Skip to main content
Article
Immobilization and Phytotoxicity Reduction of Heavy Metals in Serpentine Soil Using Biochar
Journal of Soils and Sediments (2015)
  • I. Herath, Institute of Fundamental Studies
  • P. Kumarathilaka, Institute of Fundamental Studies
  • A. Navarante, University of Peradeniya
  • Nishanta Rajakaruna, College of the Atlantic
  • M. Vithanage, Institute of Fundamental Studies
Abstract
Purpose

Serpentine soils derived from ultramafic rocks release elevated concentrations of toxic heavy metals into the environment. Hence, crop plants cultivated in or adjacent to serpentine soil may experience reduced growth due to phytotoxicity as well as accumulate toxic heavy metals in edible tissues. We investigated the potential of biochar (BC), a waste byproduct of bioenergy industry in Sri Lanka, as a soil amendment to immobilize Ni, Cr, and Mn in serpentine soil and minimize their phytotoxicity.

Materials and methods

The BC used in this study was a waste byproduct obtained from a Dendro bioenergy industry in Sri Lanka. This BC was produced by pyrolyzing Gliricidia sepium biomass at 900 °C in a closed reactor. A pot experiment was conducted using tomato plants (Lycopersicon esculentum L.) by adding 1, 2.5, and 5 % (w/w) BC applications to evaluate the bioavailability and uptake of metals in serpentine soil. Sequential extractions were utilized to evaluate the effects of BC on bioavailable concentrations of Ni, Cr, and Mn as well as different metal fractionations in BC-amended and BC-unamended soil. Postharvest soil in each pot was subjected to a microbial analysis to evaluate the total bacterial and fungal count in BC-amended and BC-unamended serpentine soil.

Results and discussion

Tomato plants grown in 5 % BC-amended soil showed approximately 40-fold higher biomass than that of BC-unamended soil, whereas highly favorable microbial growth was observed in the 2.5 % BC-amended soil. Bioaccumulation of Cr, Ni, and Mn decreased by 93–97 % in tomato plants grown in 5 % BC-amended soil compared to the BC-unamended soil. Sequentially extracted metals in the exchangeable fraction revealed that the bioavailabile concentrations of Cr, Ni, and Mn decreased by 99, 61, and 42 %, respectively, in the 5 % BC-amended soil.

Conclusions

Results suggested that the addition of BC to serpentine soil as a soil amendment immobilizes Cr, Ni, and Mn in serpentine soil and reduces metal-induced toxicities in tomato plants.
Keywords
  • Bioavailability,
  • Chemisorption,
  • Metal immobilization,
  • Sequential extraction,
  • Serpentine
Disciplines
Publication Date
2015
DOI
10.1007/s11368-014-0967-4
Publisher Statement
SJSU users: use the following link to login and access the article via SJSU databases.
Citation Information
I. Herath, P. Kumarathilaka, A. Navarante, Nishanta Rajakaruna, et al.. "Immobilization and Phytotoxicity Reduction of Heavy Metals in Serpentine Soil Using Biochar" Journal of Soils and Sediments Vol. 15 Iss. 1 (2015) p. 126 - 138 ISSN: 1439-0108
Available at: http://works.bepress.com/nishanta_rajakaruna/27/