in students’ perceptions of credibility and learning between “teacher as robot” and “robot as teacher”, Computers in Human Behavior (2016), http://dx.doi.org/10.1016/j.chb.2016.06.005
RQ4. Will the relationship between instructional agent type and learning be mediated by credibility ratings?

2. Method

2.1. Participants

The convenience sample was composed of 86 undergraduate students enrolled in a large lecture introductory communication course at a large Midwestern U.S. American research university. Participants included 60 females (69.80%) and 26 males (30.02%). The majority of participants self-identified as Caucasian/White (72.10%, n = 62). Participants’ ages ranged from 18 to 30 years, with a mean of 20.63 (SD = 2.01). Participants received minimal extra credit points in return for taking part in the study.

2.2. Procedures

Upon securing institutional review board approval, an experimental design consisting of two treatment groups—teacher as robot and robot as teacher—was used. Each group consisted of 43 randomly assigned students (subdivided into 3 groups of approximately 15 students each to accommodate classroom size).

On the day of experiment, participants in groups of 15 were greeted at a welcome desk and taken to a classroom. In both conditions, the robot was positioned at the front of the room, about eight feet from the first row of participants. A scripted research assistant told participants that the “teacher” would instruct on the subject of business communication in a few moments (either when the teacher connected through the telepresence robot or when the social robot commenced the lesson, depending on the condition). Participants were told that their teacher could move its camera/eyes and physically move around the room. After 90 s, the research assistant departed and the teacher began the lesson on business communication. Afterward, participants were asked to rate the teacher using (a) McCroskey and Teven’s (1999) Measure of Source Credibility, (b) the Affective Learning Measure (McCroskey, 1994), (c) a Behavior Learning Scale, and to complete a (d) brief demographic survey.

2.3. Stimulus materials

The robot was a MantaroBot Classic telepresence robot. The robot is controlled over a WiFi network and utilizes a pan and tilt camera mounted on a 14" LED monitor. The body and monitor are atop a wheeled base navigated by a user. For this experiment, the robot was set to move at a slow pace (<1 fps). The monitor displayed either the human instructor’s face via video conferencing software (teacher as robot) or an animated virtual agent face modeled in appearance after the same instructor (robot as teacher).2

2.3.1. Robot screen and audio

In both conditions, participants were exposed to a 5-min lecture (either by teacher as robot or robot as teacher). The robot moved to each side of the classroom at some point, but stayed at the front of the room. The robot also scanned the student audience throughout by panning its camera. Although the lectures were pre-recorded and the movements were choreographed to control all differences between conditions except for the independent variable of instructor robot type, participants were led to believe that the performances were unfolding live.

We synced the audio of the human instructor used for the teacher as robot condition to the movement of the talking avatar used for the robot as teacher condition. This resulted in identical audio feeds for both conditions. For both conditions, the teacher on “live” videoconference and the avatar was prerecorded for experimental control.

To convince participants that the lessons were being given in real time, we scripted interaction between the research assistant and robot that appeared two-way and spontaneous. For the teacher as robot condition, the research assistant said “hi” to the instructor, who responded with a (taped) in kind greeting. For the robot as teacher condition, the research assistant “activated” the robot in front of participants by asking the robot to move its on-board laser to the right and then to the left. This technique left participants with the impression that the robot was autonomous and responding to requests in real time.

2.3.2. Robot controls

In the research lab of the first and second authors, two robot drivers controlled the robot in the classroom during the experiment. These robot drivers were trained on robot operations for a total of 25 hours over the course of the semester. They were taught to quickly diagnosis and fix problems that may arise (e.g., losing a signal to the robot). Additionally, they practiced driving the robot one foot every 30 seconds so that the movement seemed like a walking behavior that might occur in a lecture environment. Robot drivers practiced panning and tilting the robot’s camera to appear as if the instructor/robot was looking at students in the class. For each condition, the movement of the robot was as identical as possible.

2.4. Wizard of Oz simulation

The current study used a Wizard of Oz (WOZ) design. A WOZ design is a technique used to simulate human-robot interaction that is convincing to participants (Steinfeld, Jenkins, & Scassellati, 2009). The chief advantage for this design is that it allows human-robot interaction studies to occur without the necessary programming of a robot to complete complex interactions in an autonomous manner. Fraser and Gilbert (1991) argued that in order to conduct a valid WOZ design study several conditions must be met. First, it must be possible that the simulation in the study is possible in the near future. Second, the simulation must be convincing. And third, it must be possible to demonstrate the future behavior of the robot. For the present study, these three standards were used to create the stimulus materials. Through the use of a commercially available robot, an off-the-shelf avatar program, and carefully scripted action, participants believed the simulations were real. No participant indicated in debriefing that they did not believe the stimulus. Additionally, this study uses a simulation that in many respects is far below that of the capabilities of current HRI (e.g., Goodrich & Schultz, 2007). In other words, any participant familiar with social robots or exposed to popular media about robots would believe that the current real-world capabilities of educational robots exceed the technology used in this experiment.

2.5. Dependent variables

2.5.1. Source credibility

To measure the hypothesized mediator of source credibility, we used the Measure of Source Credibility (McCroskey & Teven, 1999),
which is an 18-item instrument designed to assess perceptions of an individual’s credibility across the three dimensions of competence (6 items each for competence, character, and caring) along a series of 7-point semantic differential scales. Overall credibility achieved an internal consistency coefficient of 0.88 (\(M = 4.61, SD = 0.82\)).

2.5.2. Affective learning

The Affective Learning Measure is an 8-item instrument measuring an individual’s feelings for a subject and content (McCroskey, 1994). It is assessed using a series of 7-point semantic differential scales (e.g., “I feel that the content in this lesson is: valuable/worthless”). Past studies have reported acceptable reliability coefficients (McCroskey, 1994). For the current study, a reliability coefficient of 0.91 was obtained (Item \(M = 4.21; \text{ Item } SD = 1.48\)).

2.5.3. Behavioral learning

Behavioral learning was measured using two items on a 7-point scale ranging from not likely to very likely. The questions asked about the participants’ willingness to engage in the behaviors presented in the lecture and to recommend those behaviors to others. In this study, a reliability coefficient of 0.74 (\(M = 3.44; SD = 1.66\)) was obtained for behavioral learning. Affective and behavioral learning were significantly and moderately related, \(r (84) = 0.37, r^2 = 0.14, p < 0.001\).

3. Results

To answer RQ1, which asked whether teacher as robot and robot as teacher were perceived by students as credible, a one-sample \(t\)-test was conducted to evaluate whether the mean rating in each condition was significantly higher than the scale midpoint of 4.0 (1–7 semantic differential scale). For the teacher as robot condition, the mean credibility score (\(M = 87.63\)) was significantly above the scale midpoint \([t(42) = 40.64, p < 0.001]\). For the robot as teacher condition, the mean credibility score (\(M = 78.26\)) was also significantly higher than the scale midpoint \([t(42) = 33.35, p < 0.001]\). Thus, both the telepresence instructor and the autonomous social robot teacher were rated by students as “credible.” Table 1 presents the means and standard deviations on the dependent variables by experimental condition.

To perform the two mediation analyses necessary to test RQ2–4, we used a product of coefficients approach as suggested by Hayes (2013). In particular, we used Hayes’s PROCESS Macro model 4 to examine the relationships among our variables. Instructor agent type (teacher as robot versus robot as teacher) was dummy coded 1 and 0, respectively, to enable regression analyses and entered as the independent variable (X). Credibility was treated as the mediator variable (M) on the dependent variables of affective learning (Y1) and behavioral learning (Y2). See Table 2 for model coefficients.

RQ2 asked whether the type of instructional agent influenced credibility ratings. As shown in Fig. 1, the unstandardized regression coefficient between agent type and credibility was statistically significant and indicated that the teacher as robot was rated more credible than the robot as teacher. In terms of RQ3a, agent type did not directly influence student affective learning, but did so indirectly through its influence on credibility (teacher as robot → credibility → affective learning). We tested the significance of direct and indirect effects using bootstrapping procedures. Unstandardized effects were computed for each of 1000 bootstrapped samples, and the 95% confidence interval was computed by determining the effects for the 2.5th and 97.5th percentiles. The unstandardized indirect effect was 3.253 (LLCI = 1.034, ULCI = 6.315) and the unstandardized direct effect was −2.204, (\(t = −0.932, p > 0.05\), LLCI = −6.909, ULCI = 2.500). Students rated the teacher as robot as more credible, which led to more affective learning.

In terms of RQ3b, instructional agent type exerted both a direct and indirect effect on behavioral learning. The indirect effect parallels the results to RQ3a, with the teacher as robot being rated more credible, which led to higher behavioral learning (teacher as robot → credibility → behavioral learning). The unstandardized indirect effect = 0.415, LLCI = −0.028, ULCI = 0.972. However, the significant direct effect indicated that the robot as teacher led to more behavioral learning (unstandardized direct effect = −1.479, \(t = 0.725, p < 0.05\), LLCI = −2.921, ULCI = −0.036).

RQ4 asked whether credibility would mediate the relationship between instructional agent and learning outcomes. As reported above, credibility ratings accounted fully for the influence of agent type on affective learning and partly for behavioral learning. The teacher as telepresence robot was rated as more credible than the autonomous social robot teacher, which predicted an increase in student affective and behavioral learning. However, the significant direct effect of instructional agent type on behavioral learning indicates that when credibility is allowed to vary as it would in a control condition, the robot as teacher produces greater behavioral learning.

4. Discussion

The purpose of this study was to determine whether robot—teacher as robot and robot as teacher—would be perceived as credible sources of instruction resulting in student learning (affective and behavioral). In terms of RQ1, results indicated that students perceived both types of robot instructor as credible. The attribution of credibility to both machine and human instructional agents generally aligns with the CASA paradigm (Reeves & Nass, 1996).

The two teaching performances and robot appearances were identical in all ways except the nature of the agent: human instructor operating as a telepresence robot versus autonomous social robot independent of explicit human control. However, the two types of instructional robots were not rated as equally credible (RQ2). Rather, the teacher as robot was perceived as most credible. Sundar’s (2008) MAIN model posits that differences in the credibility assigned to various sources result from different technological affordances, which trigger cognitive heuristics. According to Sundar (2008), interface agencies may influence credibility perceptions through a social presence heuristic, or by giving the idea that the user is communicating with a social entity versus an inanimate object. To the extent that source credibility is composed of dimensions linked to traditionally human traits (caring, character, competence), the increased social presence of the human teacher operating a telepresence robot would result in higher credibility ratings.

Alternatively, or perhaps in tandem, the robot as teacher may have cued the machine heuristic and resultant attributions about

Please cite this article in press as: Edwards, A., et al., Robots in the classroom: Differences in students’ perceptions of credibility and learning between “teacher as robot” and “robot as teacher”, Computers in Human Behavior (2016), http://dx.doi.org/10.1016/j.chb.2016.06.005
vast more objective than human social agents, but also less capable of feeling and relating. The machine heuristic may help explain why the autonomous social robot was perceived as somewhat less credible in a teaching context, and also why students experienced heightened levels of a specific type of learning from the robot as teacher when credibility was allowed to statistically vary.

Type of instructional robot influenced levels of student affective and behavioral learning (RQ3). Affective learning (positive regard for the instructional content) was higher in the teacher as robot condition, but the relationship was indirect in the sense that affective learning was increased via enhanced perceptions of instructor credibility (RQ4). Although the relationship between behavioral learning (intent to enact recommended actions) and type of instructional robot was similarly mediated by credibility ratings (teacher as robot → credibility → behavioral learning), there was also a direct effect of instructional agent on behavioral learning that favored the opposing experimental condition. Students instructed by the autonomous social robot teacher (robot as teacher) reported higher behavioral learning. Like Sundar and Nass's (2001) participants who rated news stories as higher in quality when they believed a computer had selected them, our participants reported greater likelihood to follow the behavioral suggestions offered by a machine instructor versus a telepresent human instructor. The significant direct effect linking instructional agent to behavioral learning suggests the operation of a machine heuristic connecting machine-generated content with trustworthiness and authority.

But, how are we to reconcile the seemingly contradictory findings that affective learning from a fully machine instructional agent is lower, whereas behavioral learning is higher? Sundar (2008) maintained that the social presence heuristic may “toggle” with the machine heuristic, insofar as the former heuristic would be more influential on judgments about socio-emotional information, whereas the latter would be more influential on judgments about objective content (p. 84). Computer-mediated instruction (“displacing technologies” like the human instructor operating a telepresence robot) may be more effective for creating positive attitudes about subject matter, whereas human-machine instruction (“replacing technologies” like the autonomous social robot teacher) may be more effective for influencing behavior adoption or modification.

Future studies should explore the extent to which personality variables (e.g., attitudes about robots or AI) could influence perceptions of and interaction with instructional robots (Bartneck, Suzuki, Kanda, & Nomura, 2007). Additionally, future studies should directly compare learning between a face-to-face condition and both CMC and HMC conditions, and explore other important instructional outcomes (e.g., motivation, cognitive learning). Because our results suggest that some instructional robot agents may outperform others on the basis of fit between affordances, instructional content, and desired learning outcomes (affective vs. behavioral), research identifying the instructional conditions under which it may be better to choose a displacing versus replacing technology would be beneficial. Finally, given the central role of source credibility in predicting learning outcomes, instructional design research on the technical features associated with perceptions of robot competence, character, and caring should be conducted.

4.1. Limitations

One limitation of the current study is that the stimulus material (video lecture) was prerecorded and played via the robot's screen “face.” Even though there was scripted interaction and movement behaviors intended to give the appearance of a “live” performance, it is possible that some participants did not believe that this lecture was happening in real time. However, during the debriefing session, participants seemed genuinely surprised to learn of the WOZ behavior intended to give the appearance of a human instructor operating a telepresence robot. But, how are we to reconcile the seemingly contradictory findings that affective learning from a fully machine instructional agent is lower, whereas behavioral learning is higher? Sundar (2008) maintained that the social presence heuristic may “toggle” with the machine heuristic, insofar as the former heuristic would be more influential on judgments about socio-emotional information, whereas the latter would be more influential on judgments about objective content (p. 84). Computer-mediated instruction (“displacing technologies” like the human instructor operating a telepresence robot) may be more effective for creating positive attitudes about subject matter, whereas human-machine instruction (“replacing technologies” like the autonomous social robot teacher) may be more effective for influencing behavior adoption or modification. Finally, given the central role of source credibility in predicting learning outcomes, instructional design research on the technical features associated with perceptions of robot competence, character, and caring should be conducted.

4.1. Limitations

One limitation of the current study is that the stimulus material (video lecture) was prerecorded and played via the robot's screen “face.” Even though there was scripted interaction and movement behaviors intended to give the appearance of a “live” performance, it is possible that some participants did not believe that this lecture was happening in real time. However, during the debriefing session, participants seemed genuinely surprised to learn of the WOZ design and none expressed disbelief or doubts about realism. Moreover, the current study did not allow for actual two-way interaction to occur between the robot and the participants (only the perceived interaction that was controlled). Thus, our robot as teacher was decidedly less “social” than it could have been. Future studies should test how students respond to an interactive robot.
The final limitation is based on the WOZ design. Bertel, Rasmussen, and Christiansen (2013) state, “due to high technological complexity and cost combined with low system stability and usability, the majority of research on educational service robots is still based on highly controlled experiments in lab settings which cause certain limitations to the transferability and applicability of the results to real-world learning environments” (p. 438). Because much of the classroom environment was controlled, it is possible that different results might occur in a more naturalistic setting, which would include a lengthier exposure to the instructional agent.

5. Conclusion

This study examined college students’ perceptions of two types of robot instructors—a human teacher operating a telepresence robot and an autonomous social robot teacher—and their learning outcomes. Both a teacher as robot and a robot as teacher were rated as “credible” college instructors. However, the teacher as robot was rated as most credible. Students of the teacher as robot experienced more affective learning (liking of the content) because of enhanced perceptions of source credibility. Students of the robot as teacher experienced more behavioral learning (intentions to act differently). CMC ("displacing technologies") may be more effective for enhancing social presence to create positive learning attitudes, whereas HMC ("replacing technologies") may be more effective for influencing behavior adoption or modification.

The findings are generally supported by CASA and the MAIN Model, but suggest that future work needs to be done in this area. Instructor credibility, affective learning, and behavioral learning are important parts of successful classroom environments (Schmidt et al., 2011). Based on present rates of development and adoption, it seems inevitable robots will increasingly be used in instructional contexts (Chang, Lee, Chao, Wang, & Chen, 2010; Clark & Root, 2011; Kim et al., 2013; Szafr & Mutlu, 2012). At one point in the past, course management software was viewed with disbelief and dismay. Yet now, many instructors utilize this technology with great success. Students are already familiar with Skype and other video conferencing systems, and consequently, human interaction with robots can provide an interesting occasion to test communication variables and theories (Lee, 2004). Autonomous social robots that can be utilized as the information source and provide direct instruction to students is a natural place to advance the study of HMC.

References

Please cite this article in press as: Edwards, A., et al., Robots in the classroom: Differences in students’ perceptions of credibility and learning between “teacher as robot” and “robot as teacher”, Computers in Human Behavior (2016). http://dx.doi.org/10.1016/j.chb.2016.06.005

