Skip to main content
Article
Geometric stabilization of extended S=2 vortices in two-dimensional photonic lattices: Theoretical analysis, numerical computation, and experimental results
PHYSICAL REVIEW A
  • KJH Law
  • D Song
  • PG Kevrekidis, University of Massachusetts - Amherst
  • J Xu
  • ZG Chen
Publication Date
2009
Abstract

In this work, we focus on the subject of nonlinear discrete self-trapping of S=2 (doubly-charged) vortices in two-dimensional photonic lattices, including theoretical analysis, numerical computation, and experimental demonstration. We revisit earlier findings about S=2 vortices with a discrete model and find that S=2 vortices extended over eight lattice sites can indeed be stable (or only weakly unstable) under certain conditions, not only for the cubic nonlinearity previously used, but also for a saturable nonlinearity more relevant to our experiment with a biased photorefractive nonlinear crystal. We then use the discrete analysis as a guide toward numerically identifying stable (and unstable) vortex solutions in a more realistic continuum model with a periodic potential. Finally, we present our experimental observation of such geometrically extended S=2 vortex solitons in optically induced lattices under both self-focusing and self-defocusing nonlinearities and show clearly that the S=2 vortex singularities are preserved during nonlinear propagation.

Comments
This is the prepublished version harvested from ArXiv. The published version is located at http://pra.aps.org/abstract/PRA/v80/i6/e063817
Pages
-
Citation Information
KJH Law, D Song, PG Kevrekidis, J Xu, et al.. "Geometric stabilization of extended S=2 vortices in two-dimensional photonic lattices: Theoretical analysis, numerical computation, and experimental results" PHYSICAL REVIEW A Vol. 80 Iss. 6 (2009)
Available at: http://works.bepress.com/panos_kevrekidis/9/