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Control of vortical separation on a circular 
cone 

N. J. MOURTOS 
Department of Aerospace Engineering, San Jose State University, 

ABSTRACT 

For co nical bodies, at moderate angles of attack, the ±low 
separates from the lee side, forming two vortices. Although 
the vortex lift contrihution is highly desirable, as the angle of 
attack increases, the vortex system becomes asymmetric. and 
event ually the vortices breakdown. Thus, some control of the 
separation process is necessary if the vortex lift is to be 
exploited at higher angles of attack. 

The theoretical model which is used in this ·analysis has 
three parts. First, the 'single line-vortex' model is used within 
the framework of 'slender-body theory' to compute the outer 
inviscid field for specified separation lines. Second, the 3-D 
boundary layer is represented by a momentum equation for 
the cross-flow , analogous to that for a plane boundary layer 
and a von Karman/Pohlhausen approximation is applied to 
solve this equation. The cross-flow separation for both 
laminar and turbulent layer~ is determined by matching the 
pressure at the upper and lower separation points. This 
1terative procedure yields a unique solution for the separation 
lines and consequently for the positions of the vortices and 
the vortex Iifton the body. Third, control of separation is 
achieved by blowing tangentially from slots located symmetri­
cally along cone generators. 

NOMENCLATURE 

hi jet half width 
c,, pressure coefficient 
el-l blowing coefficient 
p static pressure 
R loc<tl radius of th e cone 
.u , u, w velocities in !;. 'Yl ami ~ directions 
v dimensionless vt:locity in 'Yl direction 

angle of attack 
boundary layer thickness 
displacement thickness in ~ and 11 directions 
respectively 
cone semi-apex angle 
angular coordinate, momentum thick ness 
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lllt momentum thickness due to the mutual effect of 
the longitudinal and circumferential flows 

tlz2 momentum thickness in 'Yl direction 
v kinematic viscosity 
t T], £ conical coordinates in the direction of a generator, 

circumference of the cross section and normal to the 
surface respectively 

p tluid density 
T wall ~hear slrcss 

Subscripts 

e inviscid external flow 
rn maximum velocity point in the jet 
rp reattachment point 
s separation point 
su upper separation point 
sl lower separation point 
st windward stagnation point 

INTRODUCTION 

In a variety of aeronautical as well as aerospace applications. 
the tlow around conical hodics at high angle of attack is of 
interest. For such conical bodies, even at small to moderate 
angles of attack, the flow separates from the lee side, fmming 
a pair of vortices. The contribution of vortex lift at low angles 
of attack is highly desirable. As the angle of attack increases, 
and the vortex system becomes first asymmetri~.:, then 
unstable and uncontrollable, a large d.ependance on vortex 
lift may cause >erious problems with longitudinal and lateral 
stability. Therefore, if the formation of the vortices could be 
conlroilcd, vehicle operation could be extended to higher 
angles of attack, 

l'hc motivation for the present analytical study was 
provided hy the experimental work of \Vood and RobertsP>. 
They found that it is possible to control the cross-flow 
boundary layer separation and hence affect the outer flow 
field of a conical delta wing by blowing tangentially fro m slo ts 
located symmetrically along cone generators. 

The purpose of the present work is three-fold: 
First, to explore Lhc innucncc of the position of separation 
on the vortex parameters (location, strength, lift). This is 
done through an inviscid analysis of the outer field, for 
arbitrarily chosen separation lines. 
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Second, to uniquely determine the separation line locations 
through a boundary layer (viscous) analysis. 
Third, to analyse the control of boundary layer separation 
by wall jet blowing. This also requires a viscous analysis 
and is based on the idea that a thin high-velocity layer of 
fluid ejected tangentially to the surface of the body 
rccncrgises the boundary layer and makes it less suscept­
ible to separation. 
For more details on the present work the reader should 

refer to Ref. 2. Here only the important results are presented. 
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Figure 1. Pressure distribution on a circular cone for 6s = 15r 
and ale = 2. 

INVISCID ANALYSIS 

The 'single line-vortex' model (SLY)is the simplest way to 
represent the leeside separation on conical bodies. Although 
it lacks accuracy, it was chosen over more realistic models 
because of its simplicity. Simplicity is an important feature 
when it .is necessary to iterate the inviscid solution with a 
viscous one in order to determine the actual separation lines. 

The tlow separation is represented by a pair of line vortices 
which are fed with vorticity through a pair of planar vortex 
sheets emanating from the inviscid separation lines on the 
body surface. Although rhe 2-D Laplace equation governs the 
velocity potential, the three-d1mensionality of the problem 
enters through the boundary condition which requires that 
the vortex system (line-vortex and planar vortex sheet) is 
force-free. 

The SLY model has been applied to a circular cone by 
llyrson(Jl for separation lines located symmetrically at 6, = 

147" (where e is the angle measured from the windward 
generator). In the present analysis , the location of separation 
is varied, and the effect of this variation on the vortex 
parameters (position, strength, lift) is studied. The results 
from the inviscid analysis12l may he summarised as follows: 

The vortices move closer to the surface of the cone and 
become weaker as the separation lines shifi toward the 
leeward generator. 

The lift on a circular .cone at incidence has two 
components, the Jones lift and the vortex lift. The Jones 
lift is calculated assuming attached flow everywhere on the 
body's surface and grows linearly with angle of attack(4). 

The vortex lift grows non-linearly with angle of attack. 
As the primary separation lines arc moved toward the 

leeward generator, vortex lift is suppressed and in the limit, 
as the separation lines coincide with the leeward generator, 
the Jones solution is recovered. 

This suggests that displacing the primary separation is indeed 
a viable mechanism for controlling vortex position and vortex 
lift, a fact that has already been verified cxperimentally(1l, 

The pressure distribution on JJ circular cone with leeside 
separation is shown in Fig. 1 together with the pressure 
distribution for totally attached flow. There are three features 
which differentiate the pressure distribution for separated 
tlow from that of attached flow: 

the presence of vl1rtex suct.ion 
the pressure jump acms~ the vortex sheet 
the presence of two adverse pressure gradients (versus only 
on~ for the attached flow). 

CONICAL BOUNDARY LAYER ANALYSIS 

For the inviscid analysis, the .separation lines were placed 
urbitrarily; in reality, the position of separation must be 
determined through a viswus analysis. The velocity and 
pressure fields computed for the outer inviscid field are used 
as boundary conditions for the boundary layer equations; 
integration of these equations yields two locations where the 
boundary layer leaves the surface, one on each side of the 
hypothetical separation line. 

The boundary layer equations for a slender cone <He a~ 
follows: 

continuity 

u + t au +.!_~ +t _(il1'_=0 (1) 
- a~ e OTJ "' <.It 

momentum in £-direction 

2i)u \I (!u au u 1 dTi;.u--+----+w----=--- (2) 
a~ t::£ aTJ en .; P il~ 

momentum in 'T]-direction 

au u av iJ\1 rtu 1 iJp l a,"l 
u--+----+w--+~= ------+---.J.; c~ iJTJ iJ~ ~ p6~ dTJ p a~ . 

(3) 

momentum in t-direction 

(4) 

while for conical external flow we abo have 

VUe 
- _-:-:-::: E1Je (5)

<.I'T] 

- 2. ap = u ( w.. + F.u ) (6)
p il'T] 0 aTJ e 

Next, equation (3) is integrated across the boundary layer 
(i.e., from~ = 0 at the surface of the wne to ~--> x outside 
the boundary layer), while the normal velocity component w 
is substituted from equation (1). Using appropriate displace­
ment and momentum thicknesses as described in the nomenc­
lature, the integral form of ihe cross-flow boundary layer 
equation can be written as 

, ae22 ( c1ue )u,---+ u.-- + 8Ue\Je (ih + 2622)

OTJ il'T] 


+ Eu,.u,.[(h - fu + (n + 2)1ht - 28n] = 
p 

(7) 
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Here n is the exponent in the boundary layer growth 
expression 

o= k~" (8) 

where k is a constant. 
Equation (7) is similar to the corresponding momentum 

equation for a 2-D boundary layer, the primary difference 
being the presence ot the last term on the kft side which 
contains the momentum thicknesses due to the interaction of 
the longitudinal and drr:umfen:ntial flows. 

No assumptions were made regarding the state of the 
boundary layer. Therefore. equation (7) is valid for both 
laminar and turbulent boundary htyers, on condition that in 
the latter case u and u denote the time average of the 
respective velocity components. The primary difference 
between the two cases (i.e. laminar and turbulent) will be the 
rate of growth of the boundary layer in equation (t.S). In the 
laminar case n = 0·5 while in the turbulent case n = 0·8. 

The last term on the left-hand side of equation (7) was 
evaluated nmncrically for several cases (a:,f.) and several 
locations ('Jl) ;tlong the boundary layer. Tts maximum 
wntrib>tlion to the total value of the shear stress on the right­
hand side was approxim;.~tely 13% for the laminar layer and 
21% Jor the turbulent layer. At separation, its contribution 
was only 0·6% and 0·9% respectively Ior the two cases. Thus, 
It seems reasonable to neglect this term. When this is done, 
cqltation (7) becomes exactly analogous to the corresponding 
equation for the 2-D boundary layer. The solution is found 
by the Karman/Pohlhausen methmWl. Table 1 illustrates the 
analogy between the various quantities involved in the 2-D 
and conical boundary layer~. 

TABLE 1 
Analogy between 2-D and conical (laminar) boundary layers 

2-D (x, y) 

momentum equation 
7/p = u~ {dO,idx)+ 
io1 + 2e,,0(dl!efdx) 

Conical (~. ,, ~) 
-

-.fp = u~ (iiOdii'T]] + 
uel1h + 2~22)[{iiL•e/iiil) + (ru.,IR)] 

first shape factor 
A = (82/v)(d,e/dx 

second shape factor 
K = IBt/1;2}.\ 

..\ = 

K = 

(i\2/u)[(<tuJil"l + {wJR)l 

~~2/&2):\ 

I 
I 

1 
third shape factor 

IH = (li,IO,) H = lozMnJ 

solution
e? = 0·47v/Eu~lf n•gdx 

D 

E=1 

2 sf 5e22 = 0·47v1Euel, EuedJ'} 
D 

E = exp{6EJ !uJu,)d'J]} 
D 

The separation ~.:riteri~ are also taken direcLiy_ from the 
2-D case (Table 2). These criteria can be expressed as ititegral 
functions of the velocity out!;ide the houndary'layer. 

The matching of the viscous and inviscid tlow fields is 
illustrated in Fig. 2. For a specified separation angle e,, 
velocity distributions as function~ of the angle !l around the 
circular cross section of the cone are introduced into these 
integrals which can be evaluated numerically by the Romberg 
method. First, the starting point is taken at the upper 
reattachment point {0 = 180° if ex is large enough) and 
proceeding clockwise (for the right hand side of the cone) the 
point where the top boundary layer leaves the surface is 
identified_ Similarly. starting at fl = 0° and proceeding 
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TABLE 2 
Separation criteria for boundary layer and wall jet 

Laminar 
boundary layer 

{~)(~)~o-7
r,,, 0 d~ 

Turbulent 
boundary layer 

(~)(~)~4·7
T,f, Q d'!) 

Wall 
jet 

( ~m ) ( dp )~ -;;,;-·~4 

' Typically 

'rn~822 

And 

L 
So 

(~,,. ol wj !> (1'l, ol BL 

(+)WJ~ ( dl' 
d~ 

) 
BL 

"· 0 : wall shear stress with zero pressure gradient 

counterclockwise (for t.hc right-hand side of the cone again) 
the point where the boundary laye.r leaves the surface is 
identified for the two cases of laminar and turbulent 
boundary layers. For a given cone geometry and angle of 
allack, the only acceptable solution (in tenus of the assumed 
separation angle) i~ the one which yields the same pressures 
at both points where the boundary layer leaves the sutface. 
This implies that the secondary flow is weak. Although an 
experimental account ror the pressure at the separation points 
has not been found. observations of separated flows on 
conical bodies have shown that the secondary flow, ii it exists, 
is indeed \veak. Thus, the assumption that the pressure is the 
same at both separation points seems plausible. 

Inte~rat.e 

Croos-Flow BL cq. 
Orp -e.,u 

Conlpuie lnviscjd 

Outer Field 

F c. RPs 

lutegra.te 

Cross-Flow BL cq_ 
6..l-- o~~ 

Figure 2. Flow ~::hart for the vis~::ousfinviscid interaction. 

Figure 3 shows the converged solutions for a cone with 
t: = sc at u = 30° for laminar and t\lrbulent boundary layers. 
It mav be seen that the main difference between the two cases 
is th~ location of the lower separation. As was expected, 
when the boundary layer is turbulenl, separation is delayed 
until a larger angle. The location of the upper and inviscid 
separations as well as the vortex positions arc almost identical 
for the two cases. 
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Figure 5. Modified pressured distribution on a circular cone for 
turbulent boundary layer, cr./€ = 2, a.= 159". 

CONTROL OF SEPARATION BY BLOWING 

Laminar Turbulent 
boundary boundary 

layer layer 

Lower separation 109° 12T 
Vortex sheet location 147" 149° 
Upper separation 160° 160° 
Vortex location (0·375, 1·285) (0·349, 1·269) 

Figure 3. Converged solutions for., = 5", "' = 30". 

Jn Fig. 4 the experimental results of Friberg(6 . 7l and 
JorgensenC8l arc shown together with predictions from the 
present theory. Roth sets of experiments involved turbulent 
boundary layers. The tlat part which is common to all the 
curves in the low range of angles of attack represents attached 
flow (no vortex solutions exist in this range)_ At a = 5°, 
which corresponds to a{P. = 1 in the cxpaiments, separa­
tion first takes place and all the separation angles change 
rapidly as a increases. Finally , at a = 15°, which corres­
ponds to afE = 3, each separation angle reaches a limiting 
value which remains constant as a increases. The agreement 

Separation 180 


-Viscous Solution 

Angle 

9, 

~ Friberg (MIT) [turbulent boundary !aye<)
100 

£ Jorg.tm'!oen (turbulent boundary Jayer) 
'----'---,1~-- .L--- du ··~---'--~J'oco-----'­

Angle or ALLack a 

Figure 4. Comparison of predicted separation with experiments. 

of the theoretical predictions with experimentally dctcnnined 
points is excellent. Most points fall ncar the predicted lower 
separation curve for the case of a turbulent boundary layer. 

The modified pressure distribution including the effects of 
the boundary layer calculation for o.fe = 2 is shown in Fig. 
5 for the turbulent boundary layer_ The flat portion of the 
curve represents the separation region where the pressure is 
required to be uniform. 

So far it has been shown that the boundary layer on a circular 
cone at incidence , as it develops from the windward 
stagnation line towards the leeward generator, will separate 
due to the adverse pressure gradient. It is possihle, huwevei:, 
to postpone this separation, by replacing the natural bound­
ary layer with a turhulcnt wall jet(1 · 9 l. The increased momen­
tum near the surface reenergises the boundary layer and 
delays the separation of the viscous flow. The mechanism of 
delaying the boundary layer separation through blowing is 
sketched in Fig. 6. This modification of the location of 
separation requires that all the vortex parameters (position, 
strength and lift) also be modified to maintain equilibrium. 
ln other words, blowing changes the entire (inviscid) outer 
tlow field by modification of the (viscous) inner flow field. 

Although there is an external flow, the jet velocity is 
assumed to be much higher than the velocity of the outer 
field. Therefore the jet will be treated as issuing into 
quiescent surroundings. In addition, since the thickness of the 
boundary layer and the width of the jet are small compared 
to the local radius of the cone, curvature effects will also be 
neglected_ 

The profile of the wall jet is shown in Fig. 7. The jet 
consists of two parts; an inner flow adjacent to the wall having 
a highly non-linear velocity profile characteristic of a turbu­
lent wall.flow, and an outer flow having a velocity profile 
typical of a free turhulent plane jet. The analysis used is that 
due to l{oherts(9). 

The only pressure gradient to which the jet is subject, after 
neglecting curvature effects, is the one due to the extemal 
fiow. Table 2 compares the separation criteria for the 
houndary layer and the wall jet. The right side is approxi­

lnately the same for both cases. The wall jet, however, has 
greater momentum near the wall. As a result, its characteris­
tic dimension (distance of maximum velocity from the wall) 
i~ smaller than the corresponding characteristic dimension of 
the boundary layer (momentum thickness). In addition, 
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With Blowing 
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Figure 6. Schematic of controlled boundary layer separation 
with a wall jet in the cross-plane of a circular cone. 

( 
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· Fig ure 7. Wall jet profile. 
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higher velocities near the wall imply larger velocity gradients 
which result in greater shear stress at the wall. Thus, the first 
factor o n the left side of the sepe1ration crite rion is much 
smaller for the wall jet than for the boundary layer. As a 
consequence, the pressure gradient at separation is much 
larger for the wall jet and enables it to go farther against an 
adverse pressure gradient. 

The separation condition for the wall jet can be 
transformed(2) into 

dO )2­ 21·527 [ ( vz ] ~- (9) 
s - (1 + o:2) aCf,/iJ'fl , f.l. 

where ~e., is the change in the angular position of the lower 
separation point due to blowing. The blowing coefficient is 
defined as the ratio of the jet momentum to that of the 
external field, just outside the boundary layer · 

= bpJm2 
C,.. - 2 . (10)

Rue 

Equation (9) is plotted in Fig. 8. It is seen, that the blowing 
inte nsity required for a given ·displacement of the lower 
separation point depends only on the state of the boundary 
layer (i.e. , whether it is laminar o r turbulent), and is almost 
independent of the cone geometry and angle of attack,. as is 
indicated by the almost horizontal curves. 

Hlowing 

Parameter 

L.\0;
c;;­ 20 

, . 21 .527 [ V' l , 
!!.(;, = (I+ a 2) (aC.fcJ~) , C" 

lfl 

'T'urbuleul Boundary Lay.:r 

__I_ 
20 

Angle <>f Attack o 

Figure 8. Blowing pa ramete r versus angle of attack. 

Figure 9 shows the converged solutions for a cone wi th 
e = 5° and u­ = 30° for the case of a turbulent boundary 
layer before and after blowing. The main observation is that 
very small blowing intensities are requirC::d to move the 
separation points from their natural locations, as predicted by 
tl~e viscouslinviscid iteration scheme, to points very close to 
the leeward generator. The blowing causes the separation to 
occur at a larger angle from the windward stagnation line , 
thus moving the vortices closer to the surface uf the body 
toward the leeward generator. 

The modified pressure distributjons for tbe configu rations 
shown in Fig. 9, including the effects of the wall jet, are 
plotted in Fig. 10. It is seen that blowing has the following 
effects: 

It reduces the distance between the upper and lowe r 
separation points. This is shown by the diminishing of the 
flat portion of the curves. 

It pushes the vot1ex (and as a result the vortex suction) 
closer to the leeward generator, thus closing the flow field. 
In the limit, as separation is suppressed comp le te ly, the 
results from the Jones theory are recovered. 
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It weakens the vortices (as is shown from the diminishing 
vortex suction). This is required to maintain equilibrium of 
the cross-How as the vortex approaches the wrfac<::. Thi~ 
reduces the vortex lift contribution, which is equivalent to 
reducing the effective angle of attack. The last observation 
agrees with experimental results (Ref. 1) and confirms that 
blowing allows control of the lift on a highly manoeuvrable 
aircraft without changing its attitude. 

Vortex 

Vortex 


(C11 = 0.02) 

(~:::--

\ 
I 
',

'­ -.. 
', 

Upper 
\Separation 

Lower 


Separation 


' 
1~-- Unblown 

c:~:_-·-·---lJ
Turbulent Turbulent 
boundary wall 

layer jet 

Blowing coefficient 0 

Lower separation 12JO 162°
0·02 : 
Vortex sheet location 149" 170" 
Upper separation 160'' 173" 
Vortex location (0349, 1·269) (0·090, 1 079) 

!

Figure 9. Converged solutions before and after blowing k =5°
o. = 30 ', turbulent boundary layer). 
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Figure 10. Pressure distribution before and after blowing (e .= 
5", o: = 30'·', turbulent boundary layer). 

The relation between the lift and blowing wefficients is 
shown in Fig. 11. The fact that the curves drop more sharply 
as the relative incidence (a.h) increases, indicates that fo r 
a given body (E), blowing becomes more effective as the 
angle of attack increases. This i~ abo in agreement with 
cxpcrim(~ntsll) . 

----

LifL Cn('fhr:i~n1. 

ac. 
2'1t- I ~=J,wo{'<;" <:.,-.lnlion)7 

·· ~- G 

·--~;:.. 5 

.~--------- ·- -~ = ~ 
< 

L---~--fo."'ol---~--"u~u''--~--~u~u~,-

Bluwiu~;; Cut!fficit!ul C ,. 

Figure 11. Lift versus blowing. 

DISCUSSION 

The present analysi~ confirmed that blowing 1s a viable 
mechanism for controlling the vortex lift on a circular cone 
and veri ried trends observed in experiments. The implicatwm, 
of the various assumptions made in this model are discussed 
below. 

The SLV model has the following disadvantages when used 
to represent the inviscid outer field about bodies at high angle 
of attack: 

The position of the vortices is not very tlccuratc. This 
should be expected, since the vortices are represented only 
globally in this model. ln reality, the vorticity which is shed 
from the sml.aet: or conical bodies at incidenet: is distri­
buted and not concentrated as the SL V model assumes. 
More complicated models which take this fact into account 
(for example, Ret JO) give vortex core locations which 
agree much better with experimental observations. Never­
theless, the crude vortex locations given by the SL V model 
are very useful as initial guesses for the more complex 
numerical models. 

The vortex lift is overestimated. This again is the result 
of a very strong suction generated on the upper ~urface of 
the body under the locations of the vortices. For most 
bodie~, however, the non-linear lift is not a large part of 
the total. hence the error in the total lift is not too serious. 

Vmtex solutions cannot be found below a minimum 
value of the relative incidence, which depends on the 
thickness or the body and lhc location of separation. 
Rxpcrimental observations (Refs. 6-8), partially verify this 
result, since at small angles of attack the body radius, as it 
grows in the longitudinal direCtion, prevents the dcp"arturc 
of free vortices. When the angle of attack becomes 
sufficiently high, the vorticity in the boundary layer 
accumulates along ge11erators on the upper surface of the 
body. The vortices generally do not separate from the body 
until some higher angle of attack is reached. 

. The pressure distribution is poorly predicted by ihis 
theory, plincipally because the vorticity in the feeding 
sheets is neglected. On the body surface, the pressure 
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jumps at the point where the vortex sheet emanates. This 
is also physically impossible. In reality the vortex sheet 
adjusts its position and shape so that it coincides with a 
3-D stream. surface. Since the normal velocity at:ross sut:h 
a surface is zero, the fort:e on the vortex sheet is zero as 
well. In thi's modeL however, the pressure jump is 
necessary to create the force on the vortex sheet which 
balances the force on the vortex. 
The boundary layer solution agrees very well with experi­

ments in terms of the predicted separation points. Although 
this might have been expected when the terms that dropped 
out of the cross-flow momentum. equation were fmmd to be 
small. there was still the 4uestion of how an unrealistic 
pressure jump resulting from the SJ.V model would affect the 
boundary layer solution. Fortunately, because the lower 
boundary layer separates well before the point where the 
vortex sheet emanate~ (fur the inviscid solution), the calcula­
tion of the boundary layer rakes place in a region which is not 
affected much by the pressure jump across the vortex sheet. 

The use of 2-D separation cdtcri<.t (despite the fact that the 
tlow is actually 3-D) is justified by the conicality of the flow. 
Even though the growth of a laminar boundary layer cannot 
be conical, because the exponent in equation (8), is 0·5, for 
a turbulent boundary layer the -exponent i~ near unity, 
implying a flow field very close to conical conditions. This, 
combined with an external conical flow, results in a flow field 
which is dominated completely by the circumferential press­
ure gradient, to the e:~;tcnt that the separation lines arc also 
conical. 

The wall jet solution also agrees well with experiments 
despi te the fact that some simplifications were made in the 
model. The assumption that the jet issues into quiescent 
~urnmndings wa~ necessary to get a self-~imilar solution 
which in turn allowed the simple relation between c~. and cl'­
shown in r:ig. 11. The assumption of negligible curvature, 
actually underestimates the effects of the blowing which arc 
enhanced when curvature is present (Coanda effect). 

In regard to the reduction in the lift due to blowing (Fig. 
U) the following dist:ussion applic~. At the high angles of 
attack to which some of the highly manoeuvrable aircraft 
operate, the main problem is to eliminate any asymmetries 
or the vortex system, vortex breakdown, or both. Thus, the 
desire to sacrifke some of the vortt:x lift in ordt:r to achievt: 
this goul is not surprising. On the otherhand, blovv:ing does 
not always reduce the vortex lift. At angle or attack beyond 
the point of maximum unblown liftrn, blowing actually 
increases the vortex lift because it stabilises the vortex system 
which otherwise would have broken down. · 

An alternative way to stabilise the vortices would he 
blowing from the apex along the axes of the vortices, 
However, controlling the conditions which produce the 
vortices (i.e .. boundary layer separation), is a more effective 
way to achieve our goal. This is indicated by the fact that very 

little tangential blowing produces very large changes in the 
vortex system. 

Smaller blowing intensity is re4uired for the turbulent 
boundary layer for the same final configuration. This is 
explained by the fact that the separation for the turbulent 
boundary layer occurs naturally at a larger angle. and 
therefore the required Ll.e,, is smaller. 

CONCLUSIONS 

(i) Displacement of the vortex separation has been shown to 
influence the locution and strength of the vortices on a 
circular cone. 
(ii) 	The 3-D boundary layer over a circular cone has been 
analysed. A metehod analogous to the von Kannanl 
Pohlhausen technique has been used to solve the cross-flow 
momentum equation, and the predicted separation lines 
agree \Veil with experiments. 
(iii) Blowing tangentially from slots located symmetrically 
along cone generators ncar the point of cross-now separation 
is an effective way to control vortex location and strength. 
Por sufficiently large blowing the dependence on vortex lift 
can be drastically reduced, and the effects of tlow asymmet­
ries may he made negligible. 
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