November, 1984

IUPAC 6th International Symposium on Cationic Polymerization and Related Processes

Otto Vogl, University of Massachusetts - Amherst
Etienne Schacht

Available at: https://works.bepress.com/otto_vogl/165/
IUPAC 6TH International Symposium on Cationic Polymerization and Related Processes

Etienne Schacht
Laboratorium voor Organische Chemie
Rijksuniversiteit Ghent
B-900 Gent, Belgium
and
Otto Vogl*
Polytechnic Institute of New York
Brooklyn, New York 11201

The 6th Symposium on Cationic Polymerization and Related Processes was held in Gent, Belgium from August 30 to September 2, 1983, in the Faculty of Sciences of the University of Gent; Professor Eric Goethals was the Chairman and Dr. Etienne Schacht the Secretary. A total of 16 invited lectures were presented and 35 contributed shorter communications were given. Many important problems of cationic reactions and polymerizations were discussed, and many advances were reported.

The single most important problem is the control of cationic polymerization which ultimately leads to living cationic polymerization. The demonstrations of clearest examples of living cationic polymerization have been elusive because of the intrinsic instability of carbocationic species. Higashiume and his group have found that HII/I₂ as initiating systems are effective examples of living polymerization of isobutylvinyl ether when the polymerization is carried out at -15°C and in n-hexane. The polymers formed under “pseudoliving” conditions are nearly monodisperse (Mw/Mn ≈ 1.1) and have Mn in direct relation to monomer conversion and initiator used. Under optimal conditions living polymer systems were also found where p-nitrostyrene and N-vinylcarbazole were used as the monomers and HI/I₂ as the initiating system. These living polymer systems could be used for the preparation of block copolymers and functional polymers.

J. P. Kennedy described new telechelic prepolymers and networks therefrom. These cationic inifer systems have recently been explored further; they were very effective for the controlled synthesis of various linear and star shaped telechelic polymers. Polysobutylene based polyurethanes have been synthesized and new polyurethane networks were prepared using these and higher star polysobutylene polyols with diisocyanates.

Progress has also been made in the synthesis of polystyrene/polyisobutylene block copolymers to obtain polystyrene/polyisobutylene tri- or penta block polymers.

A new technique for the polymerization of isobutylene was discovered which involves what Kennedy calls “quasiliving” cationic polymerization. It involves the constant “starve feeding” of the polymerizing system with the monomer with TiCl₄ as the coinitiator and cumyl chloride as the initiator.

Structures and reactivities in ring opening and vinyl cationic polymerization were discussed by St. Pencoek in the opening lecture. It was shown in the polymerization of 1,3-dioxolane or 1,3-dioxepane that the active species exist in dynamic equilibrium and only the oxonium ion contributes to the chain growth. Also in cationic β-lactone polymerizations, the oxonium ion and not the acylium (–C=O) ion contributes to the polymerization. Pencoek also showed that, in the formally called “pseudocaticionic” polymerization no propagation of the ester species has been demonstrated but only in the ionized form.

As mentioned by Coenrad Schurich, polysaccharides can be prepared by cationic ring opening polymerization of cyclic acetics and protected sugar derivatives. The polymers, when deprotected can be used as model polysaccharides to investigate enzyme, antibody and lectin reactions, and to investi-
gate the relation between structure, conformation, and physical or physiological properties. Triflic anhydride, silver triflate and triethyl phosphite at room temperature and below have been the best initiators. Sumimoto studied polymerization of the racemic mixture of the individual enantiomers of bicyclic acetals, particularly 6,8-dioxabicyclo[3.2.1] octane and their 4-bromo derivatives, as simple models for the synthesis of dextran, a naturally occurring (1→6) linked polysaccharide. Living cationic polymerization for the preparation of block copolymers was demonstrated by using N-tertiarybutyl aziridine (Goethals, Van de Velde).

The first day of the symposium was actually devoted to cationic vinyl polymerization (Heubelm), led to novel approaches towards the controlled cationic polymer synthesis (Woodcock).

Radiation initiation, both by high energy or by photoinitiation played a substantial part of this symposium. Cationic polymerization and grafting initiated by high energy radiation (Stanczyk) plays an important role. New aspects of the mechanisms of photoinitiated cationic polymerization (Ledwith), recent progress in the design of new photoinitiators for cationic polymerization (Civello), and new photopolymerization catalysis for epoxides (Hayase) were also presented.

Thermally induced cationic initiators for cationic polymerization (Civello) and latent catalysis for thermally induced cationic polymerization (Pappas) were an important part of this symposium.

Copolymerization involving carboxycarbonyls was discussed by Cesca with the polymerization of isobutylene with conjugated dienes; block copolymerization of styrene and α-methylstyrene in liquid sulfur dioxide (Gomes), cationic polymerizations and electrophilic reactions promoted by metal salts of strong acids (Gandini), kinetics of cationic oligomerization of styrene using poly(styrenesulfonic acid) resin as catalyst (Showan Chies) and the cationic cyclodimerization of 1,3-bis(p-phenylphenyl)propane (Nishimura) were also discussed.

New intriguing cationic rearrangement reactions have been discovered and were presented in this symposium: Repeating unit isomerization via onium ion intermediates (Tirrell) and 2,5-polytetrahydrofuran diols via cationic transformation of fully epoxidized 1,4-polybutadiene (Smith).

Cationic ring-opening polymerization played an important role at the 6th Cationic Symposium. Especially important was the discussion of the effect of ring size and substitution on the cationic lactam polymerization (Sebenda), and the stability of active centers of cationic polymerization o heterocycles (Posornenko).

Numerous aspects of homopolymerization of heterocyclic systems were discussed: The cationic ring-opening polymerization of cycloaliphatic and aliphatic dioxolane salts (Jedlinski), the cationic polymerization of spiro-o-ethers (Matyjaszewski), the polymerization of cis- and trans-2,4-dimethylcyclohexane (Kope), the polymerization of cationic and optically active 2,4-dimethoxydioxolane (Leborgne), and some new sequential copolymers by cationic ring-opening polymerization (Percec).

Cationic polymerization of cyclic acetals was presented by a number of authors: Stereo control in the cationic ring-opening polymerization of cyclic acetals (Sumimoto), influence of the medium on the polymerization of cyclic acetals (Rozenberg); the initiation of the polymerization of 1,3-dioxolane by 2,4,5-triisobutyl 1,3-dioxolane-2-ylidene (Lukaszyczyk), and the especially good work of the sequential polymerization of cyclic ethers and acetals (Kubisa).

Cyclic oligomerization was observed during the polymerization of chloromethylloxepane (Tuzka), and spontaneous copolymerization to form cyclic oligomers of N-alkylidrazidines and β-lactones (Bouquet).

Various other cationic ring-opening polymerization were presented: Some new aspects of cationic polymerization of cyclooligoacetals (Sauve), the role of hydrogen bonding in the ring-opening cationic polymerization (Chojnkowski), the ring-opening oligomerization of oxiranes by fatty alcohols (Sebag) and the cationic polymerization of N-tertiarybutyl-2-phenylaziridine (LeMogn).

Polymers of tetrahydrofurans were the subject of a number of papers: New routes to telechelic and multifunctionally terminated polyesters by cationic ring-opening polymerization of tetrahydrofurans (Matsumoto), the synthesis of polytetrahydrofurans with positively charged functional end groups (Tuzka), Esterization reactions containing poly(oxytetrahydrofurane) units (Koljaya) and tosylates to graft polytetrahydrofuran onto pentafluoro chloride (Fukai).

The 6th Cationic Symposium, attended by about 120 participants, was a great success. It was refreshing to see that younger scientists played an important role. Much of the overall collegiality and good-will was contributed by the evening programs: on Tuesday evening a reception of the participants at the medieval Town Hall of the City of Ghent by the mayor, on Wednesday evening a harpsichord recital at the Bijloke Museum, and on Thursday the Symposium dinner at the Faculty Club "Het Pand". The atmosphere of the city of Ghent, the medieval capital of Flanders certainly contributed significantly to the success of the Symposium.

The 7th Symposium on Cationic Polymerization and Related Processes will be held August 12 to August 15, 1985 in Jená, the German Democratic Republic. The Sektion Chemie of the University of Jená assisted by the Institute of Macromolecular Chemistry, Prague (Czechoslovakia) will jointly organize this Symposium with G. Heubelm and M. Marek as Co-chairs. The 6th Symposium has been tentatively scheduled in the Federal Republic of Germany.