Skip to main content
Contribution to Book
Using Raman Spectroscopy to Improve Hyperpolarized Noble Gas Production for Clinical Lung Imaging Techniques
Raman Spectroscopy and Applications (2017)
  • Jonathan R Birchall, University of Nottingham
  • Nicholas Whiting, Rowan University
  • Jason G Skinner, University of Nottingham
  • Michael J. Barlow, University of Nottingham
  • Boyd M. Goodson, Southern Illinois University Carbondale
Spin-exchange optical pumping (SEOP) can be used to “hyperpolarize” 129Xe for human lung MRI. SEOP involves transfer of angular momentum from light to an alkali metal (Rb) vapor, and then onto 129Xe nuclear spins during collisions; collisions between excited Rb and N2 ensure that incident optical energy is nonradiatively converted into heat. However, because variables that govern SEOP are temperature-dependent, the excess heat can complicate efforts to maximize spin polarization—particularly at high laser fluxes and xenon densities. Ultra-low frequency Raman spectroscopy may be used to perform in situ gas temperature measurements to investigate the interplay of energy thermalization and SEOP dynamics. Experimental configurations include an “orthogonal”
pump-and-probe design and a newer “inline” design (with source and detector on the same axis) that has provided a >20-fold improvement in SNR. The relationship between 129Xe polarization and the spatiotemporal distribution of N2 rotational temperatures has been investigated as a function of incident laser flux, exterior cell temperature, and gas composition. Significantly elevated gas temperatures have been observed—hundreds of degrees hotter than exterior cell surfaces—and variances with position and time can indicate underlying energy transport, convection, and Rb mass-transport processes that, if not controlled, can negatively impact 129Xe hyperpolarization.
Publication Date
K. Maaz
Citation Information
Jonathan R Birchall, Nicholas Whiting, Jason G Skinner, Michael J. Barlow, et al.. "Using Raman Spectroscopy to Improve Hyperpolarized Noble Gas Production for Clinical Lung Imaging Techniques" Raman Spectroscopy and Applications (2017)
Available at: