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Abstract

We experimentally study the effects of allotment – the division of an item into homoge-
neous units – in independent private value auctions. We compare a single-item, first-price
auction with two equivalent treatments with allotment: a two-unit discriminatory auction
and two simultaneous single-unit first-price auctions. We find that allotment mitigates
overbidding, with this effect being stronger in the discriminatory auction. In the allot-
ment treatments, we observe large and persistent bid spreading. Across treatments, the
discriminatory auction is the least efficient and generates the lowest revenue.

JEL classification: H57, D44.
Keywords: Allotment, multi-unit auction, discriminatory auction, first-price auction,

laboratory experiment.

∗Department of Economics and Management, University of Padova, Via del Santo 33, 35123 Padova, Italy.
Email: luca.corazzini@unipd.it.
†Department of Economics and Management, University of Padova, Via del Santo 33, 35123 Padova, Italy.

Email: stefano.galavotti@unipd.it.
‡Corresponding author. Department of Public Economics, University of Innsbruck, Universitätsstraße
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1 Introduction

In settings where an auctioneer wants to allocate a certain quantity of a divisible good to a
number of bidders, a fundamental question is whether to sell the entire quantity as a single
bundle or to allot it into several distinct units. The existing economic literature dealing with
multi-unit auctions has highlighted the importance of this issue as bidders may strategically
respond to the presence of multiple units. For instance, the value a bidder attaches to a specific
unit (and thus her bid) might depend on the number of units already acquired (or expected
to be acquired) in the auction (see, among others, Engelbrecht-Wiggans and Kahn, 1998a
and 1998b; Ausubel and Cramton, 2002). Also, the presence of multiple units might foster
entry by other (small) bidders and thus alter the degree of competition and affect behavior
by incumbents (see, e.g., Goeree et al., 2013). In deriving these results, the literature takes
as given that, when the number of bidders is fixed, units are homogenous and do not display
any complementarity or substitutability in value, the allotment of a divisible good would not
affect bids, efficiency and revenue.

In this paper, we propose a novel experimental design to illustrate that the decision to
bundle or allot the quantity of a divisible good may play a greater than hitherto expected
role. We show that moving from a single-unit to an “equivalent” multiple-unit auction may
cause a reaction by bidders not predicted by standard theory. In particular, we shed light on
how allotment affects bidding (and overbidding), efficiency and revenue.

To isolate these effects, we experimentally compare “pay-as-bid” auctions1 with and with-
out allotment, adopting the simplest possible setting in which allotment should have no impact
on the strategic incentives of bidders. The units traded in the auctions are homogenous and
do not display any complementarity or substitutability, as then comparing single-unit against
multi-unit auctions would have to account for complex effects on bidders’ incentives. We also
keep constant the number of bidders and the distribution of private valuations to rule out the
possibility that allotment affects the degree of competition or the thickness of the demand.

The experimental design includes three treatments. The first treatment consists of a stan-
dard single-unit, first-price, independent private value auction and represents our benchmark.
In the second treatment, bidders compete in a two-unit discriminatory auction: each bidder
places two bids, the two highest bids are deemed winning and the bidder(s) who placed the
winning bids is (are) assigned the units and pays (pay) the amount of her (their) winning
bid(s). Finally, in the third treatment, bidders participate in two simultaneous first-price
auctions, each involving a single unit.2

Our experimental results can be summarized as follows. First, in all treatments we observe
overbidding – bids above the theoretical risk neutral Nash equilibrium –, with bids being
more aggressive in the benchmark than in the allotment treatments. Second, we detect bid
spreading – different bids for the two units – in the allotment formats. Third, in all treatments,
but especially in the discriminatory auction, a considerable number of units are inefficiently

1Pay-as-bid auctions are auctions in which the winner(s) pays (pay) what she (they) bid. In a single-
unit context, the pay-as-bid auction corresponds to the first-price auction, while in a multi-unit context it
corresponds to the discriminatory auction.

2Although our experimental design is highly stylized and not meant to reproduce particular real-world
auctions, it is easy to refer it to adopted practices. For instance, the allotment design in the second treatment
is commonly endorsed in auctions involving financial assets, tradeable (emission) permits, electricity quotas,
and raw materials. On the other hand, the allotment design in our third treatment is frequently observed on
Ebay and other online platforms where private or public operators manage simultaneous auctions for identical
products.
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assigned to the subjects with the lowest valuation. Fourth, while no significant differences in
bidders’ surplus are detected across treatments, we find that the auctioneer’s revenue is lower
in the discriminatory auction than in the other two treatments.

Overall, our results complement previous findings which question the validity of the stan-
dard assumption of risk neutrality to account for bidders’ behavior. In line with recent
advancements in behavioral economics, we propose risk aversion and “joy of winning” as
possible interpretations of our experimental evidence. We show that these behavioral hy-
potheses successfully account for bid spreading, as well as for the observed differences across
treatments.

The rest of the paper is organized as follows. Section 2 briefly reviews the relevant liter-
ature. Section 3 presents the experimental design and the theoretical predictions under the
standard assumption of risk neutral bidders. Section 4 reports the results of our experiment.
Section 5 discusses risk aversion and joy of winning as potential explanations for our results.
Finally, Section 6 concludes with some policy implications from our experimental findings.

2 Literature review

Although to date the theoretical and experimental literature on auctions is vast, a thorough
understanding of the behavioral effects of allotment is still missing. That selling many objects
together rather than separately can generate relevant effects has been clear since the work of
Palfrey (1983). The author theoretically shows that, with two bidders and under a second-
price rule, allocating different goods as a single bundle is revenue superior (but inferior in
terms of total welfare) to selling them through parallel auctions.3

Recently, Popkowski Leszczyc and Häubl (2010) have empirically investigated into the
research question advanced by Palfrey (1983). They report results from a field experiment
based on a second-price rule: they show that when there is complementarity between goods,
a bundle auction generates higher revenue than two parallel auctions for the components of
the bundle; however, the opposite occurs when the goods are substitute. There are three
main differences between these contributions and our paper. First, we do not introduce any
complementarity/substitutability between goods; rather, we assume that the two goods are
identical and that each bidder’s valuation is the same for both units. This allows us to study
the effects that allotment exerts on bidders’ behavior. Second, these papers do not consider
multi-unit auctions in which bidders place multiple bids, one for each item involved. Finally,
despite its practical relevance, these two papers do not consider the pay-as-bid pricing rule.

Most of the economic interest in selling mechanisms involving multiple goods has concen-
trated on multi-unit auctions, investigating the properties of the standard formats (uniform-
price, discriminatory and Vickrey and their open outcry counterparts). In particular, the
theory on discriminatory auctions (see Engelbrecht-Wiggans and Kahn, 1998a) has shown
that, when the units have decreasing marginal valuations, (i) bidders shade all bids and (ii)
the difference between two bids placed by a bidder tends to be smaller than the difference
between the corresponding valuations.

From the experimental point of view, economists have mainly focused on uniform-price
and Vickrey auctions, while less attention has been devoted to the discriminatory format.4

3The work of Palfrey has been subsequently extended by Chakraborty (1999).
4For a detailed survey on single-unit and multi-unit experimental auctions, see Kagel (1995) and Kagel and
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Some relevant exceptions are: Goeree et al. (2013), who study preemptive bidding in dis-
criminatory and ascending auctions in which entry has a negative externality on incumbent
bidders; Goswami et al. (1996) and Sade et al. (2006), who investigate cooperative behavior
in discriminatory and uniform-price common value auctions with pre-play communication;
Engelmann and Grimm (2009), who analyze bidders’ behavior and efficiency in five differ-
ent multi-unit auction formats: discriminatory, uniform-price sealed-bid, uniform-price open,
Vickrey and Ausubel auctions. This last paper is the most related to ours, as it considers the
same setting: two symmetric bidders having flat demand for two homogeneous units, with
independent private values. In their discriminatory auction, in contrast to theoretical pre-
dictions under the (traditional) assumption of risk neutral bidders, Engelmann and Grimm
(2009) find a strong evidence of overbidding and bid spreading. In a companion paper (Grimm
and Engelmann, 2005), they advance risk aversion and joy of winning as possible explana-
tions for this puzzling evidence, finding empirical arguments that suggest the superiority of
the latter behavioral artifact.5

We depart from the study by Engelmann and Grimm (2009) as we are interested in
assessing the effects of allotment on bids and efficiency in alternative pay-as-bid auction
formats. To this end, we compare results from the discriminatory auction with an equivalent
(in value) single-unit first-price auction. Moreover, in order to check whether results depend
on the specific form of allotment, we also consider an additional treatment in which bidders
participate in two identical and simultaneous single-unit first-price auctions.

Finally, our paper also relates to the literature on combinatorial auctions in which buyers
can submit bids on either single units or packages. Combinatorial auctions are useful alloca-
tion mechanisms when units are characterized by the presence of synergies or when, because
of their budget capacity and dimension, there are bidders interested in subsets of goods only
(Cramton et al., 2006). In these settings, if the items are allocated separately, while there is
an incentive to place high bids to get the extra value associated with the synergy, a bidder
may refrain from aggressive bidding in order to avoid exposure to losses in case she wins only
a limited number of units. This phenomenon, called the exposure problem, may negatively
affect the efficiency and revenue of the auction (Kagel and Levin, 2005; Katok and Roth,
2004). A combinatorial auction reduces the risk of exposure and allows for more efficient
allocations, as recently shown by Chernomaz and Levin (2012).6

We share with the literature on combinatorial auctions the attention to the effects of in-
troducing the possibility of allotting items. However, the two approaches cannot be directly
compared as they present relevant differences in the strategy profiles they endorse. In par-
ticular, in combinatorial auctions, package bids compete with single-item bids in the same
auction; in our study, instead, we compare an auction in which only package bids are allowed
with two formats in which bidders can exclusively place separate bids.

Levin (2011).
5The hypothesis of joy of winning is discussed in Section 5 below.
6In the setting considered by Chernomaz and Levin (2012), two local bidders (i.e., bidders interested in

only one good) compete with one global bidder (i.e., a bidder interested in both goods and who can benefit
from synergies) in two simultaneous (first-price) auctions and a combinatorial auction; their results highlight
that if the value of the synergy is sufficiently high, the latter format can improve efficiency and revenue.
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3 Experimental design and predictions

In order to assess how allotment affects bids and efficiency, we compare results from a bench-
mark treatment in which bidders compete for a single item with those observed in two equiv-
alent (in terms of experimental features and potential payoff) auction formats with multiple
and identical units. For each treatment, we ran three sessions. Each session included 15
periods and involved 18 participants, for a total of 162 subjects.

3.1 Treatments

The benchmark treatment, 1A1U, consists of a single-unit, first-price, independent private
value auction with two bidders. Once pairs are formed, each bidder privately observes the
value of an indivisible item. In each period, values are randomly and independently drawn
from the same uniform distribution with support [0, 200]. All the characteristics of the distri-
bution used to generate private values are common knowledge. After observing their values,
bidders simultaneously place their bids. The bidder who places the highest bid wins the item
and her earnings are given by the difference between her value and her bid. The other bidder
earns nothing.

In the second treatment, 1A2U, in every period the two bidders compete in a two-unit
discriminatory auction. To each bidder, the two units have the same value, which, in each pe-
riod, is randomly and independently drawn from a uniform distribution with support [0, 100].
This implies that the distribution (in terms of mean and upper and lower bounds) of the sum
of the private values in 1A2U coincides with that used in the benchmark, 1A1U. The rules of
the auction are as follows: given her value, each bidder places two bids. Once the four bids
are collected, the two units are assigned to the bidder(s) who placed the two highest bids.
For any unit acquired, the bidder earns an amount given by the difference between her value
and the corresponding winning bid. As in 1A1U, if a bidder does not obtain any unit, she
earns nothing.

In the third treatment, 2A1U, allotment is introduced by letting the two bidders partici-
pate in two identical and simultaneous first-price auctions, each involving a single unit. Apart
from this aspect, all other experimental features are identical to those adopted in 1A2U. Given
her value, each bidder places two bids, one in each auction. In each of the two auctions, the
highest bid wins the corresponding unit. Earnings are then computed as in 1A2U.

3.2 Procedures

Upon their arrival, subjects were randomly assigned to a computer terminal. In all sessions,
instructions were distributed at the beginning of the experiment and read aloud.7 Before the
experiment started, subjects were asked to answer a number of control questions to make
sure that they understood the instructions as well as the consequences of their choices. When
necessary, answers to the questions were privately checked and explained. At the beginning of
the experiment, the computer randomly formed three rematching groups of six subjects each.
The composition of the rematching groups was kept constant throughout the session. At
the beginning of every period, subjects were randomly and anonymously divided into pairs.
Pairs were randomly formed in every period within rematching groups. Subjects were told

7Experimental instructions are included in Appendix C.
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that pairs were randomly formed in such a way that they would never interact with the same
opponent in two consecutive periods.8

In every period, subjects were presented with two consecutive screens. On the first screen,
subjects were informed about their private value and were required to place their bids (one
in 1A1U, two in 1A2U and 2A1U ). On the second screen, each subject was informed about
the winning bid(s) as well as her payoff in that period. Payoffs were expressed in points and
accumulated over periods. Subjects started the experiment with a balance of 300 points to
cover the possibility of losses. At the end of the experiment, the number of points obtained by
a subject during the experiment was converted at an exchange rate of 3 euro per 100 points
and monetary earnings were paid in cash privately.

The experiment took place at the Experimental Laboratory of the University of Inns-
bruck in November 2011. Participants were mainly undergraduate students, recruited by
using ORSEE (Greiner, 2004). The experiment was computerized using the z-Tree software
(Fischbacher, 2007). On average, subjects earned 12.00 Euro in sessions lasting 45 minutes
(including the time for instructions and payment). Before leaving the laboratory, subjects
completed a short questionnaire containing questions on their socio-demographics and their
perception of the experimental task.

3.3 Testable predictions: bids, spread and efficiency

In order to derive the testable predictions on bidding behavior and efficiency in the three
treatments, we develop a simple theoretical framework based on the assumption of risk neutral
bidders. Although a systematic violation of risk neutrality has been extensively documented
by the economic literature, it still constitutes the standard assumption in models studying the
equilibrium properties of different auction formats. Moreover, as discussed in the next pages,
the assumption of risk neutrality provides two very intuitive predictions in our experiment,
namely equivalence (in terms of bids, total efficiency and auctioneer’s revenue) across auction
formats, and identical bids in the allotment treatments, 1A2U and 2A1U.

In 1A1U, the item auctioned off has a value Vi for bidder i. Values are private information,
but it is commonly known that they are i.i.d. random variables with uniform distribution over
the interval [0, 200]. After observing her own value, bidder i places her bid, ai. The item is
assigned to the bidder who places the highest bid and the winner pays her bid. Bidder i’s
payoff is Vi − ai if she wins the auction and zero otherwise.

In the allotment treatments, 1A2U and 2A1U, the two bidders compete for two units:
in 1A2U, the two units are sold in the same auction; in 2A1U, they are sold separately, in
two identical and simultaneous auctions. In both cases, the two units have the same value,
vi, to bidder i. Values v1 and v2 are i.i.d. random variables with uniform distribution over
[0, 100]. Therefore, the sum of the values of the two units, 2vi, is uniformly distributed over
the interval [0, 200], just like Vi in 1A1U.

In 1A2U, bidder i places two bids, bi,1 and bi,2, with bi,1 ≥ bi,2 (i.e. bi,1 and bi,2 are the
highest and lowest bids of bidder i, respectively). Four bids are thus collected within a pair,
the two highest bids win and are paid by the corresponding bidder(s). Bidder i’s payoff is
2vi − bi,1 − bi,2 if she wins both units, vi − bi,1 if she wins only one unit, and zero otherwise.

In 2A1U, bidder i places one bid, ci,1, in the first auction and one bid, ci,2, in the second.
In each auction, the highest bid wins the unit and the corresponding bidder pays it. If bidder

8The rematching protocol implemented in the experiment was intended to increase the number of indepen-
dent observations per treatment.
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i wins both auctions, her payoff is thus 2vi− ci,1− ci,2; if she wins only the first (respectively,
second) auction, her payoff is vi − ci,1 (respectively, vi − ci,2); if she wins neither auction, her
payoff is null.

Under the assumption of risk neutral bidders, each of the three treatments admit a unique
symmetric (Bayes-)Nash equilibrium in pure strategies. Given the equilibria in the three
treatments, we can state the following testable predictions (see Appendix B for all the proofs):

H1. Bid equivalence. In all treatments, bids are equal to half the value assigned to that
unit. Thus, for given private value, bids in 1A1U are equal to the sum of the two bids
in 1A2U and 2A1U.

H2. Zero-spread. In 1A2U and 2A1U, bidders place two identical bids for the two units.

H3. Efficiency and revenue equivalence.9 In all treatments, the units are allocated to
the bidder with the highest private value. Thus, on average, the overall surplus is the
same across treatments. Finally, in every treatment, the overall surplus is split equally
between bidders and the auctioneer.

4 Experimental results

We organize our results as follows. First, we compare treatments with respect to the extent
of overbidding by looking at both the (sum of the) bids and the proportion of subjects that
bid above the risk neutral (RN ) equilibrium level. Second, focusing on the two treatments
with allotment, 1A2U and 2A1U, we study bid spreading. Third, we investigate differences
across treatments in overall efficiency, bidders’ surplus and auctioneer’s revenue.

The non parametric tests discussed below are based on 27 independent observations (9
rematching groups per treatment). Similarly, the parametric models presented in the next sub-
sections properly control for dependency of observations over repetitions by either clustering
standard errors or introducing random effects at the rematching group level.

4.1 (Over-)bidding behavior

Figure 1 shows the bids over all periods in the three treatments.

[Figure 1 about here]

We observe overbidding in all our three treatments. In particular, the proportion of bids
above the RN level is 89.14% in 1A1U, 79.38% in 1A2U, and 83.46% in 2A1U. A (two-sided)
Mann-Whitney rank-sum test rejects the null hypothesis that the average number of periods
in which a subject overbids in 1A1U is the same as that in the two treatments with allotments
(z = 2.160, p < 0.05). The previous finding is mainly driven by the comparison between 1A1U

9Given that in the experiment bidders’ earnings are observable while their true surplus is not, throughout
the paper we will adopt the convention common in this literature of measuring a bidders’ surplus with her
monetary earnings (for each unit, the difference between the valuation and the price paid). The allocation
will thus be considered efficient (i.e., it maximizes the sum of revenue and bidders’ earnings) if and only if
both units are allocated to the bidder with the highest valuation. Clearly, this definition of welfare is correct
if bidders are risk-neutral, but it is not under different specifications of the utility function.
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and 1A2U (z = 2.075, p < 0.05), whereas the difference between the benchmark and 2A1U
is not significant (z = 1.634, p = 0.102).

Table 1 reports the Probit marginal effect estimates for the probability of overbidding in
the three treatments.

[Table 1 about here]

As shown in column (4), allotment reduces the probability of overbidding. Indeed, the coef-
ficient of 1A2U &2A1U is negative and highly significant. Column (5) reveals that, compared
with 1A1U, the probability of overbidding in 1A2U is significantly lower. The treatment effect
remains negative, although non significant (according to a two-sided test) in 2A1U. Finally,
the difference between the coefficients of 1A2U and 2A1U is not significant (χ2(1) = 1.57,
p = 0.210).

Moving to the magnitude of overbidding, Table 2 reports results from parametric panel
regressions to study the determinants of the (sum of the) bids in the three treatments.

[Table 2 about here]

By looking at the first three columns of Table 2, the coefficient of Value is significantly
greater than 0.5 in 1A1U (χ2(1) = 422.73, p < 0.01), in 1A2U (χ2(1) = 166.89, p < 0.01)
and in 2A1U (χ2(1) = 317.41, p < 0.01).10 As indicated by the coefficient of 1A2U &2A1U
in column (4), after controlling for the private value and the linear time trend, allotment
significantly decreases the (sum of the) bids. Moreover, when we replace 1A2U &2A1U with
two distinct treatment dummies, we find that both 1A2U and 2A1U have the same sign,
although (according to a two-sided test) it is significant in 1A2U only. The difference between
the coefficients of 1A2U and 2A1U in column (5) is not significant (χ2(1) = 0.38, p = 0.539).11

As a final observation, the (sum of the) bids significantly decrease(s) over periods as indicated
by the coefficient of Period.12 We summarize the previous findings as follows.

R0. Overbidding. In all treatments, subjects bid above the RN equilibrium level.

R1. Less overbidding in the allotment treatments. Bids in 1A1U are greater than the
sum of the two bids in the allotment treatments. This effect is stronger when 1A1U is
compared with 1A2U.

4.2 Bid spread in 1A2U and 2A1U

In contrast with what predicted under risk neutrality, we find that 84.32% and 75.31% of
bids in 1A2U and 2A1U respectively associated with bid spread. Figure 2 illustrates the
difference between bids per value in 1A2U and 2A1U.

10This result is confirmed by a (two-sided) Wilcoxon signed-rank test, which rejects the null hypothesis that
the (sum of the) bid(s) is equal to the RN level in the three treatments (z = 2.666, p < 0.01).

11In line with the previous results, a (two-sided) Mann-Whitney rank-sum test strongly rejects the null
hypothesis that the mean of the bid(s) in 1A1U is the same of that in the treatments with allotment (z = 2.160,
p = 0.031). Again, the negative effect of allotment on bids is stronger when 1A1U is compared to 1A2U
(z = 2.075, p = 0.038), rather than when it is compared to 2A1U (z = 1.634, p = 0.102 for the two-sided test).
We do not find any significant difference between 1A2U and 2A1U (z = −0.574, p = 0.566).

12The linear trend included in the regressions starts from 0 in the first period. This facilitates the interpre-
tation of the intercepts included in the regressions: the coefficient of the constant term expresses the mean
of the dependent variable in the first period; the coefficient of the treatment dummies records changes of the
mean in the first period relative to the benchmark, 1A1U.
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[Figure 2 about here]

Over all periods, relative to the RN level, the bid spread is 30.33% in 1A2U and 29.57%
in 2A1U. In both treatments, the relative spread is significantly greater than 0 according to a
(two-sided) Wilcoxon signed-rank test (in both treatments, z = 2.667, p < 0.01). Moreover,
in 29.88% and 30.00% of offers made in 1A2U and 2A1U, respectively, the relative spread is
greater than 40%. Finally, as highlighted by the previous figure, the size of the bid spread is
increasing in the assigned value.

In Table 3, we parametrically investigate the determinants of both the size and the prob-
ability of bid spreading in the two allotment treatments.

[Table 3 about here]

There is a positive and highly significant correlation between the size of bid spread and the
private value in that period. Interestingly, as shown by the coefficient of Period in columns
(1), (3) and (5), the size of the spread either remains stable or increases over periods. This
confirms that rather than converging to the level predicted under the assumption of risk
neutrality, subjects persistently and intentionally choose to place different bids. As indicated
by the coefficient of 2A1U in column (5), we do not observe significant differences in the size
of the spread between 1A2U and 2A1U.13 By looking at the probit marginal effect estimates
in columns (2), (4) and (6), we find that the probability of bid spreading positively depends
on the assigned value and increases over periods. Finally, column (6) shows that bid spreading
is more likely to occur in 1A2U than in 2A1U.

R2. Bid spread. In the allotment treatments, 1A2U and 2A1U, we observe a persistent
and large-in-size bid spread. The size of bid spread is the same in the two treatments.
The probability of bid spread is higher in 1A2U than in 2A1U.

Given the results about overbidding and bid spread, in Table 4 we look at the size of both
the highest and the lowest bids in the allotment treatments.

[Table 4 about here]

Both the highest and the lowest bids observed in 1A2U and 2A1U are associated with
overbidding. The coefficient of Value in columns (1)-(4) is always significantly greater than
0.5 (for the highest bid: χ2(1) = 372.00, p < 0.01 in 1A2U ; χ2(1) = 610.64, p < 0.01 in
2A1U ; for the lowest bid: χ2(1) = 30.39, p < 0.01 in 1A2U ; χ2(1) = 77.52, p < 0.01 in
2A1U ). A (two-sided) Wilcoxon signed-rank test rejects the null hypothesis that the highest
and lowest bid in both treatments are equal to the RN level (for the highest and lowest bids
in 1A2U as well the highest bid in 2A1U : z = 2.667, p < 0.01; for the lowest bid in 2A1U :
z = 2.547, p = 0.011). Moreover, by looking at columns (5) and (6), we do not find any
significant difference between treatments in both the highest and the lowest bids.

R0’. Overbidding. In the allotment treatments, both bids are associated with overbidding.

13This result is confirmed by non parametric tests: a (two-sided) Mann-Whitney rank-sum test does not
reject the null hypothesis that the spread in 1A2U is the same that in 2A1U (z = 0.751, p = 453).
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By looking at Table 1 and Table 3, we find that the difference in overbidding across auction
formats is mainly driven by the lowest (rather the highest) bids in the allotment treatments.
Indeed, the coefficients attached to Value in the two regressions based on the highest bids
in 1A2U and 2A1U (columns (1) and (3) of Table 4 ) are similar to those observed in 1A1U
(column (1) of Table 2 ). On the other hand, the coefficients of Value in the regressions based
on the lowest bids in 1A2U and 2A1U (columns (2) and (4) of Table 4 ) are substantially
smaller than those observed in 1A1U.14

The finding that subjects in 1A2U overbid with both their lowest and highest bids repre-
sents a remarkable difference with the results of Engelmann and Grimm (2009): in a discrimi-
natory auction similar to our 1A2U, they find that the lowest bid is, on average, below the RN
level (i.e. underbidding). This discrepancy in results can be due to the different (re)matching
protocol used in the two experiments. While the partner matching used in Engelmann and
Grimm (2009) can induce subjects to collude over periods and thus to lower bids, the random
rematching protocol implemented in our experiment makes collusion (virtually) impossible.

4.3 Efficiency and revenue

We now turn our attention to the level of efficiency achieved in the three treatments. The
assumption of risk neutrality implies full allocative efficiency in all treatments: the unit(s) is
(are) assigned to the subject with the highest private value.

To investigate this issue, for each pair and in every period, we construct three measures:
(i) the relative efficiency, defined as the ratio between the achieved total welfare and the
maximum possible welfare; (ii) the relative auctioneer’s revenue, given by the ratio between
the winning bid(s) and the maximum possible welfare; (iii) the relative bidders’ surplus, cor-
responding to the ratio between the monetary payoff of the winning bidders and the maximum
possible welfare. Table 5 reports the estimates from GLS random effects models to compare
relative efficiency, relative auctioneer’s revenue, and relative bidders’ surplus in the three
treatments, computed by averaging at the rematching group level.

[Table 5 about here]

As shown by the first two columns of Table 5, relative efficiency is significantly higher in
1A1U than in the two allotment treatments. This result seems to be mainly driven by the
larger efficiency loss recorded in 1A2U relative to the other two treatments. By looking at
column (2) of Table 5, we find a significant welfare loss in all treatments. The relative efficiency
in 1A1U (as measured by the constant term) is significantly smaller than 1 (χ2(1) = 28.43,
p < 0.01). Similarly, the measures of relative efficiency in 1A2U and 2A1U – expressed by
the linear combination of the constant term with the corresponding treatment dummy – are
significantly lower than 1 (in 1A2U : χ2(1) = 79.58, p < 0.01; in 2A1U : χ2(1) = 35.95, p <
0.01). The loss of relative efficiency in all treatments is associated with allocative inefficiency:
the percentage of winning bids placed by subjects with the lowest private value is 10.67% in

14We run two additional panel regressions (with clustered standard errors). The dependent variable in the
first (second) regression is equal to the unique bid in 1A1U and to the highest (lowest) bid in the two allotment
treatments, 1A2U and 2A1U. As controls, both regressions include the allotment dummy, 1A2U&2A1U, the
value of one item and the time trend. The estimate of 1A2U&2A1U is not significant in the first regression
while it is negative and significant at the 1% level in the second regression.
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1A1U, 29.85% in 1A2U, and 18.04% in 2A1U. Finally, the difference in the relative efficiency
between 1A2U and 2A1U is highly significant (χ2(1) = 8.19, p < 0.01).15

Moving to the relative auctioneer’s revenue and focusing on columns (3) and (4) of Table
5, we do not find significant differences between 1A1U and the two allotment treatments.
However, when we replace the allotment dummy, 1A2U &2A1U, with two separate treatment
dummies, we find that 1A2U is associated with the lowest relative auctioneer’s revenue.
Indeed, the coefficient of 1A2U in column (4) is negative and highly significant and the
difference between the estimates of 1A2U and 2A1U is highly significant (χ2(1) = 79.58,
p < 0.01).16

Focusing on columns (5) and (6) of Table 4, we find no significant differences in the
relative bidders’ surplus between treatments, either in the regressions (both the coefficients of
1A2U and 2A1U in column (6) as well as the estimate of 1A2U &2A1U are not significant;
the difference between the coefficients of 1A2U and 2A1U in column (6) is not significant:
χ2(1) = 0.00, p = 0.992), or by using non parametric tests (according to a two-sided Mann-
Whitney rank-sum test, the difference in the relative bidders’ surplus between 1A1U and the
treatments with allotment is not significant: z = −0.463, p = 0.643; similarly, the difference
between 1A2U and 2A1U is not significant: z = 0.044, p = 0.965).

Finally, because of overbidding, in all treatments the relative auctioneer’s revenue is
greater than the relative bidders’ surplus. Indeed, for each treatment, a (two-sided) Wilcoxon
signed-rank test rejects the null hypothesis that the relative auctioneer’s revenue is equal to
the relative bidders’ surplus (z = 2.667, p < 0.01).

R3. Differences in efficiency and revenue. In all treatments, we observe allocative in-
efficiency. Efficiency and revenue are higher in 1A1U and 2A1U than in 1A2U. Treat-
ments do not significantly differ in terms of bidders’ surplus. Finally, in all treatments
the auctioneer’s revenue is higher than bidders’ surplus.

In order to check for robustness of our main findings to repetition effects, we have repli-
cated the parametric analysis on different subsets of 5 periods. Both the sign and the mag-
nitude of the treatment dummies remain stable across subsets of periods.17

5 Discussion

Our findings question the validity of the assumption of risk neutrality to describe bidders’
behavior at least for the following four considerations. First, in line with the existing experi-
mental literature, we detect overbidding in all treatments. Second, allotment reduces overall
bids, with this effect being more pronounced in the discriminatory auction, 1A2U. Third,
relative to the other two treatments, 1A2U is associated with the lowest allocative efficiency
and auctioneer’s revenue. Finally, in the allotment treatments, 1A2U and 2A1U, we observe

15In line with these findings, a (two-sided) Mann-Whitney rank-sum test rejects the null hypothesis that
the relative efficiency in 1A1U is the same as that in the two allotment treatments (z = 2.057, p < 0.05).
Similarly, the test detects a significant difference in relative efficiency between 1A2U and 2A1U (z = −2.693,
p < 0.01) as well as between 1A1U and 1A2U (z = 2.517, p < 0.05). No significant differences are observed
between 1A1U and 2A1U (z = 1.015, p = 0.310).

16A (two-sided) Mann-Whitney rank-sum test confirms the previous result as it rejects the null hypothesis
that the relative auctioneer’s revenues in 1A1U and 1A2U are equal (z = 1.810, p = 0.070).

17Results of these robustness check are available upon request.

11



large and persistent bid spreading. In order to provide an interpretation of our experimental
results, we develop in this section two simple theoretical frameworks: one is based on the
assumption of risk aversion, the other on joy of winning.

Bidders’ risk aversion is probably the most invoked argument to account for the common
phenomenon of overbidding in experimental auctions, and it is beyond question that it may
constitute an important factor in explaining deviations from the theoretical RN equilibrium.
However, the large body of experimental findings that has accumulated so far suggests that
risk aversion alone is not sufficient.18 Accordingly, several other models that rationalize
observed behaviors in auctions have been proposed.19

One of the most popular of these alternative explanations is the joy of winning hypoth-
esis, according to which bidders get a positive benefit from the mere fact of winning. As
long as this extra-benefit is anticipated by bidders, it has an impact on their optimal bids.
Joy of winning was first introduced by Cox et al. (1988) as an element that, added to risk
aversion, may help improve the fitness to experimental data. Goeree et al. (2002), in their
quantal response equilibrium model, and Grimm and Engelmann (2005), in the context of
discriminatory auctions, have shown that joy of winning can be a valid alternative to risk
aversion to track actual behavior of bidders. Recently, Roider and Schmitz (2012) show that
joy of winning and its counterpart – disutility of losing – together are able to rationalize much
of the existing experimental evidence on single-unit auctions. Joy of winning has also found
increasing support from recent studies in neuroscience and psychology, according to which
placing subjects into competitive environments can trigger a desire to win (see Delgado et
al., 2008, and Malhotra, 2010, both adopting an auction setup).

That a desire to defeat opponents may affect individuals’ behavior is indeed credible
in small-stake competitions, as typically are laboratory auctions; it is less convincing for
professionals participating in large-stake auctions, like those for the sale of high-valued assets
(licenses, treasury bills) or for the procurement of works. However, once we realize that the
essential feature of the joy of winning hypothesis is that there is a latent factor which, upon
winning the auction, increases the actual payoff of a bidder beyond the simple difference
between value and price, then we can imagine several latent factors that may have the above
effect also in large-stake real world auctions: for example, winning a license or obtaining an
important procurement contract may have a positive reputation effect on the firm, that can
translate into higher profits in the future or in other markets in which the firm is operating.
Also, it can increase the bargaining power of the firm or generating a learning by doing effect
or increase the probability of accessing to future business opportunities or avoid the cost of
excess capacity.

Similarly, while it is commonly accepted and widely documented that most individuals
are indeed averse to risk in auction and non-auction settings, the economic literature has
typically assumed that firms are risk neutral agents. However, there is evidence that even
firms may display a risk averse behavior. This has been shown empirically by Athey and

18In the words of Kagel (1995, p. 525), “It is probably safe to say that risk aversion is one element, but
far from the only element, generating bidding above the risk neutral Nash equilibrium”. Kirchkamp et al.
(2010), using a novel experimental design that manipulates bidders’ risk preferences through the number of
income-relevant auctions, show that risk preferences explain overbidding by about 50%.

19For example, Engelbrecht-Wiggans and Katok (2008, 2009) and Filiz-Ozbay and Ozbay (2007) argue that
bidders overbid to prevent regret in case they do not win the auction. Armantier and Treich (2009) consider
misperception of probabilities. Others have suggested different notions of equilibrium (e.g. Goeree et al., 2002)
or non-equilibrium models (e.g. Crawford and Iriberri, 2007). For an overview of the competing explanations,
see Kagel (1995) and Kagel and Levin (2011).
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Levin (2001) in an auction setting and by Kawasaki and McMillan (1987), Asanuma and
Kikutani (1992), Yun (1999) in subcontracting relations. In a recent experimental paper, List
and Mason (2011) show that CEOs exhibit risk-aversion.

The two models are formalized as follows:
Risk Aversion. When bidders are risk averse, their utility function u(·) is strictly

concave.20 In 1A1U, bidder i’s payoff is u(vi− ai) if she wins the auction and zero otherwise.
In 1A2U, bidder i’s payoff is u(2vi − bi,1 − bi,2) if she wins both units, u(vi − bi,1) if she wins
one unit only and zero otherwise. Finally, in 2A1U, bidder i’s payoff is u(2vi − ci,1 − ci,2) if
she wins both auctions, u(vi − ci,1) if she wins only the first auction, u(vi − ci,2) if she wins
only the second auction and zero otherwise.

Joy of winning. Following Grimm and Engelmann (2005), we assume that the joy of
winning is captured by a multiplicative parameter, w > 1. In 1A1U, while bidder i’s value
for the item is Vi, her perceived value conditional on winning the auction is wVi. Therefore,
bidder i’s (perceived) payoff is wVi− ai if she wins the auction, and zero otherwise. In 1A2U
and 2A1U, a bidder can win one or two units. We assume that, if a bidder wins both units, the
second unit does not provide any additional source of utility.21 Formally, in 1A2U, bidder i’s
(perceived) payoff is wvi+vi−bi,1−bi,2 if she wins both units, wvi−bi,1 if she wins (only) one
unit, and zero otherwise. Similarly, in 2A1U bidder i’s (perceived) payoff is wvi+vi−ci,1−ci,2
if she wins both auctions, wvi − ci,1 if she wins only the first auction, wvi − ci,2 if she wins
only the second auction, and zero otherwise.

The (Bayes-)Nash equilibria of the three auction formats under the hypotheses of risk
aversion and joy of winning give rise to the following predictions (all the proofs can be found
in Appendix B).

h0. Overbidding. In all treatments, bidders bid above the RN equilibrium level. In the
allotment treatments, both bids are associated with overbidding.

Under risk aversion, bidders tend to bid more aggressively than under risk neutrality as
they are willing to pay a higher price in order to increase the probability of winning.

Under joy of winning, bidders, anticipating that winning will provide an extra-utility,
are willing to pay more for the item and thus bid more aggressively. Notice that, in the
allotment treatments, overbidding involves also the second unit (even though no extra-utility
is associated to it) because, since a bidder’s second unit bid competes with the other bidder’s
first unit bid, and because first unit bids are now more aggressive, it is optimal to increase
also the second unit bid.

h1. Less overbidding in the allotment treatments. Under joy of winning, bids in
1A1U are greater than the sum of the two bids in the allotment treatments.

By assumption, in 1A2U and 2A1U, the extra utility from winning is associated only
with the first unit won. Therefore, in equilibrium, a bidder places one aggressive bid whose

20Apart from differentiability, we do not make any assumption on the particular form of the utility function.
Hence, our results apply to any specific form of risk aversion. Moreover, they are also independent from the
probability distribution of values.

21This assumption can be relaxed by attaching an extra utility also to the second unit won; as long as this
extra utility is lower than the one associated with the first unit, the theoretical implications do not qualitatively
change.
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purpose is to obtain the (highly valued) first unit (which also incorporates joy of winning)
and one moderate bid that is addressed to obtain the second unit (see h2 below). Of course,
bid spreading is not possible in 1A1U and bidders have a unique opportunity to obtain the
value of the item as well as the extra utility from winning. Thus, the unique bid in 1A1U is
greater than the sum of the two bids in the allotment treatments. A similar comparison is
not possible under risk aversion as equilibrium bidding functions cannot be explicitly derived.

h2. Bid spread. In the allotment treatments, 1A2U and 2A1U, bidders place two different
bids for the two units. Bidding functions (and thus bid spread) are identical in 1A2U
and 2A1U.

Under risk aversion, bid spreading is due to the concavity of the utility function. Suppose
a bidder makes two identical bids. Then it is always profitable to (slightly) increase the
first bid and decrease the second: in so doing, the probability of winning the first unit will
increase and the probability of winning the second unit will decrease, which is profitable as the
marginal utility of the first unit is higher than that of the second. Intuitively, bid spreading
increases the probability of winning only one unit; for a risk averse agent, this is preferable
to making two identical bids which would lead to a high probability of either winning both
units or none.

The joy of winning hypothesis implies that, in the allotment treatments, bidders perceive
the first unit to be more valuable than the second. Therefore, they are willing to pay more
for the first unit and thus bid more aggressively than on the second.

h3. Differences in efficiency and revenue. In 1A1U, the item is efficiently allocated to
the bidder with the highest private value. In the allotment treatments, instead, allocative
efficiency is not guaranteed. In all treatments, the auctioneer’s revenue is higher than
bidders’ surplus. Moreover, under joy of winning, the auctioneer’s revenue is higher in
1A1U than in the allotment treatments.

The difference in allocative efficiency between 1A1U and the allotment treatments is due
to bid spreading. Indeed, in 1A2U and 2A1U, it is possible that the highest bid placed by
the bidder with the lowest private value exceeds the lowest bid of the bidder with the highest
private value. Of course, this cannot occur in 1A1U where the single item is always allocated
to the bidder with the highest evaluation. The fact that the revenue is higher than bidders’
surplus is implied by h0. Finally, the fact that the auctioneer’s revenue is higher in 1A1U
than in the two treatments with allotment, 1A2U and 2A1U, is a direct consequence of h1.
This last result holds under joy of winning, whereas no revenue ranking can be assessed under
risk aversion.

The theoretical predictions h0-h3 described above match most of the experimental results
R0-R3 presented in Section 4. There are only two results that are not aligned with the
theoretical predictions: first, we observe higher allocative efficiency in 2A1U than in 1A2U ;
second, we observe a higher probability of bid spreading in 1A2U than in 2A1U. However,
these two anomalies can be reasonably accomplished using behavioral arguments.

The difference in allocative efficiency could be a consequence of the structure of the equi-
libria in the two treatments. As shown in the Appendix B, 2A1U admits two equilibria in
pure strategies in which bidders must properly coordinate their bids in a way that, in each
auction, the highest bid of one bidder competes with the lowest bid of the other bidder. Sup-
pose that bidders have opposite expectations about which equilibrium will be played, so that
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they mis-coordinate and both place their highest bid in the first auction and their lowest bid
in the second. In this case, the bidder with the highest private value wins both auctions and
allocative efficiency is achieved. Clearly, this coordination problem is not present in 1A2U.
Given the absence of communication among bidders and the random re-matching protocol
implemented in our experiment, allocative efficiency is (expected to be) higher in 2A1U than
in 1A2U.

The difference in the probability of bid spreading in the allotment treatments could be the
result of the response of bidders to the coordination problem inherent in 2A1U mentioned
above. Consider a bidder in 2A1U and suppose she is uncertain on whether her opponent will
place a high bid in the first auction and a low bid in the second or viceversa. This uncertainty
could then lead her to believe that the opponent is going to play a mixed strategy, in which
the pure strategies (high bid in the first auction, low bid in the second) and (low bid in the
first auction, high bid in the second) are played with equal probability. It can be shown
that it might be optimal to respond to such belief by making two identical bids in the two
auctions. Evidently, this cannot occur in 1A2U. Hence, the difference in the probability of bid
spreading could be due to the fact that, in 2A1U, some bidders respond to the coordination
problem by making two identical bids. Notice also that, when this happens, the probability
of an efficient allocation increases with respect to the equilibrium case, so this is an additional
argument to support the difference in allocative efficiency between the two treatments.

As a final step, we investigate the empirical relevance of the assumptions of risk aver-
sion and joy of winning by combining subjects’ bids with the information from the post-
experimental questionnaire. In particular, we draw from two questions: asking subjects to
self-report their risk attitude and inquiring into their perception of the joy of winning during
the experiment.22

Table 6 presents the proportions of subjects reporting either to be risk averse or to enjoy
winning for different levels of overbidding in the different treatments. In particular, for each
subject, we first run a regression with the (sum of the) bid(s) as the dependent variable and
the (sum of the) private value(s) and the constant term as controls. Given the coefficient of
Value, each subject is classified according to the extent of overbidding. Then, for each of the
four categories, Table 6 shows the proportions of subjects who reported to be risk averse or
to enjoy winning.

[Table 6 about here]

In Table 6, when we look at the pooled data, the proportions of subjects that reported
either to be risk averse or to enjoy winning increase with overbidding. Next, in Table 7, we
re-run the panel regressions in Table 2 by adding the two dummies from the questionnaire,
RA (for risk aversion) and JoW (for joy of winning).

[Table 7 about here]

By looking at the regressions with pooled data (columns (4) and (5)), RA and JoW are
both significant and have the expected sign. Robust evidence (although with different levels

22The first question focuses on risk aversion. Subjects are asked to report on a 7-point scale (with 1 indicating
risk aversion and 7 risk seeking) whether, in general terms, they are willing to take or to avoid risks. The
second question refers to the joy of winning. Subjects are asked whether they agree (on the basis of a 7-point
scale, with 1 indicating strong disagreement and 7 strong agreement) with the statement that in a generic
period of the experiment, winning (at least one of) the unit(s) was very important to them, regardless of the
corresponding monetary payoff.
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of significance) is found when we analyze each treatment separately (columns (1), (2) and
(3)). Hence, subjects reporting to be either risk averse or to enjoy winning tend to place, on
average, higher bids. Interestingly, relative to the results in Table 2, adding RA and JoW
weakens the effect of allotment, as indicated by the lower significance of 1A2U &2A1U.

6 Conclusion

Although economists and practitioners have long recognized the pro-competitive effects of
allotment in auctions,23 how bidders actually respond to the presence of multiple units remains
an open question.

This paper reports results from a laboratory experiment designed to empirically identify
the effects of allotment – moving from a single-unit to multiple-unit auctions – on bidders’
behavior, efficiency and revenue. To this end, we compare three treatments: a first-price
auction in which two units are sold as a single bundle; a two-unit discriminatory auction; two
simultaneous first-price single-unit auctions. The experiment is designed so that the standard
theory of risk-neutral bidders gives the same equilibrium predictions in the three treatments:
allotment (and the allotment format chosen) should play no role.

Our main result is, however, that allotment significantly mitigates overbidding, with this
effect being more evident in the discriminatory auction. Furthermore, in both allotment
treatments, we find a persistent tendency of subjects to place different bids for the two
identical units auctioned. Bid spread and differences in overbidding across treatments have
important consequences on efficiency and revenue associated with the auction formats. In
particular, we detect a substantial loss in efficiency and revenue in the discriminatory auction
relative to the other two treatments.

Our experimental results strongly reject the prediction of perfect equivalence of the three
treatments implied by the standard assumption of risk neutral bidders. Although discrim-
inating between alternative explanations is beyond the scope of the present study, we have
leaned on two popular behavioral hypothesis proposed in experimental auctions: risk aver-
sion and joy of winning. Overall, the predictions derived under these hypothesis successfully
rationalize our experimental evidence.

With the usual caveats about generalizing results from laboratory experiments to com-
plex real world situations, our study offers two important policy recommendations. First,
in choosing the auction format to implement, the auctioneer should seriously take into ac-
count that this choice may have a greater than expected impact on bidders’ behavior and,
consequently, on his revenue. As our experimental results reveal, allotment either reduces or
leaves unchanged the auctioneer’s revenue. Combined with the additional direct (administra-
tive, organizational and managerial) costs generally associated with allotment, the previous
consideration questions whether allotment is an optimal strategy for a revenue maximizing

23For instance, the recent “Green Paper on the modernization of EU public procurement policy” (European
Commission, 2011) points out that allotment can encourage small and medium enterprises (SMEs) to partici-
pate in public procurement auctions, whereby SMEs are considered of crucial importance for stimulating job
creation, economic growth and innovation; for these reasons, since 2006, the French Public Procurement Code
contains the mandatory principle that all the public contracts should be awarded in separate lots, unless the
allotment shows a technical, economic or financial disadvantage. In a similar vein, in designing auctions to
allocate CO2 emission allowances, allotment is recommended to avoid limits in participation (see, e.g., the
NYSERDA Report, 2007, p.35).
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seller. Second, in those cases in which allotment is required to pursue general and important
social goals, our study highlights the superiority of parallel auctions with respect to equivalent
discriminatory auctions in enhancing efficiency and revenue.
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Appendix

A Figures and Tables

Figure 1 – (Sum of the) bids in 1A1U, 1A2U and 2A1U.
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Table 1. Probability of overbidding in 1A1U, 1A2U and 2A1U

1A1U 1A2U 2A1U Pooled
(1) (2) (3) (4) (5)

Value 0.001∗∗∗ 0.001 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(1.8 · 10−4) (0.001) (1.8 · 10−4) (2.2 · 10−4) (2.2 · 10−4)
Period −0.002 1.7 · 10−4 −0.003 −0.002 −0.002

(0.003) (0.004) (0.002) (0.002)
1A2U &2A1U −0.076∗∗∗

(0.028)
1A2U −0.109∗∗∗

(0.032)
2A1U −0.062

(0.046)

lpl −245.882 −407.405 −350.385 −1016.305 −1013.195
Wald− χ2 41.42 61.14 36.22 46.69
p > χ2 0.000 0.232 0.000 0.000 0.000
Obs. 810 810 810 2430 2430

Notes. This table reports Probit marginal effect estimates (robust standard errors clustered

at the rematching group level in parentheses) over all periods. Columns (1)-(3) consider the

three treatments, separately. Regressions in columns (4) and (5) are based on pooled data.

The dependent variable is a dummy that takes a value of 1 if the (sum of the) bid(s) of

the subject in the period is associated with over-bidding. Value is the (sum of the) private

value(s) assigned to the subject in the period. Period is a linear time trend that starts

from 0 in the first period of the experiment. 1A2U and 2A1U are treatment dummies.

1A2U &2A1U is a dummy that takes value of 1 if the treatment is either 1A2U or 2A1U.

Estimates remain unchanged when Period is excluded from the regressions. Significance

levels are denoted as follows: ∗ : p < 0.1; ∗∗ : p < 0.05; ∗∗∗ : p < 0.01.

Figure 2 – Bid spread in 1A2U and 2A1U.
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Table 2. (Sum of the) Bids in 1A1U, 1A2U and 2A1U

1A1U 1A2U 2A1U Pooled
(1) (2) (3) (4) (5)

Value 0.681∗∗∗ 0.633∗∗∗ 0.659∗∗∗ 0.658∗∗∗ 0.658∗∗∗

(0.009) (0.010) (0.009) (0.005) (0.005)
Period −0.494∗∗∗ −0.640∗∗∗ −0.800∗∗∗ −0.649∗∗∗ −0.649∗∗∗

(0.117) (0.135) (0.111) (0.070) (0.070)
1A2U &2A1U −4.367∗∗∗

(2.120)
1A2U −5.128∗∗

(2.478)
2A1U −3.606

(2.479)
Constant 7.689∗∗∗ 8.496∗∗∗ 8.423∗∗∗ 11.145∗∗∗ 11.141∗∗∗

(2.248) (2.316) (2.180) (1.884) (1.904)

lrl −3361.717 −3488.945 −3333.645 −10208.017 −10206.006
Wald− χ2 6014.09 3784.23 5430.88 14722.16 14721.77
p > χ2 0.000 0.000 0.000 0.000 0.000
Obs. 810 810 810 2430 2430

Notes. This table reports coefficient estimates (standard errors in parentheses) from two-
way linear random effects models over all periods accounting for both potential individual
dependency over repetitions and dependency within rematching group. The dependent
variable is the (the sum of the) bid(s) placed by the subject in the period. The other
remarks of Table 1 apply.
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Table 3. Bid spread in 1A2U and 2A1U

1A2U 2A1U Pooled
Size Prob. Size Prob. Size Prob.

(1) (2) (3) (4) (5) (6)

Value 0.071∗∗∗ 0.002∗∗∗ 0.068∗∗∗ 0.003∗∗∗ 0.070∗∗∗ 0.002∗∗∗

(0.004) (2.6 · 10−4) (0.004) (3.5 · 10−4) (0.003) (2.1 · 10−4)
Period 0.055∗∗∗ 0.007∗∗∗ 0.117∗∗∗ 0.008∗∗∗ 0.086∗∗∗ 0.007∗∗∗

(0.049) (0.003) (0.050) (0.003) (0.035) (0.002)
2A1U −0.101 −0.084∗∗

(0.794) (0.036)
Constant 0.096 −0.215 −0.012

(0.726) (0.853) (0.663)

lrl (lpl) −2653.633 −314.564 −2678.307 −401.947 −5327.147 −716.958
Wald− χ2 367.03 27.59 294.99 109.54 659.62 96.19
p > χ2 0.000 0.000 0.000 0.000 0.000 0.000
Obs. 810 810 810 810 2430 2430

Notes. Columns (1), (3) and (5) report coefficient estimates (standard errors in parentheses) from two-
way linear random effects models over all periods accounting for both potential individual dependency
over repetitions and dependency within rematching group. The dependent variable in these regression
is the absolute value of the difference of the two bids placed by the subject in the period. Columns (2),
(4) and (5) report Probit marginal effect estimates (robust standard errors clustered at the rematching
group level in parentheses) over all periods. The dependent variable is a dummy that takes a value of
1 if the subject places two different bids in the period. The other remarks of Table 1 apply.
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Table 4. Highest and lowest bids in 1A2U and 2A1U

1A2U 2A1U Pooled
Highest Lowest Highest Lowest Highest Lowest

(1) (2) (3) (4) (5) (6)

Value (1 unit) 0.704∗∗∗ 0.562∗∗∗ 0.728∗∗∗ 0.592∗∗∗ 0.715∗∗∗ 0.576∗∗∗

(0.011) (0.011) (0.009) (0.010) (0.007) (0.008)
Period −0.292∗∗∗ −0.348∗∗∗ −0.342∗∗∗ −0.459∗∗∗ −0.317∗∗∗ −0.403∗∗∗

(0.069) (0.074) (0.057) (0.064) (0.045) (0.049)
2A1U 0.683 0.785

(1.206) (1.401)
Constant 4.304∗∗∗ 4.195∗∗∗ 4.110∗∗∗ 4.311∗∗∗ 3.885∗∗∗ 3.887∗∗∗

(1.133) (1.289) (1.071) (1.309) (0.973) (1.116)

lrl −2945.333 −3006.303 −2795.9459 −2891.461 −5752.116 −5903.973
Wald− χ2 4444.91 2475.37 6213.57 3261.75 10314.65 5610.32
p > χ2 0.000 0.000 0.000 0.000 0.000 0.000
Obs. 810 810 810 810 2430 2430

Notes. This table reports report coefficient estimates (standard errors in parentheses) from both two-

way linear random effects model over all periods accounting for both potential individual dependency

over repetitions and dependency within rematching group. The dependent variable in columns (1),

(3) and (5) is the highest bid of the subject in the period. The dependent variable in columns (2),

(4) and (6) is the lowest bid of the subject in the period. Value (1 unit) refers to the private value

assigned to one unit, only. All the other remarks of Table 1 apply.

Table 5. Relative efficiency in 1A2U and 2A1U

RE RAR RBS
(1) (2) (3) (4) (5) (6)

1A2U &2A1U −0.013∗∗ −0.038 0.015
(0.006) (0.024) (0.023)

1A2U −0.022∗∗∗ −0.055∗∗ 0.015
(0.006) (0.027) (0.027)

2A1U −0.004 −0.021 0.015
(0.006) (0.027) (0.027)

Period 0.002∗∗∗ 0.002∗∗∗ −0.008∗∗∗ −0.008∗∗∗ −0.009∗∗∗ −0.009∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Constant 0.968∗∗∗ 0.968∗∗∗ 0.790∗∗∗ 0.790∗∗∗ 0.180∗∗∗ 0.180∗∗∗

(0.006) (0.006) (0.021) (0.021) (0.020) (0.021)

Wald− χ2 12.70 22.17 56.83 58.45 60.13 60.11
p > χ2 0.002 0.000 0.000 0.000 0.000 0.000
Obs. 405 405 405 405 405 405

Notes. This table reports coefficient estimates from GLS models that include random effects at
the rematching group level. The dependent variable in columns (1) and (2), is the mean of the
relative efficiency of the rematching group in the period. The dependent variable in columns (3)
and (4), is the mean of the relative auctioneer’s revenue of the rematching group in the period.
The dependent variable in columns (5) and (6), is the mean of the relative bidders’ surplus of the
rematching group in the period. All the other remarks of Table 1 apply.
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Table 7. Bids, risk aversion and joy of winning in 1A1U, 1A2U and 2A1U

1A1U 1A2U 2A1U Pooled
(1) (2) (3) (4) (5)

Value 0.681∗∗∗ 0.633∗∗∗ 0.660∗∗∗ 0.658∗∗∗ 0.658∗∗∗

(0.009) (0.010) (0.009) (0.005) (0.005)
RA 4.835∗∗ 6.217∗ 1.055 4.695∗∗ 4.664∗∗

(2.353) (3.758) (3.264) (1.840) (1.841)
JoW 2.467 4.530 10.847∗∗ 4.825∗∗ 5.015∗∗

(2.589) (4.090) (4.184) (2.115) (2.126)
Period −0.493∗∗∗ −0.640∗∗∗ −0.800∗∗∗ −0.649∗∗∗ −0.649∗∗∗

(0.117) (0.135) (0.111) (0.070) (0.070)
1A2U &2A1U −3.883∗

(2.050)
1A2U −4.870∗∗

(2.382)
2A1U −2.878

(2.394)
Constant 4.870∗ 4.857 6.214∗∗ 7.747∗∗∗ 7.703∗∗∗

(2.503) (2.975) (2.677) (2.987) (2.109)

lrl −3355.838 −3482.530 −3325.905 −10199.444 −10197.308
Wald− χ2 6020.51 3788.57 5442.95 14739.69 14739.89
p > χ2 0.000 0.000 0.000 0.000 0.000
Obs. 810 810 810 2430 2430

Notes. This table reports coefficient estimates (standard errors in parentheses) from
two-way linear random effects models over all periods accounting for both potential
individual dependency over repetitions and dependency within rematching group. The
other remarks of Table 1 and Table 5 apply.
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B Proofs of the predictions under risk neutrality, joy of win-
ning and risk aversion

B.1 Risk neutrality

Under risk neutrality, the symmetric equilibrium of 1A1U is well known: each bidder bids
according to aRN (V ) = 1

2V .24

It is trivial to show that, in 1A2U and in 2A1U, every bidder makes two identical bids
according to the same equilibrium bidding function used in a single-unit first-price auction,
namely:25

bRN
1 (v) = bRN

2 (v) = cRN
1 (v) = cRN

2 (v) =
1

2
v.

B.2 Joy of winning

We characterize equilibrium bids in the allotment treatments and their implication assuming
that, if a bidder obtains both units, only the first provides the joy of winning w. It is rather
straightforward to obtain equilibrium bids in the more general case in which also the second
unit provides an extra-utility, say w2. As long as w2 < w (i.e., the joy of winning provided by
the second unit won is lower than that associated to the first), all the predictions that follow
still hold.

B.2.1 Equilibrium bids in 1A2U

Consider one bidder with value v drawn from a uniform distribution over the interval [0, v̄].
Let us denote by b1 and b2, with b1 ≥ b2, her highest and lowest bids, respectively. The
expected payoff of this bidder is

Π(b1, b2; v) = (wv − b1)F (b−1
2 (b1)) + (v − b2)F (b−1

1 (b2))

where b1(·) and b2(·) are, respectively, the highest and the lowest bids of the opponent and
F (z) = z/v̄, for z ∈ [0, v̄].

If the optimal bids (b∗1, b
∗
2) are such that b∗1 > b∗2 (we will verify this condition in the

sequel), then they must satisfy the following first order (necessary) conditions:{
(wv − b∗1)(b−1

2 (b∗1))
′

= b−1
2 (b∗1),

(v − b∗2)(b−1
1 (b∗2))

′
= b−1

1 (b∗2).
(B.1)

In a symmetric equilibrium, it must be that b∗1 = b1(v) and b∗2 = b2(v). The first order
conditions for a symmetric equilibrium (b1(v), b2(v)) are thus:{

(wv − b1(v))(b−1
2 (b1(v)))

′
= b−1

2 (b1(v)),

(v − b2(v))(b−1
1 (b2(v)))

′
= b−1

1 (b2(v)).

This system of differential equations, together with the boundary conditions26 b1(0) =
b2(0) = 0 and b1(v̄) = b2(v̄) = b̄, defines a symmetric equilibrium (bJoW1 (v), bJoW2 (v)).27 It is

24For convenience, in the rest of this Appendix bidders’ indexes are omitted, unless necessary.
25 We do not provide a formal proof of this result. However, it can be easily derived from the model under

the joy of winning hypothesis, by letting w tend to 1.
26The boundary conditions follow from a simple weak dominance argument.
27Provided that, bJoW

1 (v) > bJoW
2 (v), for all v ∈ (0, v̄).
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convenient to write the system above in terms of inverse bidding functions. To this end, let
us define φ1 = b−1

1 and φ2 = b−1
2 . The system of differential equations becomes:{

(wφ1(b)− b)φ′2(b) = φ2(b),

(φ2(b)− b)φ′1(b) = φ1(b).

Together with the boundary conditions φ1(0) = φ2(0) = 0 and φ1(b̄) = φ2(b̄) = v̄, the
previous system defines a symmetric equilibrium. Using standard techniques, one obtains the
following solutions in terms of inverse bidding functions:

φJoW1 (b) =
2b

w(1− Cb2)
, φJoW2 (b) =

2b

1 + Cb2
,

where C = (w2 − 1)/w2v̄2. Going back to the direct bidding functions, the solution is

bJoW1 (v) =

√
1 + Cw2v2 − 1

Cwv
, bJoW2 (v) =

1−
√

1− Cv2

Cv
.

Below, we will show that bJoW1 (v) > bJoW2 (v), for all v ∈ (0, v̄).

B.2.2 Equilibrium bids in 2A1U

The expected payoff of a bidder with value v who bids c1 in the first auction and c2 in the
second is:

Π(c1, c2; v) =(wv − c1)F (c−1
1 (c1)) + (wv − c2)F (c−1

2 (c2))

− (w − 1)vF (min(c−1
1 (c1); c−1

2 (c2))),

where c1(·) and c2(·) are her opponent’s bidding function in the first and the second auction,
respectively.

We first show that a symmetric equilibrium in which both bidders bid c1(v) in the first
auction and c2(v) in the second auction does not exist. More generally, we show that for a
bidder it is never optimal to place two bids c1 and c2 such that c−1

1 (c1) = c−1
2 (c2). Now,

let c∗1 and c∗2 be the optimal bids for a bidder and suppose that c−1
1 (c∗1) = c−1

2 (c∗2). The
expected payoff is not differentiable at (c∗1, c

∗
2). However, at that point, left and right partial

derivatives are well defined. For (c∗1, c
∗
2) to be optimal, the left partial derivatives must be

nondecreasing and the right partial derivatives must be non-increasing (otherwise, a small
increase or decrease in bids would be profitable). This corresponds to require that{

(wv − c∗1)(c−1
1 (c∗1))

′ − c−1
1 (c∗1)− (w − 1)v(c−1

1 (c∗1))
′ ≥ 0,

(wv − c∗1)(c−1
1 (c∗1))

′ − c−1
1 (c∗1) ≤ 0,

which cannot be satisfied simultaneously since the left hand side of the first equation is strictly
lower than the left hand side of the second.

As a consequence, the optimal bids (c∗1, c
∗
2) must be such that c−1

1 (c∗1) 6= c−1
2 (c∗2). Suppose,

without loss of generality, that c−1
1 (c∗1) > c−1

2 (c∗2). The expected payoff is now differentiable
at (c∗1, c

∗
2). Thus, the first order conditions are{

(wv − c∗1)(c−1
1 (c∗1))

′
= c−1

1 (c∗1),

(v − c∗2)(c−1
2 (c∗2))

′
= c−1

2 (c∗2).
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Notice the perfect analogy with the first order conditions for optimal bids in 1A2U -
see system (B.1). If (b∗1, b

∗
2) are the highest and the lowest equilibrium bids in 1A2U when

the opponent’s highest and lowest bidding functions are (b1(·), b2(·)), then, in 2A1U, b∗1 is
the optimal bid in the first auction and b∗2 is the optimal bid in the second auction when
the opponent bids according to b2(·) in the first auction and to b1(·) in the second auction.
Formally, there is an equilibrium of 2A1U in which bidding functions are:28{

cJoW1,1 (v1) = bJoW1 (v1), cJoW1,2 (v1) = bJoW2 (v1),

cJoW2,1 (v2) = bJoW2 (v2), cJoW2,2 (v2) = bJoW1 (v2).

In this equilibrium, bidder 1 respectively places the highest bid in the first auction and
the lowest bid in the second, while bidder 2 makes the opposite. There is also a specular
equilibrium in which bidder 1 respectively places the lowest bid in the first auction and the
highest bid in the second, while bidder 2 makes the opposite:{

cJoW1,1 (v1) = bJoW2 (v1), cJoW1,2 (v1) = bJoW1 (v1),

cJoW2,1 (v2) = bJoW1 (v2), cJoW2,2 (v2) = bJoW2 (v2).

B.2.3 Bid spread in 1A2U and 2A1U

Given that the equilibrium bidding functions are the same in 1A2U and 2A1U, we only need
to show bid spreading in 1A2U, that is, bJoW1 (v) > bJoW2 (v), for all v ∈ (0, v̄), or

√
1 + Cw2v2 − 1

Cwv
>

1−
√

1− Cv2

Cv
, ∀v ∈ (0, v̄).

By multiplying both sides by Cwv and rearranging, we obtain
√

1 + Cw2v2+w
√

1− Cv2 >
w+1. By simple algebra, this condition reduces to w2−1−Cw2v2 > 0, or (w2−1)(1−v2/v̄2) >
0, which is satisfied for all v ∈ (0, v̄).

B.2.4 Overbidding

Showing that, in 1A1U, aJoW (V ) > aRN (V ) for all V ∈ (0, V̄ ] is trivial.
To have overbidding in 1A2U (and in 2A1U ), it must be that bJoW2 (v) > bRN

2 (v), namely:

1−
√

1− Cv2

Cv
>

1

2
v,∀v ∈ (0, v̄].

By simple algebra, the previous condition reduces to C2v4 > 0, which is satisfied for all
v ∈ (0, v̄].

B.2.5 Efficiency in 1A1U, inefficiency in 1A2U and 2A1U

Allocative efficiency in 1A1U is implied by the symmetric nature of the equilibrium and the
fact that equilibrium bidding functions are strictly increasing. As a consequence, the bidder
with the highest private value places the highest bid and wins the auction. In both 1A2U and
2A1U, the bidder with the highest private values wins for sure one unit, as her highest bid is

28In 2A1U , since there is an asymmetry in bids in the two auctions, we have to re-introduce bidders’ indexes.
Thus, cJoW

i,1 (vi) and cJoW
i,2 (vi) indicate the equilibrium bidding functions of bidder i in 2A1U.
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greater than both opponents’ bids. However, there is a strictly positive probability that the
bidder with the lowest private values wins one unit with her highest bid. Indeed, notice that
an inefficient allocation of the second unit occurs if either v1 > v2 but bJoW2 (v1) < bJoW1 (v2),
or v1 < v2 but bJoW1 (v1) > bJoW2 (v2). The ex-ante probability of an inefficient allocation of
the second unit is the probability that one of these events occurs, namely:∫ v̄

0

[
F
(
(bJoW2 )−1(bJoW1 (v2))

)
− F

(
(bJoW1 )−1(bJoW2 (v2))

)]
f(v2)dv2.

The previous expression is strictly positive. Indeed, since bJoW2 (·) < bJoW1 (·), we have
(bJoW2 )−1(·) > (bJoW1 )−1(·) and (bJoW2 )−1(bJoW1 (·)) > (bJoW1 )−1(bJoW2 (·)).

B.2.6 Bidders bid more in 1A1U than in 1A2U and 2A1U

We show that, for V = 2v, aJoW (V ) > bJoW1 (v) + bJoW2 (v), for all v ∈ (0, v̄]. It is sufficient to
show that aJoW (V ) > 2bJoW1 (v), namely:

1

2
wV = wv > 2

√
1 + Cw2v2 − 1

Cwv
.

By simple algebra, the previous condition reduces to C2w4v4 > 0, which holds for all
v ∈ (0, v̄].

B.2.7 Auctioneer’s revenue is higher in 1A1U than in 1A2U and 2A1U

This implication follows from the previous result. Indeed, suppose that bidders’ private val-
ues are v

′
and v

′′
, with v

′ ≥ v
′′
, in the allotment treatments, while they are V

′
= 2v

′
and

V
′′

= 2v
′′

in 1A1U. The auctioneer’s revenue in 1A1U is simply aJoW (V
′
). The auction-

eer’s revenue in 1A2U and 2A1U are either bJoW1 (v
′
) + bJoW2 (v

′
) if bJoW2 (v

′
) > bJoW1 (v

′′
) or

bJoW1 (v
′
) + bJoW1 (v

′′
) if bJoW2 (v

′
) < bJoW1 (v

′′
). In the former case, we have already shown

that aJoW (v
′
) > bJoW1 (v

′
) + bJoW2 (v

′
). In the latter case, since v

′ ≥ v
′′
, we have that

2bJoW1 (v
′
) ≥ bJoW1 (v

′
) + bJoW1 (v

′′
). However, by previous results, aJoW (V

′
) > 2bJoW1 (v

′
),

which implies that aJoW (V
′
) > bJoW1 (v

′
) + bJoW1 (v

′′
).

B.2.8 0-spread can be rational in 2A1U but not in 1A2U

Suppose that, in 2A1U, bidder i believes that her opponent is going to play the following
mixed strategy: with probability 1/2, she will play cH(v) in the first auction and cL(v) in the
second; with probability 1/2, she will play cL(v) in the first auction and cH(v) in the second,
where cH(v) > cL(v), for all v ∈ (0, v̄). Bidder i’s expected payoff would thus be:

Π(c1, c2; v) =
1

2
{(wv − c1)[F (c−1

H (c1)) + F (c−1
L (c1))]

+ (wv − c2)[F (c−1
L (c2)) + F (c−1

H (c2))]

− (w − 1)v[F (min(c−1
H (c1); c−1

L (c2))) + F (min(c−1
L (c1); c−1

H (c2)))]}

Suppose that the optimal bids (c∗1, c
∗
2) are such that c−1

H (c∗1) < c−1
L (c∗2). Then, they must

satisfy the following first order conditions:{
(wv − c∗1)(c−1

L (c∗1))
′
+ (v − c∗1)(c−1

H (c∗1))
′

= c−1
H (c∗1) + c−1

L (c∗1),

(wv − c∗2)(c−1
L (c∗2))

′
+ (v − c∗2)(c−1

H (c∗2))
′

= c−1
H (c∗2) + c−1

L (c∗2).
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The two conditions above are clearly satisfied when c∗1 = c∗2.
This argument shows that, if the opponent plays the above mixed strategy, then it is

locally optimal to place two identical bids in the two auctions. Whether this is also globally
optimal depends on the exact shape of cH(·) and cL(·). It can be shown that, for reasonable
beliefs on cH(·) and cL(·), this is indeed the case.

Clearly, in 1A2U, such a mixed strategy is meaningless: a mixed strategy in which the two
bids are cH(v) and cL(v) with probability 1/2 and cL(v) and cH(v) with probability 1/2 is
simply a pure strategy in which the two bids with cH(v) and cL(v) are played with probability
one, so in this case placing two identical bids cannot be optimal.

B.3 Risk Aversion

B.3.1 Equilibrium bids in 1A2U

We characterize a symmetric equilibrium in differentiable, strictly increasing strategies. Using
the same notation as before, in 1A2U, the expected payoff of a bidder with value v is:

Π(b1, b2; v) = u(2v − b1 − b2)F (b−1
1 (b2)) + u(v − b1)[F (b−1

2 (b1))− F (b−1
1 (b2))],

where u(·) is a strictly increasing and strictly concave function, with u(0) = 0.
If the optimal bids (b∗1, b

∗
2) are such that b∗1 > b∗2 (we will verify this condition in the

sequel), then they must satisfy the following first order necessary conditions:
−u′(2v − b∗1 − b∗2)F (b−1

1 (b∗2))− u′(v − b∗1)
[
F (b−1

2 (b∗1))− F (b−1
1 (b∗2))

]
+u(v − b∗1)f(b−1

2 (b∗1))(b−1
2 (b∗1))

′
= 0,

−u′(2v − b∗1 − b∗2)F (b−1
1 (b∗2))+

+ [u(2v − b∗1 − b∗2)− u(v − b∗1)] f(b−1
1 (b∗2))(b−1

1 (b∗2))
′

= 0.

(B.2)

In a symmetric equilibrium, it must be that b∗1 = b1(v) and b∗2 = b2(v). Thus, the first
order conditions for a symmetric equilibrium are:

−u′(2v − b1(v)− b2(v))F (b−1
1 (b2(v)))− u′(v − b1(v))[F (b−1

2 (b1(v)))

−F (b−1
1 (b2(v)))] + u(v − b1(v))f(b−1

2 (b1(v)))(b−1
2 (b1(v)))

′
= 0,

−u′(2v − b1(v)− b2(v))F
(
b−1
1 (b2(v))

)
+ [u(2v − b1(v)− b2(v))− u(v − b1(v))] f

(
b−1
1 (b2(v))

) (
b−1
1 (b2(v))

)′
= 0.

This system of differential equations, together with the boundary conditions b1(0) =
b2(0) = 0 and b1(v̄) = b2(v̄) = b̄ defines a symmetric equilibrium (bRA

1 (v), bRA
2 (v)).29

B.3.2 Equilibrium bids in 2A1U

The expected payoff of a bidder with value v in 2A1U is:

Π(c1, c2; v) =u(v − c1)F (c−1
1 (c1)) + u(v − c2)F (c−1

2 (c2))

+[u(2v − c1 − c2)− u(v − c1)− u(v − c2)]F (min(c−1
1 (c1); c−1

2 (c2)).

Suppose that, as in a symmetric equilibrium, the optimal bids c∗1, c
∗
2 are such that c−1

1 (c∗1) =
c−1

2 (c∗2). Notice that, at this point, the expected payoff is not differentiable. However, it

29Provided that, bRA
1 (v) > bRA

2 (v), for all v ∈ (0, v̄).
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admits right and left partial derivatives. In particular, the right partial derivatives must be
non-positive and the left partial derivatives must be nonnegative (otherwise, any increase or
decrease in bids would be profitable):

∂Π(c∗1, c
∗
2)

∂c+1
≤ 0,

∂Π(c∗1, c
∗
2)

∂c−1
≥ 0;

∂Π(c∗1, c
∗
2)

∂c+2
≤ 0,

∂Π(c∗1, c
∗
2)

∂c−2
≥ 0.

Let us focus on the first two conditions (by symmetry, the same holds for the other two
conditions), which are:

− u′(2v − c∗1 − c∗2)F (c−1
2 (c∗2)) + u(v − c∗1)f(c−1

1 (c∗1))(c−1
1 (c∗1))

′ ≤ 0, (B.3)

− u′(2v − c∗1 − c∗2)F (c−1
1 (c∗1)) + [u(2v − c∗1 − c∗2)− u(v − c∗2)]f(c−1

1 (c∗1))(c−1
1 (c∗1))

′ ≥ 0. (B.4)

Since c−1
1 (c∗1) = c−1

2 (c∗2), the first term of (B.3) coincides with that of (B.4). Let us concentrate
on the second term. Since u(·) is strictly concave, the incremental ratio [u(z + h) − u(z)]/h
is strictly decreasing in z. Therefore, we have

u(2v − c∗1 − c∗2)− u(v − c∗2) < u(v − c∗1).

But then, (B.3) and (B.4) cannot simultaneously hold. This means that the optimal bids
(c∗1, c

∗
2) are such that c−1

1 (c∗1) 6= c−1
2 (c∗2). In particular, they imply that there are no symmetric

equilibria.
Now, suppose that the optimal bids (c∗1, c

∗
2) are such that c−1

1 (c∗1) > c−1
2 (c∗2). The expected

payoff is now differentiable at (c∗1, c
∗
2) and the first order conditions are:

−u′(2v − c∗1 − c∗2)F (c−1
2 (c∗2))− u′(v − c∗1)

[
F (c−1

1 (c∗1))− F (c−1
2 (c∗2))

]
+u(v − c∗1)f(c−1

1 (c∗1))(c−1
1 (c∗1))

′
= 0

−u′(2v − c∗1 − c∗2)F (c−1
2 (c∗2)) + [u(2v − c∗1 − c∗2)− u(v − c∗1)]×

×f(c−1
2 (c∗2))(c−1

2 (c∗2))
′

= 0

(B.5)

Notice the perfect analogy with the first order conditions for optimal bids in 1A2U - see
system (B.2). Therefore, in 2A1U there is an equilibrium in which:{

cRA
1,1 (v1) = bRA

1 (v1), cRA
1,2 (v1) = bRA

2 (v1),

cRA
2,1 (v2) = bRA

2 (v2), cRA
2,2 (v2) = bRA

1 (v2).

In this equilibrium, bidder 1 respectively places the highest bid in the first auction and
the lowest bid in the second, while bidder 2 makes the opposite. As under joy of winning,
there is also a specular equilibrium in which bidder 1 respectively places the lowest bid in the
first auction and the highest bid in the second, while bidder 2 makes the opposite:{

cRA
1,1 (v1) = bRA

2 (v1), cRA
1,2 (v1) = bRA

1 (v1),

cRA
2,1 (v2) = bRA

1 (v2), cRA
2,2 (v2) = bRA

2 (v2).
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B.3.3 Bid spread in 1A2U and 2A1U

Given the analogy between 1A2U and 2A1U in terms of equilibrium bids, we focus on 1A2U
and show that, if (bRA

1 (v), bRA
2 (v)) constitutes a symmetric equilibrium in differentiable strate-

gies, then it must be that bRA
1 (v) > bRA

2 (v), for all v ∈ (0, v̄).
Consider a bidder with value v ∈ (0, v̄) who finds optimal to bid b∗1 = b∗2 = b∗. Then, it

must be the case that deviations are non-profitable, namely:

∂Π(b∗, b∗)

∂b1
≤ 0,

∂Π(b∗, b∗)

∂b2
≥ 0.

In a symmetric equilibrium, b∗1 = b1(v), b∗2 = b2(v), and since b∗1 = b∗2 = b∗, then b1(v) =
b2(v) = b∗. The conditions above reduce to

b
′
2(x) ≥ u(v − b∗)

u′(2v − 2b∗)

f(v)

F (v)

and

b
′
1(x) ≤ u(2v − 2b∗)− u(v − b∗)

u′(2v − 2b∗)

f(v)

F (v)
.

Since u(·) is strictly concave and u(0) = 0, we have that, for y > 0, 2u(y) > u(2y).
Therefore,

u(v − b∗)
u′(2v − 2b∗)

f(v)

F (v)
>
u(2v − 2b∗)− u(v − b∗)

u′(2v − 2b∗)

f(v)

F (v)
,

which implies that b
′
2(v) > b

′
1(v). Thus, whenever the two bids are equal, the bidding function

corresponding to the lowest bid is steeper than that of the highest bid. However, this is not
possible under the assumption that b1(·) and b2(·) are differentiable.

B.3.4 Overbidding

It is well known that aRA(V ) > aRN (V ). Let us prove overbidding in 1A2U and 2A1U.
Starting from 1A2U, suppose that the opponent bids according to generic (strictly increasing)
bidding strategies, b1(·) and b2(·). Under risk neutrality, the first order conditions that define
the optimal lowest bid b∗2 of a bidder with value v is

(v − b∗2)f(b−1
1 (b∗2))(b−1

1 (b∗2))
′

= F (b−1
1 (b∗2)). (B.6)

Now, suppose that under risk aversion, the bidder bids according to b∗2 defined by (B.6). The
partial derivative of her expected payoff with respect to b2 evaluated at b∗2 is

−u′(2v − b1 − b∗2)F (b−1
1 (b∗2)) + [u(2v − b1 − b∗2)− u(v − b1)]f(b−1

1 (b∗2))(b−1
1 (b∗2))

′
.

By using (B.6), the last expression can be written as

u(2v − b1 − b∗2)− u(v − b1)

v − b∗2
− u′(2v − b1 − b∗2),

which is strictly positive. Indeed, notice that the first addend is the incremental ratio of
u(·) from (v − b1) to (2v − b1 − b∗2). The second term is the derivative of u(·) evaluated
at (2v − b1 − b∗2). Since u(·) is strictly concave, the first term is strictly greater than the
second. This shows that, under risk aversion, for any possible bidding strategy adopted
by the opponent, a bidder has an incentive to increase her lowest bid with respect to the
corresponding equilibrium level under risk neutrality.
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B.3.5 Efficiency in 1A1U, inefficiency in 1A2U and in 2A1U

The argument is identical to the one used under joy of winning (see section B.2.5). Inefficiency
in 1A2U and in 2A1U follows directly from bid spread.

B.3.6 0-spread can be rational in 2A1U but not in 1A2U

The argument is identical to the one used under joy of winning (see section B.2.8). In this
case, if the other bidder, with probability 1/2, bids cH(v) in the first auction and cL(v) in
the second and, with probability 1/2, bids cL(v) in the first auction and cH(·) in the second
(where cH(v) > cL(v), for all v ∈ (0, v̄)), then bidder i’s expected payoff is:

Π(c1, c2; v) =
1

2
{u(v − c1)[F (c−1

H (c1)) + F (c−1
L (c1))]

+ u(v − c2)[F (c−1
L (c2)) + F (c−1

H (c2))]

+ [u(2v − c1 − c2)− u(v − c1)− u(v − c2)]

× [F (min(c−1
H (c1); c−1

L (c2))) + F (min(c−1
L (c1); c−1

H (c2)))]}

If the optimal bids (c∗1, c
∗
2) are such that c−1

H (c∗1) < c−1
L (c∗2), they must satisfy the following

first order conditions:
u(v − c∗1)(c−1

L (c∗1))
′ − u′(v − c∗1)[c−1

L (c∗1)− c−1
H (c∗2)]− u(v − c∗2)(c−1

H (c∗1))
′

+u(2v − c∗1 − c∗2)(c−1
H (c∗1))

′ − u′(2v − c∗1 − c∗2)[c−1
H (c∗1) + c−1

H (c∗2)] = 0,

u(v − c∗2)(c−1
L (c∗2))

′ − u′(v − c∗2)[c−1
L (c∗2)− c−1

H (c∗1)]− u(v − c∗1)(c−1
H (c∗2))

′

+u(2v − c∗1 − c∗2)(c−1
H (c∗2))

′ − u′(2v − c∗1 − c∗2)[c−1
H (c∗1) + c−1

H (c∗2)] = 0.

The two conditions above are clearly satisfied when c∗1 = c∗2.
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C Experimental instructions

In what follows, we present the instructions given to participants in the three treatments.
Instructions were originally written in German. We first present the part of Instructions that
is common to all treatments ([All treatments]) and, then, the part of Detailed Instructions
which is specific of each to the three treatments ([1A1U], [1A2U], [2A1U]).

Instructions - [All treatments]
Welcome. Thanks for participating in this experiment. If you follow the instructions

carefully you can earn an amount of money that will be paid in cash at the end of the
experiment. During the experiment you are not allowed to talk or communicate in any way
with the other participants. If you have questions raise your hand and one of the assistants
will come and answer it. The rules that you are reading are the same for all participants.

General rules. For showing up on time, you will receive 4 euro. During the experiment
you will receive points. At the end of the experiment, the total number of points you have
accumulated will be converted into Euro at the rate of 100 points = 3 euro. Your final
payment will be composed of the show-up fee of 4 euro plus the amounts of money that you
will earn during the experiment. Your final payment will be paid to you in cash immediately
at the end of the experiment.

Detailed Instructions - [1A1U]
In this experiment you will participate in one auction that involves one unit of a hypo-

thetical good. If you acquire the unit, the experimenter will purchase that unit at its resale
value. Your resale value will be communicated to you before the beginning of the auction.
This value will be randomly drawn from an interval between 0 and 200 points, with every
number in this interval having the same probability of being drawn.

In total, two persons will participate in the auction. Thus, in addition to you, there is
another participant who will also want to acquire the unit involved in the auction. Exactly
like you, the other participant will be given a resale value before the beginning of the auction.
This value will be, again, randomly drawn from an interval between 0 and 200 points, with
every number in this interval having the same probability of being drawn. The resale values
of the two participants in the auction are therefore drawn independently of each other. Thus,
it is likely that you and the other participant will be given different resale values. During the
auction, you will not be informed about the resale value of the other participant, nor will the
other participant be informed of your resale value.

Rules of the auction. The unit of the good involved in the auction will be auctioned off
according to the following rules. You, as well as the other participant, will place one bid for
the unit. The bid will be equivalent to the number of points that you are willing to pay to
acquire the unit. Given the choices of the two participants, the highest bid wins the unit
involved in the auction. This means that you will acquire the unit if you place the highest bid
in the auction. In the case of identical bids, the winning bid will be randomly determined. If
you acquire the unit, your earnings in points will be given by the difference between the resale
value and your winning bid. If you do not acquire the unit, you will earn nothing. Note that
you may also generate losses if you acquire the unit by bidding more than the resale value.
Eventual losses will be subtracted from your total earnings in points.

Example. The following table reports the two hypothetical bids placed by the two partic-
ipants in the auction. The two bids are ranked in order from the highest to the lowest. The
participant placing the highest bid wins the unit and pays 87 points to acquire that unit.
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Auction

Rank Bid

1 87
2 53

Repetitions of the experimental task. The experiment consists of 15 periods. In each
period you will participate in an auction involving one unit. In each period, you and the
other participant will be given new resale values drawn according to the previous rules. In
each period, you will be randomly re-matched with another participant in such a way that
you will never interact with the same opponent in two consecutive periods. The experiment
is anonymous, meaning that you will not be told who the other group member is. At the end
of each period, the computer will show your bid, the winning bid and how many points you
have obtained in that auction.

Detailed Instructions - [1A2U]
In this experiment you will participate in one auction that involves two units of a hypo-

thetical good. For each unit you acquire, the experimenter will purchase that unit at its resale
value. Your resale value will be communicated to you before the beginning of the auction.
This value will be randomly drawn from an interval between 0 and 100 points, with every
number in this interval having the same probability of being drawn. Finally, the two units in
the auction have the same resale value.

In total, two persons will participate in the auction. Thus, in addition to you, there is
another additional participant who will also want to acquire the two units involved in the
auction. Exactly like you, the other participant will be given a resale value for each of the
two units before the beginning of the auction. Also for the other participant, the two units
are assigned the same resale value. The resale value will be, again, randomly drawn from
an interval between 0 and 100 points, with every number in this interval having the same
probability of being drawn. The resale values of the two participants in the auction are
therefore independently drawn from each other. Thus, it is likely that you and the other
participant will be given different resale values. During the auction, you will not be informed
about the resale values of the other participant, nor will the other participant be informed of
your resale values.

Rules of the auction. The two units of the good involved in the auction will be auctioned
off according to the following rules. You and the other participant will each place two bids,
one for each unit. Each bid will be equivalent to the number of points that you are willing
to pay to acquire the corresponding unit. Given the choices of the two participants, the two
highest bids win the two units involved in the auction. This means that you will acquire one
unit if you place one of the two highest bids in the auction. Similarly, you will acquire both
units if you place the two highest bids in the auction. In case of identical bids, the winning
bids will be randomly determined. For each unit you acquire, your earnings in points will be
given by the difference between its resale value and your winning bid. If you do not acquire
any unit, you will earn nothing. Note that you may also generate losses if you acquire a unit
by bidding more than its resale value. Eventual losses will be subtracted from your total
earnings in points.

Example. The following table reports the four hypothetical bids placed by the two par-
ticipants in the auction. The four bids are ranked in order from highest to lowest. The
participant placing the highest bid wins the first unit and pays 87 points to acquire that unit.
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The participant placing the second highest bid wins the second unit and pays 77 points to
acquire that unit.

Auction

Rank Bid

1 87
2 77
3 66
4 53

Repetitions of the experimental task. The experiment consists of 15 periods. In each
period, you will participate in an auction involving two units. In each period, you and the
other participant will be given new resale values drawn according to the previous rules. In
each period, you will be randomly re-matched with another participant in such a way that
you will never interact with the same opponent in two consecutive periods. The experiment
is anonymous, meaning that you will not be told who the other group member is. At the end
of each period, the computer will show your bids, the two winning bids in the auction and
how many points you have obtained in the auction.

Detailed Instructions - [2A1U] In this experiment you will participate in two simul-
taneous auctions, each involving one unit of a hypothetical good. For each unit you acquire,
the experimenter will purchase that unit at its resale value. Your resale value will be commu-
nicated to you before the beginning of the auction. This value will be randomly drawn from
an interval between 0 and 100 points, with every number in this interval having the same
probability of being drawn. Finally, the two units in the two auctions have the same resale
value.

In total, two persons will participate in the two auctions. Thus, in addition to you, there is
another participant who will also want to acquire the two units involved in the two auctions.
Exactly like you, the other participant will be given the resale value of each of the two units
before the beginning of the two auctions. Also for the other participant, the units in the
two auctions are assigned the same resale value. The resale value will be, again, randomly
drawn from an interval between 0 and 100 points, with every number in this interval having
the same probability of being drawn. The resale values of the two participants in the two
auctions are therefore independently drawn from each other. Thus, it is likely that you and
the other participant will be given different resale values. During the two auctions, you will
not be informed about the resale values of the other participant, nor will the other participant
be informed of your resale values.

Rules of the auctions. The two units of the good involved in the two auctions will be
auctioned off according to the following rules. You and the other participant will each place
two bids, one in each of the two auctions. Each bid will be equivalent to the number of points
that you are willing to pay to acquire the unit in the corresponding auction. Given the choices
of the two participants, in each auction, the highest bid wins the corresponding unit. This
means that you will acquire one unit if you place the highest bid in one of the two auctions.
Similarly, you will acquire two units if you place the highest bids in both auctions. In case of
identical bids, the winning bids will be randomly determined. For each unit you acquire, your
earnings in points will be given by the difference between its resale value and your winning
bid. If you do not acquire any unit, you will earn nothing. Note that you may also generate
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losses if you acquire a unit by bidding more than its resale value. Eventual losses will be
subtracted from your total earnings in points.

Example. The following two tables report the bids placed by the two participants in the
two auctions. In each auction, the two bids are ranked in order from highest to lowest. The
participant placing the highest bid in the first auction wins the first unit and pays 87 points
to acquire that unit. The participant placing the highest bid in the second auction wins the
second unit and pays 77 points to acquire that unit.

Auction A

Rank Bid

1 87
2 53

Auction B

Rank Bid

1 77
2 66

Repetitions of the experimental task. The experiment consists of 15 periods. In each period
you will participate in two simultaneous auctions, each involving one unit. In each period,
you and the other participant will be given new resale values drawn according to the previous
rules. In each period you will be randomly re-matched with another participant in such a
way that you will never interact with the same opponent in two consecutive periods. The
experiment is anonymous, meaning that you will not be told who the other group member
is. At the end of each period, the computer will show your bids, the winning bids in the two
auctions and how many points you have obtained in each of the two auctions.
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D Robustness checks to control for the effects of repetition
(not intended for publication)

In what follows, we replicate the main parametric analysis presented in Section 4 on differ-
ent subsets of periods to control for the effects of repetition. All the regressions include a
linear time trend that starts from 0 in the first period of the subset. Results remain almost
unchanged if the linear time trend is excluded from the regressions.

Table 2a. (Sum of the) Bids in 1A1U, 1A2U and 2A1U in periods 1-5

1A1U 1A2U 2A1U Pooled
(1) (2) (3) (4) (5)

Value 0.695∗∗∗ 0.659∗∗∗ 0.701∗∗∗ 0.685∗∗∗ 0.685∗∗∗

(0.018) (0.023) (0.018) (0.012) (0.012)
Period 0.092 −2.357∗∗ −1.100∗ −1.140∗∗ −1.140∗∗

(0.724) (0.911) (0.648) (0.444) (0.444)
1A2U &2A1U −3.161

(2.910)
1A2U −4.459

(3.387)
2A1U −1.861

(3.388)
Constant 5.589 9.713∗∗ 5.631∗ 9.105∗∗∗ 9.087∗∗∗

(3.667) (3.946) (3.022) (2.814) (2.831)

lrl −1176.500 −1242.133 −1158.312 −3596.702 −3594.271
Wald− χ2 1471.69 707.99 1572.87 3396.22 3396.49
p > χ2 0.000 0.000 0.000 0.000 0.000
Obs. 270 270 270 810 810

Notes. This table reports coefficient estimates (standard errors in parentheses) from
two-way linear random effects models over periods 1-5 accounting for both potential
individual dependency over repetitions and dependency within rematching group. The
dependent variable is the (the sum of the) bid(s) placed by the subject in the period.
The other remarks of Table 1 apply.
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Table 2b. (Sum of the) Bids in 1A1U, 1A2U and 2A1U in periods 6-10

1A1U 1A2U 2A1U Pooled
(1) (2) (3) (4) (5)

Value 0.665∗∗∗ 0.651∗∗∗ 0.665∗∗∗ 0.660∗∗∗ 0.660∗∗∗

(0.013) (0.013) (0.015) (0.008) (0.008)
Period 0.469 −1.079∗∗ −0.953∗ −0.512∗ −0.512∗

(0.514) (0.511) (0.518) (0.297) (0.297)
1A2U &2A1U −4.967∗∗

(2.173)
1A2U −5.790∗∗

(2.538)
2A1U −4.142

(2.539)
Constant 4.391∗ 3.166 3.129 6.872∗∗∗ 6.868∗∗∗

(2.469) (2.519) (2.486) (2.044) (2.062)

lrl −1092.234 −1103.514 −1104.0787 −3301.786 −3299.728
Wald− χ2 2606.59 2446.75 2020.18 7057.93 7056.12
p > χ2 0.000 0.000 0.000 0.000 0.000
Obs. 270 270 270 810 810

Notes. This table reports coefficient estimates (standard errors in parentheses) from
two-way linear random effects models over periods 6-10 accounting for both potential
individual dependency over repetitions and dependency within rematching group. The
dependent variable is the (the sum of the) bid(s) placed by the subject in the period.
The other remarks of Table 1 apply.
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Table 2c. (Sum of the) Bids in 1A1U, 1A2U and 2A1U in periods 11-15

1A1U 1A2U 2A1U Pooled
(1) (2) (3) (4) (5)

Value 0.677∗∗∗ 0.614∗∗∗ 0.625∗∗∗ 0.640∗∗∗ 0.640∗∗∗

(0.012) (0.015) (0.014) (0.008) (0.008)
Period −0.774∗ 0.099 −0.562 −0.362 −0.362

(0.465) (0.541) (0.502) (0.292) (0.292)
1A2U &2A1U −4.790∗

(2.465)
1A2U −4.973∗

(2.904)
2A1U −4.606

(2.904)
Constant 3.786 3.559 4.032 6.726∗∗∗ 6.724∗∗∗

(2.446) (2.712) (2.962) (2.252) (2.289)

lrl −1059.598 −1115.521 −1089.300 −3276.262 −3274.279
Wald− χ2 3028.38 1741.76 1925.36 6382.57 6381.51
p > χ2 0.000 0.000 0.000 0.000 0.000
Obs. 270 270 270 810 810

Notes. This table reports coefficient estimates (standard errors in parentheses) from
two-way linear random effects models over periods 11-15 accounting for both potential
individual dependency over repetitions and dependency within rematching group. The
dependent variable is the (the sum of the) bid(s) placed by the subject in the period.
The other remarks of Table 1 apply.
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Table 3a. Bid spread in 1A2U and 2A1U in periods 1-5

1A2U 2A1U Pooled
Size Prob. Size Prob. Size Prob.

(1) (2) (3) (4) (5) (6)

Value 0.065∗∗∗ 0.002∗∗∗ 0.050∗∗∗ 0.002∗∗∗ 0.057∗∗∗ 0.002∗∗∗

(0.008) (3.8 · 10−4) (0.007) (4.7 · 10−4) (0.005) (2.9 · 10−4)
Period −0.119 0.008 0.335 0.015 0.112 0.011

(0.280) (0.019) (0.263) (0.018) (0.192) (0.013)
2A1U −0.382 −0.093∗

(1.071) (0.048)
Constant 1.030 1.234 1.349

(1.197) (1.157) (0.993)

lrl(lpl) −923.998 −124.468 −913.465 −156.219 −1835.979 −280.885
Wald− χ2 73.00 20.72 50.70 14.58 121.34 41.13
p > χ2 0.000 0.000 0.000 0.001 0.000 0.000
Obs. 270 270 270 270 540 540

Notes. Columns (1), (3) and (5) report coefficient estimates (standard errors in parentheses) from two-
way linear random effects models over periods 1-5 accounting for both potential individual dependency
over repetitions and dependency within rematching group. The dependent variable in these regression
is the absolute value of the difference of the two bids placed by the subject in the period. Columns (2),
(4) and (5) report Probit marginal effect estimates (robust standard errors clustered at the rematching
group level in parentheses) over periods 1-5. The dependent variable is a dummy that takes a value
of 1 if the subject places two different bids in the period. The other remarks of Table 1 apply.
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Table 3b. Bid spread in 1A2U and 2A1U in periods 6-10

1A2U 2A1U Pooled
Size Prob. Size Prob. Size Prob.

(1) (2) (3) (4) (5) (6)

Value 0.690∗∗∗ 0.002∗∗∗ 0.074∗∗∗ 0.003∗∗∗ 0.071∗∗∗ 0.003∗∗∗

(0.006) (3.8 · 10−4) (0.006) (3.9 · 10−4) (0.004) (2.7 · 10−4)
Period 0.071 −0.002 0.059 0.030 0.069 0.038

(0.227) (0.017) (0.225) (0.018) (0.159) (0.0127)
2A1U −0.038 −0.068∗

(0.906) (0.038)
Constant 0.434 −0.060 0.208

(0.919) (1.073) (0.824)

lrl(lpl) −865.204 −102.886 −865.834 −119.585 −1728.080 −223.821
Wald− χ2 145.22 37.14 137.50 38.31 284.40 68.56
p > χ2 0.000 0.000 0.000 0.000 0.000 0.000
Obs. 270 270 270 270 540 540

Notes. Columns (1), (3) and (5) report coefficient estimates (standard errors in parentheses) from
two-way linear random effects models over periods 6-10 accounting for both potential individual de-
pendency over repetitions and dependency within rematching group. The dependent variable in these
regression is the absolute value of the difference of the two bids placed by the subject in the period.
Columns (2), (4) and (5) report Probit marginal effect estimates (robust standard errors clustered at
the rematching group level in parentheses) over periods 6-10. The dependent variable is a dummy
that takes a value of 1 if the subject places two different bids in the period. The other remarks of
Table 1 apply.
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Table 3c. Bid spread in 1A2U and 2A1U in periods 11-15

1A2U 2A1U Pooled
Size Prob. Size Prob. Size Prob.

(1) (2) (3) (4) (5) (6)

Value 0.074∗∗∗ 0.001∗∗∗ 0.078∗∗∗ 0.003∗∗∗ 0.075∗∗∗ 0.002∗∗∗

(0.006) (2.0 · 10−4) (0.007) (6.2 · 10−4) (0.005) (2.8 · 10−4)
Period 0.005 −0.011 0.333 −0.034∗∗ 0.163 −0.022∗∗

(0.216) (0.014) (0.258) (0.016) (0.168) (0.011)
2A1U 0.091 −0.085∗∗

(0.976) (0.042)
Constant 0.526 −0.480 0.051

(1.004) (1.288) (0.920)

lrl(lpl) −864.068 −85.157 −903.066 −116.021 −1767.387 −202.283
Wald− χ2 158.54 10.87 113.89 16.27 261.72 26.44
p > χ2 0.000 0.004 0.000 0.000 0.000 0.000
Obs. 270 270 270 270 540 540

Notes. Columns (1), (3) and (5) report coefficient estimates (standard errors in parentheses) from
two-way linear random effects models over periods 11-15 accounting for both potential individual
dependency over repetitions and dependency within rematching group. The dependent variable in
these regression is the absolute value of the difference of the two bids placed by the subject in the
period. Columns (2), (4) and (5) report Probit marginal effect estimates (robust standard errors
clustered at the rematching group level in parentheses) over periods 11-15. The dependent variable
is a dummy that takes a value of 1 if the subject places two different bids in the period. The other
remarks of Table 1 apply.
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Table 5a. Relative efficiency in 1A2U and 2A1U in periods 1-5

RE RAR RBS
(1) (2) (3) (4) (5) (6)

1A2U &2A1U −0.016 −0.029 0.004
(0.015) (0.037) (0.044)

1A2U −0.034∗∗ −0.050 0.001
(0.015) (0.043) (0.052)

2A1U 0.002 −0.008 0.007
(0.015) (0.043) (0.052)

Period 0.003 0.003 −0.015∗∗ −0.015∗∗ 0.018∗∗ 0.017∗∗

(0.003) (0.003) (0.007) (0.007) (0.008) (0.008)
Constant 0.965∗∗∗ 0.965∗∗∗ 0.803∗∗∗ 0.803∗∗∗ 0.162∗∗∗ 0.162∗∗∗

(0.014) (0.013) (0.033) (0.033) (0.039) (0.040)

Wald− χ2 2.28 7.81 4.64 5.58 5.02 5.04
p > χ2 0.320 0.050 0.098 0.134 0.081 0.169
Obs. 135 135 135 135 135 135

Notes. This table reports report coefficient estimates from GLS random effects models (robust
standard errors in parentheses clustered at the rematching group level). The dependent variable
in columns (1) and (2), is the mean of the relative efficiency of the rematching group in the period.
The dependent variable in columns (3) and (4), is the mean of the relative auctioneer’s revenue of
the rematching group in the period. The dependent variable in columns (5) and (6), is the mean
of the relative bidders’ surplus of the rematching group in the period. All the other remarks of
Table 1 apply.
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Table 5b. Relative efficiency in 1A2U and 2A1U in periods 6-10

RE RAR RBS
(1) (2) (3) (4) (5) (6)

1A2U &2A1U −0.013∗ −0.040∗ 0.019
(0.008) (0.023) (0.021)

1A2U −0.014 −0.061∗∗ 0.033
(0.009) (0.025) (0.024)

2A1U −0.012 −0.019 0.006
(0.009) (0.025) (0.024)

Period 0.006∗∗ 0.006∗∗ −0.007∗∗ −0.007∗∗ 0.013∗∗∗ 0.013∗∗∗

(0.003) (0.003) (0.004) (0.004) (0.004) (0.004)
Constant 0.972∗∗∗ 0.972∗∗∗ 0.743∗∗∗ 0.743∗∗∗ 0.230∗∗∗ 0.230∗∗∗

(0.008) (0.008) (0.020) (0.019) (0.018) (0.018)

Wald− χ2 7.39 7.43 7.06 10.05 13.09 14.41
p > χ2 0.023 0.059 0.029 0.018 0.001 0.002
Obs. 135 135 135 135 135 135

Notes. This table reports report coefficient estimates from GLS random effects models (robust
standard errors in parentheses clustered at the rematching group level). The dependent variable
in columns (1) and (2), is the mean of the relative efficiency of the rematching group in the period.
The dependent variable in columns (3) and (4), is the mean of the relative auctioneer’s revenue of
the rematching group in the period. The dependent variable in columns (5) and (6), is the mean
of the relative bidders’ surplus of the rematching group in the period. All the other remarks of
Table 1 apply.
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Table 5c. Relative efficiency in 1A2U and 2A1U in periods 11-15

RE RAR RBS
(1) (2) (3) (4) (5) (6)

1A2U &2A1U −0.011 −0.045∗ 0.022
(0.008) (0.027) (0.024)

1A2U −0.019∗∗ −0.054∗ 0.012
(0.008) (0.031) (0.028)

2A1U −0.002 −0.037 0.032
(0.008) (0.031) (0.028)

Period −0.002 −0.002 −0.004 −0.004 4.0 ∗ 10−4 4.0 ∗ 10−4

(0.002) (0.002) (0.004) (0.004) (0.004) (0.004)
Constant 0.986∗∗∗ 0.986∗∗∗ 0.718∗∗∗ 0.718∗∗∗ 0.270∗∗∗ 0.270∗∗∗

(0.008) (0.007) (0.023) (0.023) (0.021) (0.021)

Wald− χ2 2.68 6.78 4.13 4.36 0.88 1.41
p > χ2 0.262 0.079 0.127 0.225 0.644 0.7028
Obs. 135 135 135 135 135 135

Notes. This table reports report coefficient estimates from GLS random effects models (robust
standard errors in parentheses clustered at the rematching group level). The dependent variable
in columns (1) and (2), is the mean of the relative efficiency of the rematching group in the period.
The dependent variable in columns (3) and (4), is the mean of the relative auctioneer’s revenue of
the rematching group in the period. The dependent variable in columns (5) and (6), is the mean
of the relative bidders’ surplus of the rematching group in the period. All the other remarks of
Table 1 apply.
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