Skip to main content
Article
Preparation of Phase Homogeneous Mn-Zn Ferrite Powder by Spray Pyrolysis
Journal of Materials Research
  • Xinyu Zhao
  • Baicun Zheng
  • Hongchen Gu
  • Chunzhong Li
  • Shi C. Zhang, Missouri University of Science and Technology
  • P. D. Ownby, Missouri University of Science and Technology
Abstract

Two kinds of aqueous precursor solutions are used to synthesize Mn-Zn ferrite powders: (i) nitrate (NO) precursor-derived from solutions of Mn(NO3)2, Zn(NO3)2, and Fe(NO3)3; and (ii) acetate (AC) precursor-derived from solutions of Mn(CH3COOO)2, Zn(CHCH3COOO)2, and Fe(NO3)3. The composition of the powders synthesized from the precursor AC is very uniform, whereas powders derived from the precursor NO have Mn and Zn segregated on the particle surfaces. In addition, the powders synthesized from precursor AC are solid spherical particles with fine porosity, whereas many hollow and fragmented particles are observed in the powder derived from precursor NO. Overall, the properties of Mn-Zn ferrite cores prepared from the precursor AC are superior to those prepared from the precursor NO. The reasons for the differences are explained and described in detail. The AC precursor powders synthesized by spray pyrolysis produced Mn-Zn ferrite cores with good magnetic properties.

Department(s)
Materials Science and Engineering
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 1999 Materials Research Society, All rights reserved.
Publication Date
1-1-1999
Citation Information
Xinyu Zhao, Baicun Zheng, Hongchen Gu, Chunzhong Li, et al.. "Preparation of Phase Homogeneous Mn-Zn Ferrite Powder by Spray Pyrolysis" Journal of Materials Research (1999)
Available at: http://works.bepress.com/p_ownby/175/