Skip to main content
Article
Dynamical Heterogeneity in Periodically Deformed Polymer Glasses
Physical Review E
  • Nikolai V. Priezjev, Wright State University - Main Campus
Document Type
Article
Publication Date
1-9-2014
Abstract

The dynamics of structural relaxation in a model polymer glass subject to spatially homogeneous, time-periodic shear deformation is investigated using molecular dynamics simulations. We study a coarse-grained bead-spring model of short polymer chains below the glass transition temperature. It is found that at small strain amplitudes, the segmental dynamics is nearly reversible over about 104 cycles, while at strain amplitudes above a few percent, polymer chains become fully relaxed after a hundred cycles. At the critical strain amplitude, the transition from slow to fast relaxation dynamics is associated with the largest number of dynamically correlated monomers as indicated by the peak value of the dynamical susceptibility. The analysis of individual monomer trajectories showed that mobile monomers tend to assist their neighbors to become mobile and aggregate into relatively compact transient clusters.

Comments

The download link is to a pre-print edition of the article.

DOI
10.1103/PhysRevE.89.012601
Citation Information
Nikolai V. Priezjev. "Dynamical Heterogeneity in Periodically Deformed Polymer Glasses" Physical Review E Vol. 89 (2014) ISSN: 1539-3755
Available at: http://works.bepress.com/nikolai-priezjev/12/