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Abstract
Image restoration and recognition are important computer vision tasks representing
an inherent part of autonomous systems. These two tasks are often implemented in
a sequential manner, in which the restoration process is followed by a recognition.
In contrast, this paper proposes a joint framework that simultaneously performs both
tasks within a shared deep neural network architecture. This joint framework inte-
grates the restoration and recognition tasks by incorporating: (i) common layers, (ii)
restoration layers and (iii) classification layers. The total loss function combines the
restoration and classification losses. The proposed joint framework, based on capsules,
provides an efficient solution that can cope with challenges due to noise, image rota-
tions and occlusions. The developed framework has been validated and evaluated on a
public vehicle logo dataset under various degradation conditions, including Gaussian
noise, rotation and occlusion. The results show that the joint framework improves the
accuracy compared with the single task networks.
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1 Introduction

Image recognition is an important field, especially for autonomous systems. The field
witnessed new opportunities and became very popular with the development of con-
volutional network networks (CNNs) in 2012 [15]. Before the creation of CNNs, the
majority of image recognition approaches included a hand-crafted feature detection
and feature description process [15,17]. Optimization algorithms for nonconvex data
and image restoration are proposed in [4,5]. Compressed sensing algorithms incopro-
rating second-order derivatives in efficientways are developed in [6], approaches based
on conjugate priors in [7] and on supporting machines in [19]. In such approaches,
image features are extracted at pixel level or regional level and then embedded in the
recognition process [32]. Unlike traditional hand-crafted feature methods, such as the
scale-invariant feature transform (SIFT) [17], CNNs automatically detect the image
features by multiple convolutional and nonlinear operations. However, a CNN has a
large number of parameters to learn, which requires large datasets.

Image restoration, on the other hand, aims to recover a clear image from its noisy,
rotated and occluded version that the sensor provides. It is known as an ill-posed
inverse problem [18] and has been a focus of significant research. The majority of
works consider a super-resolution single image and its denoising. For example, the
total variation [20] and BM3D algorithm [3] achieve good performance over single
image denoising. The algorithms reported in [10,14,27,30] achieve state-of-the-art
performance on a single image with super-resolution [9]. However, these methods
are only applicable to particular types of image degradation. For example, the BM3D
approach is designed only for image denoising.

Deep learningmethods extract image features from groups of images and hence can
be used for both image denoising and image restoration. In fact, deep neural networks
take advantage of the availability of big data and the automatic learning process,
which outperforms traditional image restorationmethods [9,18]. Recently, deep neural
networks have been developed for the purpose of image restoration. For example,
Mao et al. [18] proposed a CNN architecture that could perform image denosing
and construct super-resolution images. Being purely data driven, the approaches for
learning restoration are promising as they do not need models nor assumptions about
the nature of the degradation [18].

1.1 Related Convolutional Neural Network Approaches

Lecun et al. proposed the first CNN architecture, called LeNet [16], which lays down
the beginning of the development of CNN architectures able to deal with big volumes
of data and more and more complex inference tasks. Next, AlexNet achieved the best
performance on ImageNet in 2012. Subsequently, different CNN architectures were
developed rapidly and achieved higher than human performance on datasets, such as
ImageNet [15].

Unlike neural networks, where neurons in each layer are fully connected to neurons
in the next layer, each layer in a CNN shares the weights by using convolutional
kernels. This process decreases tremendously the number of weights when compared
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Fig. 1 A typical restoration architecture based on CNNs

with neural networks. Therefore, it can prevent the over-fitting problem, which is one
of the main challenges in neural networks [25]. The CNN architectures are mainly
composed of convolution operations, followed by nonlinearity (activation functions)
and pooling operations.

The ZF-Net [31] architecture applies a smaller kernel size than AlexNet in the first
layer. The reason behind thismodification is that a smaller size in the first convolutional
layer helps retain more original pixel information in the input volume. A large filtering
size, e.g., [11×11], proved to be skipping relevant information from the input. ZF-Net
achieved a smaller error rate than AlexNet on ImageNet [8].

The VGG-NET architechture [24] further enhances the depth of the CNNs up to 19
layers and uses a unique kernel size of [3 × 3]. Google-Net [26] model increases the
number of layers to 22 and applies an inception module, in which different convolu-
tional featuremaps, generated by convolutional kernels of different sizes, are combined
at every layer. The Res-Net [11], built up with a 152-layer architecture, introduces the
idea of residual learning, which builds shortcut connections between layers to miti-
gate the vanishing gradient problem and improve the optimization process. In 2015,
Res-Net achieved the best accuracy on ImageNet.

Figure 1 shows the generic coding–decoding architecture of a CNN for image
restoration [18]. The restoration framework is based on the typical convolutional
operations of CNNs. The main difference is the lack of pooling and fully connected
layers in the restoration process. The developed CNN approaches for restoration and
recognition differ significantly fromeach other. The recognition process discards infor-
mation, layer by layer, and finishes the process by providing a representative feature
vector that is fed to neurons in the last fully connected layer. TheCNNs for recognition
discard information to extract themost representative feature in an image, while CNNs
for restoration need to keep detailed information of the ground truth. In particular, the
pooling process is not appropriate for restoration.

However, these networks and other state-of-the-art networks, such as RED-Net
[18], VGG [24] and ResNet [11], face difficulties in dealing with image occlusion,
rotation, denoising and super-resolution. This motivated us to develop efficient image
restoration methods that particularly deal with rotation and occlusion. In addition, it
would be beneficial if the restoration and recognition share a framework, which could
jointly perform both tasks, rather than in a sequential manner (restoration followed by
recognition).

From the wide variety of deep learning methods, we focus on capsule CNNs due to
their robustness to rotation over convolutional CNNs. The idea of capsules has been
proposed by Sabour et al. [21] to address known limitations of conventional CNNs
with respect to rotation invariance. A capsule is a group of neurons, whose length
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represents the probability of the object’s (or part of the object) existence, and the
orientation represents the instantiation parameters [21]. Previous works [2,21] show
that the capsule network approach achieves better results on image recognition than
conventional CNNs.

The main contributions of this work can be summarized as follows: 1) A deep
learning architecture for joint image restoration and recognition is proposed based
on capsules and conventional CNNs; 2) a new multi-loss function that combines the
restoration and classification losses is proposed. A hyper-parameter is used to control
the trade-off between the two loss functions. The linear combination of the restoration
and classification losses can be viewed as a form of regularization as it constrains the
search space for possible candidate solutions for each individual task; 3) a capsule
CNN is proposed to handle image restoration from rotation and occlusion; 4) the
developed framework is validated and its performance is evaluated using a public
dataset.

The rest of this paper is organized as follows. Section 2 introduces the principles of
the generic CNN and capsule network. Section 3 presents the developed joint frame-
work for image restoration and recognition based on CNNs and capsule networks.
Section 4 gives detailed evaluation of the performance of the proposed deep learning
framework compared with state-of-the-art approaches. Finally, Sect. 5 summarizes the
results.

2 Theoretical Background for Convolutional and Capsule Neural
Networks

2.1 The Convolutional Neural Network Approach

Convolutional layers extract image feature maps by using different convolutional ker-
nels. Suppose that n convolutional kernels are used in the kth layer. Then the i th ,
i = 1, 2, . . . , n, convolutional feature map in the (k + 1) layer can be denoted as:

Ik+1
i = f

⎛
⎝∑

j

Vi ∗ Ik
j

⎞
⎠ , (1)

where I j is the j th feature map and Vi is the i th kernel. Here, I j can be a channel of
the original image, a pooling map or a convolutional map, f (·) denotes a nonlinear
activation function and ∗ represents the convolution operation. The Rectified Linear
Unit (ReLU) with the following nonlinear function g(x) = max(0, x) is often used
[15] in CNNs.

A pooling process often decreases the size of the input featuremaps. Hence, pooling
can be regarded as a down-sampling operation. Each pooling map in layer k + 1 is
obtained by a pooling operation over the corresponding feature maps in the previous
layer k and is given as follows:

Ik+1
i = pool(Ik

i ), (2)
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where the index i goes though all maps in layer k and pool(·) represents the pooling
method. A window shifts on the previous maps, and the mean value (or the maximum
value) in eachwindow is extracted to form a poolingmap. The convolution and pooling
operations are the two main operations in CNNs. The last layer is reshaped to a vector
form and then fully connected with neurons in the same way as in generic neural
networks. The loss function Lcla, typically used in image recognition, is the cross-
entropy function and is defined as follows:

Lcla =
∑

i

[−yi ln(ŷi ) − (1 − yi ) ln(1 − ŷi )
]
, (3)

where y and ŷ are, respectively, the ground truth label and the predicted label vectors
for an image in the one-hot coded manner (a one-hot vector contains only one value
equal to 1 and all other elements are zero valued), with the i th entry denoted as yi and
ŷi .

2.2 The Capsule Network Approach

Connections between layers are of scalar-scalar type in generic CNNs. In a capsule
network [21], neurons are combined in a group to represent an entity or part of an
entity. In particular, a neuron is replaced with a group of neurons and the connections
between capsule layers become of vector–vector type. For each capsule (represented
as a vector), a nonlinear squash function f (·) is defined:

f (x) = ||x||22
1 + ||x||22

x
||x||2 , (4)

with x being the input vector of the squash function and || · ||2 denotes the l2-norm.
This function makes the length of short vectors shrink close to 0 and long vectors
expand close to 1. Hence, the output length can be used to represent the probability
that an entity exists. The output v j of the j-th capsule is given by:

v j = f (h j ), (5)

where h j is the input of the j-th capsule. The parameters of each capsule represent
various properties such as position, scale and orientation of a particular entity [21].

Except for the capsules in the first capsule layer, the total inputh j of the j-th capsule
is a weighted sum:

h j =
∑

i

ci jo j |i , (6)

where o j |i is the predicted output of capsule j in the current layer given the input
capsule i from the previous layer and ci j are coefficients determined by a routing
process.
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Let qi j denote the log prior probabilities that capsule i (in the previous layer) is
coupledwith capsule j (in the current layer). The coefficients ci j can then be expressed
as:

ci j = exp(qi j )∑
d exp(qid)

, (7)

where the index d refers to all capsules in the current layer. qi j s are initialized with
zeros and updated by a routing algorithm. In the routing algorithm, qi j is updated by
the following process:

q(r+1)
i j = q(r)

i j + 〈
v j , o j |i

〉
, (8)

where r is an iteration index. The term
〈
v j , o j |i

〉
is the inner product between the

predicted output and its actual output (of capsule j in the current layer). The assumption
is intuitive since all capsules from the previous layer will predict the value of capsule
j in the current layer. If the prediction made by capsule i from the previous layer
is similar to the actual output v j , capsule i should have a high probability of the
contribution; Hence, the coupling coefficient ci j increases.

In Eqs. (6) and (8), the predictions o j |i can be calculated by the output capsules ui

from the previous layer:

o j |i = Wi jui , (9)

where Wi j are transformation matrices connecting capsules between two adjacent
layers. Suppose there are C classes, then the final capsule layer has C capsules, with
the length of each capsule representing the existence probability of the corresponding
object. To allow multiple classes in the same image to exist, a margin loss function is
used, with the loss function Li for class i (i = 1, 2, . . . , C) given by:

Li = yi max(0, m+ − ||vi ||2)2 + λ(1 − yi )max(0, ||vi ||2 − m−)2, (10)

where ||vi ||2 is the length of the vector vi in the final capsule layer and yi = 1 if and
only if the object of class i exists. This leads the length of capsule vi to be above m+
if an object of class i is present and induces the length of capsule vi to be below m−
when an object of class i is absent. Here, λ is a controlling parameter and the total
classification loss function is calculated by Lcla = ∑

i Li , which simply sums the
losses from all the final layer capsules.

In capsule networks [21], the back-propagation algorithm is applied to update the
convolutional kernels and the transformation matrices. A routing process updates the
weights for the coupling coefficients c and the log prior probabilities q. In capsule
networks, the vector–vector transformation could potentially extract more relevant
features than the scalar–scalar transformation in CNNs.
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Fig. 2 A general joint framework for image restoration and recognition

3 A Joint Framework for Image Restoration and Recognition

Conventional methods [28] use the restoration and recognition pipeline, in which a
restoration stage is followed by a recognition process [1]. However, a joint framework
that simultaneously performs restoration and recognition would be more efficient.
Figure 2 illustrates the general architecture of a joint framework. The proposed joint
framework can remove noise, correct a rotated image, recover an occluded image and
perform recognition. This joint framework integrates the restoration and recognition
tasks by incorporating (i) common layers, (ii) restoration layers and (iii) classification
layers. The total loss function combines the classification and restoration losses. For
each input image, the restoration error function is given by:

Lres = 1

nm

n∑
i=1

m∑
j=1

(R(i, j) − I(i, j))2 , (11)

whereR(i, j) is the predicted value at location index (i, j) in the last restoration layer
and I(i, j) is the ground truth training image intensity at location index (i, j).

The gradient descent method is then applied to minimize Lres and Lcla for the
three-pathway framework. Hence, the total loss function is given as:

Ltotal = βLcla + (1 − β)Lrec, (12)

where β is a hyper-parameter that controls the restoration and classification tasks.
Note that if β = 1, only classification is performed and if β = 0, only restoration is
performed. A value of 0 < β < 1 performs a weighted operation of restoration and
classification. We will study numerically the effect of the parameter β on both tasks.
Algorithm 1 summarizes this joint framework.
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Algorithm 1 Training process of a joint framework
Require:

The original training images and labels.
The designed joint framework. The image degradation parameters.

Ensure:
Randomly initialize the convolutional kernels.
Separate the training data into small batches.

1: for i teration index=1, i teration index ++ do
2: for batch index=1, batch index ++ do
3: Contaminate the source image with image degradations, such as rotation and occlusion.
4: Run the network forward using the degraded images.
5: Calculate the total loss.
6: Calculate the gradient of all the weights and update the weights.
7: end for
8: Decrease the learning rate.
9: end for
10: return The weights in the common layers, restoration layers and classification layers.

3.1 A Joint Restoration–Recognition Convolutional Neural Network Framework

The proposed joint restoration–recognition CNN framework is illustrated in Fig. 3.
The framework comprises three common layers, three restoration layers and five clas-
sification layers (three pooling layers and two convolutional layers). In order to keep
the size of the input image after convolution, kernels of size [11 × 11] are applied
to all the common and restoration layers with a padding size of [5 × 5]. Symmetric
connections are applied by setting gate factors to 0.1 and 0.2 on conv1 and conv2,
respectively [18].

For recognition, two convolutional layers and three max-pooling layers are applied.
Convolutional kernels of size [6 × 6] without padding are applied. A fully connected
layer is then connected with the output label. The softmax function is applied in the
last stage of the classification. Hence, the output represents the probability of the input
data belonging to the corresponding class.

Notice that the loss function for image restoration is calculated as the average
pixelwise difference between the ground truth images and predicted images. Such a
definition is sensitive to image rotation, as rotation can involve a huge variation in
the loss function without changing the image content. In fact, rotation is known to
seriously influence the classification accuracy in CNNs [13,22].

3.2 A Joint Framework Based on Capsule Networks

Comparedwith a convolutional process, which transfers scalar inputs to scalar outputs,
a capsule [21] transfers data from a group of neurons to a group of neurons between
adjacent capsule layers. Instead of using the max-pooling process, which only finds
the local response from an individual layer, a routing process is applied to capsule
networks to detect active capsules across layers. Using a routing process, each capsule
predicts the output of higher-level capsules. A lower-level capsule becomes active if
its prediction agrees with the true output of higher level capsules using a dot product
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Fig. 3 The joint CNN framework for image restoration and recognition

measurement. In the last fully connected capsule layer, weights are optimized by the
margin loss function given in Eq. (10).

The capsule network has a decoder process that allows the reconstruction of the
input image. Hence, the weights are not only updated by the classification but also
depend on the reconstruction loss function. The capsule network can be transformed
for image restoration in the following way: Feed the corrupted images as the input
and calculate the loss between the ground truth images and the restored images. In
such a way, the joint framework automatically learns the weights based on the ground
truth images. Figure 4 illustrates the architecture of the joint image restoration and
recognition framework based on capsule networks.

4 Performance Evaluation

The proposed approaches are evaluated on an open dataset for vehicle logo recognition
provided by Huang et al. [12]. This dataset is currently the biggest available vehicle
logo dataset. It has ten categories and each category contains 1000 training images
and 150 testing images. All images have a size of [70× 70] pixels. Figure 5 shows 20
test images, which will be used for validation and evaluation purposes.
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Fig. 4 The joint capsule framework for image restoration and recognition

Fig. 5 Twenty test images for illustration purpose

The architecture given in Fig. 3 is the designed joint CNN architecture (Joint-CNN-
Net). In order to present a comparison with state-of-the-art networks, we extend the
RED-Net [18] by adding two fully connected layers for recognition (the same as last
two recognition layers in Joint-CNN-Net) after the conv layers, while keeping the
restoration network the same as in RED-Net10. RED-Net has similarities with the
well-know recognition networks VGG [24] for the network structure and ResNet [11]
for the symmetric skip connections.

In the proposed capsule Joint-Cap-Net framework, shown in Fig. 4, three itera-
tions are applied in the routing process. The performance evaluation of all networks
is conducted in Python with the PyTorch toolbox on a laptop with the following spec-
ifications: Intel CPU I5 and Nvidia GTX 1070 (extended GPU). The performance
of each model is measured in terms of accuracy (percentage of correctly classified
images) on the entire test dataset (1500 images).

The training time for the Joint-CNN-Net is about 3h, and the training time for
Joint-RED-Net and Joint-Cap-Net is an hour and a half. At test time, all models are
appropriate for real-time implementation because only a one forward pass, involving
matrix-vector multiplication and function evaluation, is needed. For our vehicle logo
application, each training epoch (10,000 images) took around 2min for Joint-CNN-
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Fig. 6 Validation with different values of β using the Joint-Cap-Net on images degraded only by noise, and
images degraded by combing effects from noise, rotation and occlusion

Net, around 1min for Joint-Red-Net and Joint-Cap-Net. During the testing phase, the
evaluation over 1,500 images took 3.29s for the Joint-CNN-Net, 2.54s for Joint-RED-
Net and 1.46s for the Joint-Cap-Net.

In this section, the Joint-CNN-Net and the Joint-Cap-Net are evaluated under var-
ious degradation conditions including noise, rotation and occlusion. Their accuracy
is evaluated using the model generated at the 100-th epoch in the training stage. The
peak signal-to-noise ratio (PSNR), in [dB], and the structural similarity (SSIM) index
[29] are used to compare each original test image with its degraded version (O-D) and
its recovered version (O-R). The PSNR (the higher the better) and SSIM (ranges from
−1 to 1, the higher the better) are measures for comparing the differences between
two images. The PSNR focuses on the difference between the pixel-pixel intensity
values and the SSIM considers the structures within an image [23].

4.1 Trade-Off Between Restoration and Recognition Performance

A natural question to ask is how the joint framework would change the performance
of restoration and recognition when compared with the individual implementation of
each task. It is a generic framework that achieves a trade-off between restoration and
classification by setting different values of the hyper-parameter β. For example, if
β = 1, the joint framework is purely a recognition framework. On the contrary, a
purely restoration framework could be built by setting β = 0, in which recognition
is no longer considered in the weight updating process. In order to test the trade-off
between the results from these two tasks, values of β are evaluated in the range of
[0, 1].

Two scenarios are considered here: (1) the simultaneous task of denoising and
recognition, where all training and test images are degraded by a zero-mean Gaussian
noise; (2) the simultaneous task of restoration and recognition, in which, in addition
to Gaussian noise, random rotations in the range of [− 50◦, 50◦] and occlusions by a
rectangular box with random length (up to 30 pixels) constitute additional challenges.

Figure 6 shows validation results for the Joint-Cap-Net using different values of the
trade-off parameter β. For the recognition task, the accuracy is relatively high when
β is larger than 0.05. The accuracy tends to drop significantly only when β is smaller
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Table 1 Evaluations of single task networks and joint frameworks

PSNR (β = 0) Accuracy (β = 0.5) (%) PSNR (β = 0.5) Accuracy (β = 1) (%)

Joint-CNN-Net 13.02 80.25 13.07 67.85

Joint-RED-Net 12.96 92.39 12.46 84.67

Joint-Cap-Net 20.83 99.71 22.31 99.42

The bold indicates the best performance in terms of accuracy, PSNR and SSIM

than 0.001. For restoration, the PSNR tends to drop quickly when β is larger than
0.95. Variations in accuracy and PNSR when β is in the range of [0.05, 0.95] can be
explained by the uncertainties due to noise, the random rotations and occlusions. In
addition, there is no evidence that the restoration and recognition architectures could
achieve better results by setting β = 1 and β = 0, respectively. On the contrary,
involving a classification loss function gives better results than without it for most of
the β values. Figure 6 shows high accuracy and significant restoration results when β

is in the range of [0.05, 0.95]. Hence, in the following experiments, β is set equal to
0.5.

This paper has also built two other joint frameworks based on CNNs and compared
themwith the single task network by setting β = 0 as a restoration network and β = 1
for the recognition network. Table 1 presents results from the comparison of the pure
recognition network (β = 1), pure restoration network (β = 0) and joint framework
(β = 0.5) for Joint-CNN-Net, Joint-RED-Net and Joint-Cap-Net. Table 1 shows that
joint frameworks improve the accuracy compared with the single task networks.

The proposed joint architecture is flexible and can embed a state-of-the-art single
task network either for recognition or for restoration. By sharing common layers, the
joint framework demonstrates better performance when compared with single task
networks. For example, Table 1 shows that the joint frameworks increase the recog-
nition accuracy by 12.4%, 7.72% and 0.29% for Joint-CNN-Net, Joint-RED-Net and
Joint-Cap-Net, respectively. For image restoration, the PSNR increased significantly
for Joint-Cap-Net and slightly dropped from 12.96 to 12.46 for Joint-RED-Net.

4.2 Robustness Evaluations

4.2.1 Noise Robustness Evaluation

The first two rows of Fig. 7 show 20 test images degraded by an additive zero-
mean Gaussian noise with variance equal to 0.1. During the training phase, the
noisy images are the input to the network models. The original training images
and their corresponding labels are the ground truth for updating the weights of the
joint restoration–recognition frameworks. In the test phase, noisy images are used
to evaluate the trained models. The next two rows illustrate the recovered images
by Joint-CNN-Net and Joint-RED-Net, respectively. The last two rows illustrate the
restoration effects by Joint-Cap-Net. Clearly the noise degradation has been rectified
by Joint-CNN-Net and Joint-Cap-Net, while Joint-RED-Net retained some dark noisy
pixels leading to low visual quality for some images.
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Fig. 7 First 2 rows: Noisy images. Restored images by Joint-CNN-Net, Joint-RED-Net and Joint-Cap-Net,
respectively

By comparing these restored images with their corresponding ground truth, as
shown in Fig. 5, it is evident that some of the images recovered by Joint-Cap-Net
have even better visual quality than the ground truth. For example, the two ground
truth “Lexus” images have a slight noise inside, while the Joint-Cap-Net removes
this noise in the recovered images. For the image denoising task, both the Joint-Cap-
Net and Joint-CNN-Net frameworks achieve good results. The denoising results from
these two frameworks are similar. Notice that the Joint-Cap-Net automatically rotates
images, for example, the last “VW” image has been rotated. These are due to the 2D
convolutional kernels preserving the spatial information in CNNs, while the capsules
are not restricted to pixel-to-pixel recovery.

Table 2 summarizes the performance of Joint-CNN-Net, Joint-RED-Net and Joint-
Cap-Net based on all test images. Joint-CNN-Net and Joint-RED-Net achieve accuracy
of 98.20% and 97.87% with noisy images, respectively. Meanwhile, Joint-Cap-Net
achieves an accuracy of 99.33% under the same noise conditions. The PSNR and
SSIM are both improved by the restoration process due to the noisy effects having been
removed. The improvement in PSNR and SSIM indicates the high level of similarity
of the recovered images with the original images. Notice that the Joint-CNN-Net
automatically corrects the rotation of images, which results in a negative effect on
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Table 2 Performance of the Joint-CNN-Net, Joint-RED-Net and Joint-Cap-Net on noisy images

Accuracy (%) PSNR (O-D) PSNR (O-R) SSIM (O-D) SSIM (O-R)

Joint-CNN-Net 98.20 11.99 21.49 0.32 0.62

Joint-RED-Net 97.87 22.29 0.64

Joint-Cap-Net 99.33 22.06 0.65

The bold indicates the best performance in terms of accuracy, PSNR and SSIM

PSNR and SSIM. High SSIM values indicate high similarity with the ground truth
based on pixel-to-pixel comparisons. However, this does notmean better visual quality
because the ground truth itself could be noisy. Denoising the image would result in a
better visual quality while leading to a reduced similarity index value. For instance,
the Joint-RED-Net has the highest PSNR while having the lowest visual restoration.
Hence, one needs to be careful in interpreting the PSNR and SSIM values.

4.2.2 Rotation Robustness Evaluation

Since the Joint-Cap-Net and Joint-Cap-Net frameworks have the ability of automat-
ically rotate an image, the robustness of the framework has been tested on different
rotation angles. In both training and testing stages, rotated images are the input of the
joint frameworks. Each image is randomly rotated within the maximum bounds of
20◦, 40◦, 60◦ and 80◦.

Figure 8 shows the rotation restoration results of the three joint networks by setting
random rotation angles up to 40◦. Again the first two rows are the test images and the
following sets of two rows represent the corresponding restoration outputs by Joint-
CNN-Net, Joint-RED-Net and Joint-Cap-Net, respectively. The restoration results of
Joint-CNN-Net and Joint-RED-Net show that the recovered images are blurred. This
can be explained by the fact that the loss function of the restoration process is based
on a pixel–pixel correspondence, where every pixel in the restored image is forced to
be close to the ground truth image. However, the correct mapping between the input
pixels and the restoration pixels has been changedwhen the input image is rotated. This
mapping distortion requires an input pixel to be close to both the corresponding ground
input pixels and its neighborhood pixels. Hence, the restored image becomes blurred.
On the contrary, the Joint-Cap-Net is able to recover the rotated images automatically,
with the noise being removed.

The corresponding accuracy performance measures, PSNR and SSIM, are given
in Table 3. These values indicate that the Joint-Cap-Net performs better than the
Joint-CNN-Net and Joint-CNN-Net in the presence of image rotations. An interesting
property of Joint-RED-Net is that it learns the noise pixels from the input and tends
to recover noise pixels as there is a skip connection process in the network [18]. This
results in a high PSNR and SSIM when the rotation angle equals 0. For the Joint-
CNN-Cap, the SSIM (O-R) is even lower than SSID (O-D) in the Joint-CNN-Net
when the image rotation bound is over 40◦. According to the obtained results, the
Joint-CNN-Net and Joint-RED-Net are not suitable for dealing with image rotation.
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Fig. 8 The rotation restoration result of the Joint-CNN-Net, Joint-RED-Net and Joint-Cap-Net when the
images are randomly rotated up to 40◦

Table 3 Performance of the Joint-CNN-Net, Joint-RED-Net and Joint-Cap-Net on rotated images

Angles 0◦ 20◦ 40◦ 60◦ 80◦

PSNR (O-D) 100 16 11.66 10.29 9.73

SSIM (O-D) 1 0.36 0.20 0.13 0.10

Joint-CNN-Net Accuracy (%) 99.87 % 99.73% 97.93 % 89.06% 86.39%

PSNR (O-R) 27.47 16.27 13.97 13.13 12.60

SSIM (O-R) 0.80 0.38 0.17 0.10 0.06

Joint-RED-Net Accuracy (%) 99.30 % 99.20% 99 % 99.13% 98.33%

PSNR (O-R) 85.53 16.25 13.60 12.66 12.13

SSIM (O-R) 0.99 0.38 0.16 0.09 0.06

Joint-Cap-Net Accuracy (%) 100 % 100% 99.93% 99.93% 99.73%

PSNR (O-R) 24.04 22.21 21.61 20.87 21.03

SSIM (O-R) 0.69 0.66 0.64 0.61 0.62

The bold indicates the best performance in terms of accuracy, PSNR and SSIM
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Fig. 9 Occlusion restoration results by the Joint-CNN-Net , Joint-RED-Net and Joint-Cap-Net with the
maximum occlusion box of size [30 × 30]

In contrast, the Joint-Cap-Net has much better performance in terms of accuracy
and robustness to image rotations. For instance, when all training and testing images
are randomly rotated within an angle range from − 60◦ to 60◦, the Joint-Cap-Net
achieves an accuracy of 99.93%, while Joint-CNN-Net could only achieve an accu-
racy of 89.06%. This is due to the capsules extracting more robust features than
the max-pooling in CNNs. The Joint-RED-Net was adapted from the state-of-the-art
recognition network VGG and ResNet. This results in a similar recognition when
compared with Joint-Cap-Net. In addition, the PSNR and SSIM measures have been
greatly improved for the Joint-Cap-Net, when comparing the O-R with O-D.

4.2.3 Occlusion Robustness Evaluation

The developed Joint-Cap-Net could also recover images that are partly occluded. In
both training and testing stages, occluded images are used as the input of the joint
framework. A white square box of a random size is applied to cover image contents
in order to simulate the occlusion effects. The occlusion boxes are randomly located
in an image and the length of the box is a random integer varying from 0 to 30 pixels.

As presented earlier, the first two rows in Figure 9 show the effects when the
occlusion boxes are added to 20 sample images. The intermediate two rows show
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Table 4 Performance of Joint-CNN-Net, Joint-RED-Net and Joint-Cap-Net on occluded images

Accuracy (%) PSNR (O-D) PSNR (O-R) SSIM (O-D) SSIM (O-R)

Joint-CNN-Net 99.47 25.86 21.48 0.91 0.67

Joint-RED-Net 99.07 31.85 0.95

Joint-Cap-Net 100 22.07 0.66

The bold indicates the best performance in terms of accuracy, PSNR and SSIM

the recovered version of the corresponding test images by Joint-CNN-Net, followed
by images restored by Joint-RED-Net and Joint-Cap-Net. As shown in Table 4, the
recognition results of Joint-CNN-Net, Joint-RED-Net and Joint-Cap-Net are similar,
with an accuracy of 99.47%, 99.07% and 100%, respectively.

With respect to image restoration, Joint-CNN-Net and Joint-RED-Net have certain
recovery abilities, at least the white boxes become slightly transparent. Joint-RED-Net
recovers the noise, and the recovered images have undesirable effects. In contrast, the
Joint-Cap-Net has removed completely the blocking effects and it is difficult to detect
that anything has been occluded. The PSNR and SSIM of the recovered images have
decreased in the Joint-CNN-Net and Joint-Cap-Net with respect to degradation. This
can be explained with the fact that the occlusion changes only a limited small area
of the image, while the images recovered by the Joint-CNN-Net and Joint-Cap-Net
change the value on every pixel. The occlusion effects have been removed and the
visual qualities have been improved by both frameworks, especially by the Joint-Cap-
Net. The Joint-RED-Net has high PSNR and SSIM values while conveying a low
visual quality.

4.2.4 Mixed-Degradation Robustness

In the previous evaluations, we notice that the Joint-Cap-Net always tends to denoise
and rotate the angles automatically even when the networks were trained on other
tasks. In order to validate the performance of the proposed framework under very
challenging conditions, different image degradations are combined together in the
training and testing stages. The results are presented in Fig. 10. The first two rows
show the combined degradation due to a zero-mean Gaussian noise (variance equal to
0.1), rotation (with a random angle from − 60◦ to 60◦) and occlusion (with a square
white box with a random size from 0 to 30 pixels). The following rows of Fig. 10
represent the recovered images from Joint-CNN-Net, Joint-RED-Net and Joint-Cap-
Net, respectively.

Clearly, Joint-CNN-Net and Joint-RED-Net cannot deal with rotation and occlu-
sion. This makes the recovered images difficult to distinguish by a human observer.
On the contrary, the Joint-Cap-Net successfully recovers the image after the combined
degradation of rotation, occlusion and noise.

Table 5 shows the corresponding improvement in terms of PSNR and SSIM. For
the recognition, the Joint-CNN-Net achieves an accuracy of 65.42%. Despite the poor
recovery, the Joint-RED-Net achieves a descent recognition accuracy of 90.73%, and
the Joint-Cap-Net achieves an accuracy of 91.39%.
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Fig. 10 The restoration result of the Joint-CNN-Net, Joint-RED-Net and Joint-Cap-Net with combined
Gaussian noise, rotation and occlusion

Table 5 Performance of the Joint-CNN-Net, Joint-RED-Net and Joint-Cap-Net on combined degradations

Accuracy (%) PSNR (O-D) PSNR (O-R) SSIM (O-D) SSIM (O-R)

Joint-CNN-Net 65.42 7.55 12.82 0.05 0.09

Joint-RED-Net 90.73 12.33 0.06

Joint-Cap-Net 91.39 17.26 0.43

The bold indicates the best performance in terms of accuracy, PSNR and SSIM

5 Summary

Image restoration and recognition are important tasks that are usually implemented
separately. This work develops joint frameworks for image restoration and recogni-
tion that simultaneously perform both tasks. A joint framework comprises common
layers, classification layers and restoration layers. We have developed three imple-
mentations (namely the Joint-CNN-Net, the Joint-RED-Net and the Joint-Capt-Net)
and have tested them over different image degradation including noise, rotation and
occlusion. The experiments show that the joint frameworks improve the performance
when compared with single task networks (either recognition or restoration). The
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joint frameworks based on CNNs (Joint-CNN-Net and Joint-RED-Net) achieve good
results on noisy images but have limitations on image rotation and occlusion. The joint
capsule network, called Joint-Caps-Net, achieves better results than the Joint-CNN-
Net and Joint-RED-Net in terms of recognition accuracy and restoration measures.
The key to the success of learning capsules is due to a more efficient routing process
compared to the pooling process in CNNs. Finally, the proposed joint frameworks
are not restricted to the considered application but could be applied to other image
recognition/restoration tasks and could use different inner network architectures.
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