Skip to main content
Article
Constraining Eye Movements When Redirecting Walking Trajectories Alters Turning Control in Healthy Young Adults
Experimental Brain Research (2013)
  • V. N. Pradeep Ambati, The University of Texas at El Paso
  • Nicholas G Murray, Georgia Southern University
  • Fabricio Saucedo, The University of Texas at El Paso
  • Douglas W. Powell, Campbell University
  • Rebecca J. Reed-Jones, The University of Texas at El Paso
Abstract
Humans use a specific steering synergy, where the eyes and head lead rotation to the new direction, when executing a turn or change in direction. Increasing evidence suggests that eye movement is critical for turning control and that when the eyes are constrained, or participants have difficulties making eye movements, steering control is disrupted. The purpose of the current study was to extend previous research regarding eye movements and steering control to a functional walking and turning task. This study investigated eye, head, trunk, and pelvis kinematics of healthy young adults during a 90° redirection of walking trajectory under two visual conditions: Free Gaze (the eyes were allowed to move naturally in the environment), and Fixed Gaze (participants were required to fixate the eyes on a target in front). Results revealed significant differences in eye, head, and trunk coordination between Free Gaze and Fixed Gaze conditions (p < 0.001). During Free Gaze, the eyes led reorientation followed by the head and trunk. Intersegment timings between the eyes, head, and trunk were significantly different (p < 0.05). In contrast, during Fixed Gaze, the segments moved together with no significant differences between segment onset times. In addition, the sequence of segment rotation during Fixed Gaze suggested a bottom-up postural perturbation control strategy in place of top-down steering control seen in Free Gaze. The results of this study support the hypothesis that eye movement is critical for the release of the steering synergy for turning control.
Keywords
  • Locomotion,
  • Steering control,
  • Turning,
  • Eye movements,
  • Oculomotor,
  • Basal ganglia
Publication Date
May, 2013
DOI
10.1007/s00221-013-3466-8
Citation Information
V. N. Pradeep Ambati, Nicholas G Murray, Fabricio Saucedo, Douglas W. Powell, et al.. "Constraining Eye Movements When Redirecting Walking Trajectories Alters Turning Control in Healthy Young Adults" Experimental Brain Research Vol. 226 Iss. 4 (2013) p. 549 - 556 ISSN: 1432-1106
Available at: http://works.bepress.com/nicholas-murray/18/