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This study investigates the effects of three different types of correlation on forecasting and stock control
of intermittent demand items. Applying appropriate forecasting and stock control methods to
theoretically generated compound Poisson demand data we show that correlation in intermittent
demand does play a role in forecast quality and stock control performance. Negative autocorrelation
levels lead to higher service levels than positive values, while cost does not significantly change. Our
results also show that high intermittency levels intensify these changes in service level. We also show
that cross-correlation produces results in the opposite direction of autocorrelation in size or intervals;
that is, positive (negative) cross-correlation leads to higher (lower) service levels.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Intermittent demand is random demand with a large propor-
tion of zero values (Silver, 1981). Spare parts often exhibit
intermittent demand and are particularly prevalent in the aero-
space, automotive, military, and IT sectors (Johnston et al., 2003).
In the military for example, spare parts make up such a big
percentage of inventory the US Defense Logistics Agency (DLA)
identified 24 strategic initiatives to better mitigate shortages of
critical parts inventory (GAO, 2003). Intermittent time series
present a special challenge because they display variability in
demand size as well as demand arrival. Hence, forecasting and
stock control of intermittent demand attracted a considerable
amount of academic research (e.g. Altay et al.,, 2008; Syntetos
et al., 2009a, 2009b, 2010).

Correlation in time series data also presents challenges. Most
of the forecasting and inventory control theory is built on the
assumption that successive demand values are independent. But
auto-correlated demand sizes or inter-arrival times violate this
assumption, requiring specially derived formulae. There is
another type of correlation that is specific to intermittent demand
items; correlation between demand size and the inter-demand
interval of an item. In this paper, following the nomenclature of
Willemain et al. (1994), we will refer to this type of correlation as
cross-correlation. Cross-item correlation where one item’s demand

* Corresponding author. Tel.: +1 312 362 8313; fax: +1 312 362 6973.
E-mail addresses: naltay@depaul.edu (N. Altay),
llittera@richmond.edu (L.A. Litteral), frudisill@uscupstate.edu (F. Rudisill).
1 Tel.: +1 804 289 8576; fax: +1 804 289 8878.
2 Tel.: +1 864503 5511; fax: +1 864 503 5583.

0925-5273/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ijpe.2011.08.002

is correlated with the demand of another item has also been
called cross-correlation in literature (Zhang, 1999; Liu and Yuan,
2000; Akkerman and Van Donk, 2009). In this research, we use
cross-correlation to refer to the correlation within a single SKU’s
demand structure, rather than the dependence between different
SKUs. Positive cross-correlation occurs when a long demand
interval is followed by a high demand size, or a low demand size
follows a short interval. Negative cross-correlation indicates that
a short demand interval is followed by a high demand size or a
long interval is followed by a small demand size.

[s auto- and cross-correlation common in spare parts?
Willemain et al. (1994) argue that real data frequently exhibit
auto and cross-correlation. Magson (1979) mentions that engi-
neering spares in their dataset have negative autocorrelation with
high demands frequently being followed by a series of low
demands. Similarly, Eaves (2002) found significant number of
items with auto- and cross-correlation in spare parts data from
the Royal Air Force. In preparing for this study we obtained a
dataset of 4588 aircraft service parts from the US DLA in which
35% of items had statistically significant cross-correlation at
«=0.05 level. Additionally, 27% of items displayed auto-corre-
lated demand size and 22% of items auto-correlated intervals. In
contrast, Nikolopoulos et al. (2010) tested 5000 SKUs from the
Royal Air Force for autocorrelation but did not find significant
signs of it. It is important to note, however, that they tested the
whole intermittent time series for autocorrelation and not just
the nonzero demand sizes as it was the case in Willemain et al.
(1994) and Eaves (2002).

The effect of correlation on forecasting and stock control of
intermittent time series has not been thoroughly studied. The
only study we are aware of explores the effects of correlation on
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intermittent demand forecasting (Eaves, 2002). Using real data
Eaves tests the effect of all three correlation types (auto-corre-
lated sizes and intervals, and cross-correlation) on forecast
accuracy. His results imply that best forecast accuracy is obtained
when autocorrelation in demand sizes and intervals are negative,
and cross-correlation is (in 55% of the cases) zero. However,
further analysis shows no statistically significant difference
between different types of correlations, leading him to conclude
that the effects of correlation is mostly unknown.

The objective of this paper is to test for and characterize
significant effects of demand size autocorrelation, interval auto-
correlation, and size-interval cross-correlation on forecasting and
stock control in the context of intermittent demand. Our review
of the literature did not discover any published study investigat-
ing such effects on stock control or the integration of forecasting
and stock control. In order to make this needed contribution to
the literature we conduct a simulation study for which we use
theoretically generated intermittent demand series. For the sake
of simplicity, from this point on we will use the generic term
correlation whenever we refer to any of the three versions of it.

The remainder of the paper is structured as follows: Section 2
summarizes the salient literature. Section 3 reveals the details of
our experiments with regards to data, forecasting and stock
control procedures and performance measures. Section 4 presents
experimental results while Section 5 provides discussion and
insights. Finally, in Section 6 we point to further research
directions and conclude the paper.

2. Review of literature
2.1. Effects of correlation on non-intermittent demand

Proper planning and control of stock keeping units require a
good understanding of their demand structure. Correlation in
time series can be a part of this structure. But inventory control
theory has been developed upon the assumption of independent
demand. Johnson and Thompson (1975) show that when demand
is auto-correlated a myopic policy is optimal. Toktay and Wein
(2001) add that if demands are correlated and a myopic policy is
used then positively correlated demands increase the base-stock
level and the resulting cost, while negatively correlated demands
decrease both.

Autocorrelation in demand also impacts safety stock levels.
Under the conventional assumption of independent demand,
positive autocorrelation in demand leads to underestimated
safety stock levels while negative autocorrelation will cause
overestimation (Ray, 1980; Lau and Wang, 1987; Graves, 1999).
Charnes et al. (1995) look at this case using an order-up-to level
inventory policy. They show that negative autocorrelation causes
the stock-out percentage to be lower than it would otherwise be,
while increasing positive autocorrelation causes the stock-out
percentage to rise at an increasing rate. This is intuitively
appealing because negative autocorrelation implies that we will
experience demand that is somewhat less than before. This means
that the order levels are set without considering this fact and we
are over-estimating demand (Ray, 1981). Similarly, Miller (1986)
implies that positive autocorrelation should reduce the order-up-
to levels.

Heath and Jackson (1994) show that improved forecasts can
reduce safety stocks without affecting service performance.
Fotopoulos et al. (1988) also look at the impact of autocorrelation
on safety stock and find that (i) positive autocorrelation has
stronger impact on safety stock than negative autocorrelation;
(ii) as autocorrelation increases safety stock increases and vice
versa; (iii) the rate of change in safety stock is increasingly large

when the value of autocorrelation is positive and increasing. One
explanation for the change in safety stock is that autocorrelation
does not affect the variance of demand directly, but rather, it
exerts its effect on safety stock through its indirect effect upon the
variance of lead time demand (Marmorstein and Zinn, 1993).
Positive autocorrelation increases the standard deviation of
demand during lead time resulting in larger amounts of safety
stock, while negative correlation reduces it (Erkip et al., 1990).
Despite the depth of research on the effects of correlation on
forecasting and stock control, we note that none of the papers
mentioned above considered the case of intermittent demand.
Therefore, the effects of autocorrelation on spare parts demand,
where many periods have zero demand have not been yet
assessed. Furthermore, the cases of auto-correlated demand
intervals as well as the correlation between demand intervals
and sizes have not been considered at all. In the following
sections we aim to fill this gap in the forecasting and stock
control literature through extensive simulation experiments.

2.2. Forecasting and stock control of intermittent demand items

What makes forecasting and stock control of intermittent
demand items challenging is the variability in the timing of
demand arrival in addition to its size. The seminal work on
intermittent demand forecasting belongs to Croston (1972).
However, Croston’s estimator has been shown to be biased
(Syntetos and Boylan, 2001), correction factors to overcome this
bias have been presented (Syntetos and Boylan, 2005; Shale et al.,
2006) and tested (Boylan and Syntetos, 2007; Teunter and Sani,
2009a). The Syntetos-Boylan Approximation (SBA) is generally
found to be the most effective and efficient modification of
Croston’s method.

Control of inventories related to intermittent demand patterns
is typically managed with periodic review systems. The appropri-
ateness of periodic (s,S) systems in the context of intermittent
demand have been shown through theoretical arguments (Porteus,
1985; Silver et al., 1998) simulations on real data (Sani and
Kingsman, 1997; Babai et al., 2010) and case studies (Porras and
Dekker, 2008). Since the calculation of the optimal (s,S) levels can
be complex and the exact demand distribution is impossible to
estimate in practice several heuristics were developed to estimate
replenishment levels. Sani and Kingsman (1997) perform a com-
parative study of (T.s,S) heuristics and find that the performance
differences between Power Approximation (Ehrhardt, 1979), Nor-
mal Approximation (Wagner, 1975), and Naddor’s heuristic
(Naddor, 1975) are generally small. They recommend the use of
these three methods as best for intermittent and lumpy demand
items. Babai et al. (2010) conduct a similar study but with a rather
large dataset and find the Power Approximation and Naddor’s
heuristic give the best results in terms of average inventory cost.

Lately, the integration of forecasting and stock control has
been gaining popularity in the academic literature. For example,
Teunter and Sani (2009b) show the application of Croston’s
forecasts in calculating order-up-to levels. Their results indicate
that the calculated order-up-to levels lead to service levels that
are close to their expected targets. Syntetos et al. (2009c)
investigate the case where the lead times are smaller than the
average demand interval. Teunter et al. (2010) calculate order-up-
to levels for compound binomial demand. Strijbosch et al. (2011)
investigate the integration of forecasting and stock control when
demand is non-stationary.

The concise review of salient literature presented above indi-
cates that correlation research has not been extended to the
intermittent demand context. We take on this challenge using
well accepted and easy to implement forecasting and stock control
procedures, which are described in the following section.
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3. Experimental structure and data

Theoretically generated data is used in this study for three
reasons. The first is to be able to remove the effect of initialization
and observe only the effect of correlation. This requires long time
series. Although we have access to US DLA data, the rather short
length of the available time series (60 periods), given the inter-
mittency of the demand (in some cases a little as 5 out of 60
periods have nonzero demand), makes it difficult to isolate the
effect of correlation. Second, the real dataset does not lend to a
controlled environment for the experiment because we cannot
control the levels of parameters such as average demand interval
(ADI) and squared coefficient of variation (CV?). ADI and CV? are
the usual criteria used in categorizing sporadic and/or irregular
demand patterns (Syntetos et al.,, 2005). Our interest in this
research lies in series with an ADI > 1.32, i.e. SKUs with erratic
demand. This cut-off for ADI is higher than Johnston and Boylan’s
(1996) empirically found cut-off point 1.25 and thus assures an
irregular demand pattern. Such series are further classified into
intermittent (CV2<0.49) and lumpy (CV?>0.49) demand
(Syntetos, 2001). Last, theoretically generated data allows us to
focus our research on correlation alone since it comes without the
noise that real data usually contains.

We study the forecasting and stock control implication of
intermittent demand correlation through an extensive set of
simulation experiments. We conduct three sets of experiments,
each of which is developed upon three sets of theoretically
generated demand data. As shown in Fig. 1, experiment
(I) investigates the effect of correlation on forecasting. Experi-
ment (II) focuses on the effect of correlation on inventory
performance and represents a sensitivity analysis since the stock
control policy uses the known parameters of the demand dis-
tribution. Finally, experiment (III) is designed to study the
integration of forecasting and stock control since the stock control
policy here uses the forecasted mean and variance. All three
experiments are run using auto-correlated intermittent demand
sizes (Case A), auto-correlated intervals (Case B), and cross-
correlated demand sizes and intervals (Case C).

3.1. Theoretically generated data

Compound Poisson demand series with lognormal demand
sizes, and negative exponential inter-arrival times (i.e. Poisson
arrivals) were generated. The lognormal distribution was chosen
for the purpose of our simulation experiment due to two reasons.
First, Syntetos (2001) points out that considering its flexibility
lognormal can be a good approximation for discrete demand. The
lognormal distribution allows us to vary the coefficient of variation
to observe effects of erraticity. Second, there is evidence in real

_ )
Auto-correlated
demand size

Auto-correlated

inter-arrival time generated Data

Cross-correlated
interval and size
-

——> Forecasts ——> Errors ———>

; Il
— Theoretically %( ) Stock control ———>

11
% Forecasts —— Stock control ——>

world data that suggests the use of the lognormal distribution to
represent demand sizes (Willemain et al., 1994; Syntetos, 2001).

Time series data (100 independent streams containing 1000
observations) for each condition of the three types of intermittent
demand were obtained using similar methods based on Banks
et al. (2005, pp. 337-344) to generate the autoregressive and
cross-correlation components. The characteristics of the experi-
mental data generated for each scenario are displayed in Table 1.

A similar algorithm was used for each condition since each
condition we considered contains two correlated variables X; and
X3 (size-size, interval-interval, or interval-size). Each data series
was developed by first generating 1000 bi-variate standard
normal values, Z; and Z,. The procedure followed includes:

Step 1: generate 1000 values each for Z; and Z,, independent
standard normal random variables.

Step 2: set Z3 = pZi++/(1—p?)Z,, where p is the desired
correlation level. Z; and Z; are now correlated (Banks et al.,
2005, pp. 340).

Table 1
Characteristics of the experimental data generated.

Case A — auto-correlated intermittent demand size

Average demand 10 10 10 10

% Zeros 35 35 75 75

cv? 0.25 1 0.25 1

Autocorrelation coefficients —0.46 —0.48 -0.47 —0.48

-0.22 -0.22 -0.22 -0.22

0 0 0 0
0.24 0.24 0.24 0.24
0.47 0.48 047 0.47
0.73 0.73 0.72 0.73

Case B — auto-correlated inter-arrival time

Average demand 10 10 10 10

% Zeros 35 35 75 75

cv? 0.25 1 0.25 1

Autocorrelation coefficients -0.21 -0.21 -0.21 -0.22
0 0 0 0
0.21 0.22 0.21 0.21
0.69 0.69 0.68 0.68

Case C — cross-correlated intermittent demand

Average demand 10 10 10 10

% Zeros 35 35 75 75

cv? 0.25 1 0.25 1

Autocorrelation coefficients —0.48 -0.47 -0.59 —0.58

-0.35 -0.34 -0.34 -0.34

0 0 0 0
0.32 0.32 0.34 0.34
0.74 0.74 0.73 0.74
0.87 0.87 0.87 0.86

Effect of
correlation on
forecasting

Effect of
correlation on
stock control

Performance
measures

Integration of
—> forecasting &
stock control

Performance
measures

Fig. 1. Experimental structure.
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Step 3: use the normal-to-anything transformation (Banks et al.,
2005, pp. 342, 343) to calculate X; and X3 where X; = F;![®(Z;)]
and X5 = F; 1[®(Z5)].

For each time series, the normal-to-lognormal transformation
was used to generate the nonzero demands. Demand intervals
were generated using the normal-to-exponential transformation.
The function F;! is the inverse cumulative distribution function
for the desired distribution for X; (lognormal or exponential in the
cases we considered). The variables X; and X5 will have correla-
tion coefficients “close to” p. This is not always the case due to
the nature of auto-correlated data, particularly in the high CV?
scenarios.

Two levels for CV? (0.25 for intermittent and 1 for lumpy
demand), and two levels for ADI (35% and 75% zeros correspond-
ing to 1.54 and 4 periods ADI, respectively) were used to isolate
the effect of correlation. Correlation levels change for each case as
listed in Table 1. Since it is difficult to control the resulting level of
correlation as explained in the procedure above we have uneven
numbered scenarios between negative and positive correlation
levels. However, the experimental structure is detailed enough to
observe and understand any effect of correlation in intermittent
demand.

Each generated series is 1000 periods long. Initial forecasts are
assumed to be perfect (100% accurate). Once, the forecasting
method is initialized, the first 250 periods are then used to
optimize the smoothing constant. Once optimal smoothing para-
meters are identified we used the second 250 periods to initialize
the estimates of level and variance of demand for the stock
control process. The remaining (i.e. last) 500 periods are used
for out-of-sample generation of results and evaluation of
performance.

3.2. Forecasting procedure

To test the effects of correlation on forecasting and stock
control we selected the corresponding technique as deemed
appropriate in the literature. Consequently, the Syntetos—-Boylan
Approximation (SBA) method seems to be robust enough for
forecasting intermittent demand and was therefore selected for
our study (Syntetos and Boylan, 2005). The SBA method employs
a correction factor to Croston’s estimate of mean demand per
period F, (forecast made at the time t for period t+1).

o Z
Fr=(1f§>5[t, where : 1)
Zt =2t 1 +05(D[—Zt,1) and (2)
Pt =DPt-1 +a(q[_pt71) with (3)

D; being the demand for an item at time t, g, the actual demand
interval at time t, z; and p; estimates of demand size and interval,
respectively, and «, the smoothing constant.

Forecast performance is measured using the Relative Geo-
metric Mean Absolute Error (RGMAE), and the Mean Absolute
Scaled Error (MASE). RGMAE is selected based on the proposition
of Syntetos and Boylan (2005) to use the relative geometric root
mean squared error (RGRMSE) for measuring forecast accuracy
when demand is intermittent. It is a relative measure; thus, in this
paper we compared SBA generated forecasts to Single Exponential
Smoothing (SES) forecasts. Later, Hyndman (2006) proves that
RGMAE and RGRMSE are essentially the same for intermittent
demand, but RGMAE is relatively simpler to calculate. Conse-
quently, RGMAE is utilized as described in the following formula,
where F(A), represents SBA generated forecast while F(B),

represents SES forecasts:

(17 = 1 [De=FA)H""
(1f =1 |De—F®B) )"

We also utilized MASE, which is developed by Hyndman
(2006) as a scale-free error measure. MASE uses naive forecasts
as a benchmark. Let e, indicate forecast error. The scaled error, SE;
at time ¢ is then calculated using Eq. (5) and MASE is the average
of absolute values of SE.. The denominator of Eq. (5) is simply the
Mean Absolute Error for naive forecasts. A MASE of less than one
suggests better forecasts than the naive method.

RGMAE = 4)

T (/n-1)S7_, DD

For both, RGMAE and MASE a value less than one indicates
that the SBA method is superior to the benchmark method.
Increasing values for both measures indicate a deteriorating
forecast performance.

SE; )

3.3. Stock control procedure

A (Ts,S) type periodic stock control heuristic, namely Power
Approximation with a fixed review period T=1 is employed in our
research for simulation purposes. We chose Power Approximation
because it was developed that demand can be represented by a
compound Poisson distribution although it does not require knowl-
edge of type of the distribution. More importantly, it does not require
the knowledge of the item cost. It does, however, need a shortage cost
per unit value short (i.e. backorder cost b). In this study, following
Babai et al. (2010), a holding cost h=1 and a b/h ratio of 10 are used.
This ratio results in an expected service level of 91%. We assumed a
lead time of three periods (i.e. L=3). The Power Approximation
procedure and its parameters are summarized as follows:

Y¥(-) denotes the cumulative standardized normal distribution.
F; is the estimate of mean demand per time period.

K is the ordering cost (we assumed K=0.5 for our
experiments).

o, is the estimate of the standard deviation of demand per
period.

o141 is the standard deviation of demand over L+1 periods.
U1 is mean demand over L+1 periods.

Let A=b/(b+h) denote the availability index. The order
quantity Q is calculated using

0.506 2\ 0116
Q= 13F04%4 (%) <1 + oLt 1) ®)
t

The tentative re-order and order-up-to levels are then calculated
with the following two formulas:

Sp=0.973u; 1 +0141 (0'1283 +1.063—2.1922) 7
So=F L+ +¥P ' (WoV/L+1 ®)
where
hQ
zZ= 9
Or+1b ©

The (s,S) levels are then set using the following rule:

IF(% > 1.5>THENS=SP and S=s,+Q
t
ELSE s = min{sp,So} and S = min{s, +Q,So} (10)
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Following the recent trend in literature in experiment (III) we
calculate the stock control parameters needed (mean and var-
iance of per-period-demand) from the forecasts. The variance of
the demand per period is estimated by using the Mean Square
Error MSE,, where

MSE; = y(F;_1—Dy)* +(1—))MSE;_; 12)

with y being the smoothing constant. Initial stock is assumed to
be equal to the first order-up-to level S that was calculated, based
on the study of Iyer and Schrage (1992). They focus on the
application of a deterministic (T,s,S) model with constant lead
times and shortage costs. Probabilistic demand is assumed in this
study. But because of the rather lengthy initialization period and
the similarity of the remaining procedure, this assumption seems
reasonable. It is also assumed that no orders are due to arrive at
the beginning of the simulation.

The performance measures are Average Service Level (Avg-
SERV) and Average Cost (AvgCOST). With service level we actually
refer to fill rate (i.e. the percentage of demand satisfied from stock
on hand). Fill rate is calculated for every period with nonzero
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demand. The average fill rate for the last 500 periods then gives
the AvgSERV. An inventory cost per period is calculated by
summing up the costs of ordering, backordering, and carrying
stock in each period. AvgCOST is the average of cost per period
over the last 500 periods.

4. Simulation results

The experimental results confirm the general consensus in the
literature that correlation in intermittent demand time series has a
significant impact on forecasting and stock control performance. In
general, as positive cross-correlation improves forecasting perfor-
mance, positive autocorrelation in demand size deteriorates it.
When stock control is of concern, overall averages of cost and
service level do not show significant differences between different
sources of correlation. The overall results for the integration of
forecasting and stock control (i.e. mean and variance are estimated),
however, show that while service levels are not significantly
different, inventory cost decreases from the cross-correlation case,
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Fig. 2. Experiment [—effect of correlation on forecasting. Case A—auto-correlated demand size, Case B—auto-correlated demand interval, and Case C—cross-correlated

intermittent demand.
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to the auto-correlated demand size, to the auto-correlated interval
case.

Detailed results of the simulation experiments are presented
in Figs. 2-4. Interested readers can contact the corresponding
author for more details on the analysis of variance results for all
three experiments and for each case of correlation. The following
sub-sections summarize the results and Section 5 discusses the
managerial insights.

4.1. Experiment I: effect of correlation on forecasting

Correlation clearly affects forecasting performance. For auto-
correlated demand size, Case A, RGMAE shows a difference only
for the high ADI case, where RGMAE increases for positive
correlation levels. For these high ADI time series the drop in
forecast accuracy is worse when CV? is also high. For low ADI
levels (i.e. ADI=1.5) the change in RGMAE is not statistically
significant. For the high ADI time series the results for MASE are
similar. Autocorrelation in demand sizes seems to make forecast-
ing more difficult from negative to positive correlation. MASE
results also show that, for a given correlation coefficient, it is the
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ADI level that decides on the forecasting performance rather than
CV2. For MASE, the majority of variation is due to ADI (77%) and
the autocorrelation coefficient is statistically significant contri-
buting 17% of the variability.

For Case B, auto-correlated intervals, RGMAE results are
similar to Case A but this time the high ADI scenario has a bigger
impact on forecast performance. For autocorrelation values
between r=-0.21 and +0.21 RGMAE shows no substantial
change. Results for MASE, on the other hand, generally imply
that forecasts get relatively better as autocorrelation of intervals
moves from negative to positive.

For cross-correlated intermittent demand, Case C, results for
RGMAE do not show a substantial change over the range of
correlation levels tested, except for the high ADI scenario at
r=—0.48. For this specific case forecast performance drops
drastically. On the other hand, MASE results indicate, that as
cross-correlation increases (from negative to positive) MASE
decreases. That means, with respect to MASE, it is easier to
forecast positively cross-correlated demand compared to nega-
tively cross-correlated demand. About 27% of the variation in
MASE is due to the cross-correlation effect.
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Fig. 3. Experiment [[—effect of correlation on stock control. Case A—auto-correlated demand size, Case B—auto-correlated demand interval, and Case C—cross-correlated

intermittent demand.
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Fig. 4. Experiment Ill—effect of correlation on the integration of forecasting and stock control. Case A—auto-correlated demand size, Case B—auto-correlated demand

interval, and Case C—cross-correlated intermittent demand.

It is the dual variability in demand size and demand timing
that makes intermittent demand difficult to forecast. Conse-
quently we expected that as ADI and CV? change so would the
difficulty of forecasting as represented by the error measures
RGMAE and MASE. Fig. 2 indicates that high ADI values generally
make forecasting difficult.

4.2. Experiment II: effect of correlation on stock control

The graphs in Fig. 3 indicate that for both types of autocorrela-
tion tested service level generally decreases when correlation is
largely positive. This effect is greater for the high level of ADI
when the autocorrelation coefficient is 0.69 for the case of auto-
correlated intervals; Case B. The opposite is however observed for
cross-correlation, Case C. Increasing cross-correlation increases
AvgSERV. As cross-correlation increases, there is a statistically
significant decrease in AvgCOST for each combination of ADI and
CVZ. Theoretical data results suggest that autocorrelation (size or
interval) has negligible impact on AvgCOST. For cross-correlation,
cost decreases as the correlation coefficient moves from negative
to positive.

For all cases in Experiment II it can be said that high ADI levels
and high CV? levels affect AvgSERV negatively. The reduction in
service level is more evident for lumpy demand, i.e. when CV? is

high. But while average cost is lower with the high ADI level, it is
higher for the high CV? level. These results are not surprising.
When ADI increases, intermittency in the time series increases,
hence the total number of units demanded in a given time span
decreases (simply because there are less nonzero demand peri-
ods). This reduces average inventory carried, and therefore
reduces cost, but also the service level. On the other hand,
increasing variability in demand sizes as measured by the
coefficient of variation increases uncertainty, therefore reducing
service level, and increasing cost due to backorders.

4.3. Experiment III: integration of forecasting and stock control in
the presence of correlation

For these experiments the mean and variance of demand are
drawn from the forecasts to calculate the re-order and order-up-
to levels. Fig. 4 indicates that the integration of forecasting and
stock control produces interesting results especially for the high
intermittency and high CV? scenarios. Generally speaking, cases
with high ADI result in lower service levels. However, in each of
the three correlation types there is a cross-over effect at highly
positive correlation coefficients, where service levels for high ADI
scenarios catch or surpass low ADI service levels. When ADI is
low, low CV? leads to better service levels. But when ADI is high
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the results are not consistent across all three correlation types. In
the case of AvgCOST, high ADI and high CV? result in the highest
cost for all correlation types and levels.

Another interesting observation is that for the low ADI
scenarios highly positive correlation coefficients reduce AvgSERV
for both types of autocorrelation, but increase it for cross-
correlation. For auto-correlated demand sizes, Case A, increasing
correlation levels reduces service level when ADI is low. But the
same scenario produces more of a U-shaped curve for high ADI
cases, where the lowest point of the curve is close to zero.

For auto-correlated intervals, Case B, highly positive correla-
tion coefficients reduce AvgSERV for low ADI cases, while increas-
ing service levels for high ADI cases. The increase in AvgSERV for
the high ADI cases is associated with a cost increase for the same
data. However, the same pattern is not evident when ADI is low.
When the autocorrelation coefficient is 0.69, AvgCOST increases
substantially in each case but more so for high ADI.

Probably the clearest results in this section are for service
levels for cross-correlated intermittent demand, Case C. AvgSERV
increases as we move from negative cross-correlation to positive.
Here correlation level contributes 29% of the variation in Avg-
SERV. The effect of cross-correlation on AvgCOST on the other
hand, is not statistically significant.

5. Discussion and insights

In this simulation study we focused on the effects of three
different types of correlation in intermittent demand series on
forecasting and stock control performance. Results for the fore-
casting experiment show that the two accuracy measures used -
RGMAE and MASE - are consistent regarding the finding that
positive autocorrelation reduces forecasting performance, while
the opposite is true for positive cross-correlation. This result
although in line with Eaves’ (2002) findings is counterintuitive
because positive autocorrelation implies that data has the ten-
dency to remain the same from one observation to another. This
means positively auto-correlated data should be easier to forecast.
One explanation for this phenomenon may come from intermit-
tency (i.e. ADI). Altay et al. (2008) showed that the ADI level
complicates forecasting intermittent demand more than the CVZ.
The drastic difference between the two ADI levels in forecasting
performance (Cases A and B in Fig. 2) may indicate that the effect of
intermittency counters the impact of autocorrelation on forecast
accuracy. As a matter of fact this negative impact of intermittency
on forecasting and stock control is persistent and visible in
Figs. 3 and 4.

Changes in service level have forecast implications. It is
reasonable to expect service level to suffer when underestimated
forecasts are used as inputs to a stock control system. Conse-
quently, RGMAE does not seem to be a robust accuracy measure
for intermittent demand. This connection between forecast accu-
racy and inventory service level is clearly observed when MASE is
used as a measure of forecast accuracy. In every case MASE
increases in Fig. 2, service level decreases in Fig. 4, and vice versa.
Even though both of these measures have been recommended for
intermittent demand forecasting in the literature, the experimen-
tal results leads the reader to conclude that the search for error
measures appropriate for intermittent demand is not over yet.

The effect of correlation on stock control was measured by
isolating the order-up-to inventory policy from the forecasting
procedure using the mean and variance of the theoretically gener-
ated data directly. Since the (Ts,S) policy we utilized is not
specifically designed to account for correlation in data, these
experimental results give an indication of the consequences of an
inventory manager’s behavior who does not consider that correlation

exists in the demand data when setting stocking levels. Inventory
control literature on auto-correlated demand suggests that not
considering the existence of correlation in demand should lead to
lower (higher) average inventory levels and thus higher (lower)
shortages for positive (negative) autocorrelation. Our experimental
results for auto-correlated demand sizes confirm this behavior. Since
most inventory theory is built on the assumption of independent
demand, the existence of negative autocorrelation means that we
will experience demand that is somewhat less than before. Conse-
quently, negative correlation coefficients produce higher service
levels than positive autocorrelation. Meanwhile, there was no
significant change in cost. The same experiment set showed that
positively auto-correlated intervals also lead to lower service levels,
especially when intermittency is high.

Inventory managers should be aware that to the contrary of
autocorrelation literature cross-correlation of intermittent
demand actually produces results in the opposite direction; that
is, negative cross-correlation leads to lower service levels and
higher cost, while significantly positive cross-correlation values
lead to high service levels and lower cost. Positive cross-correla-
tion means that a rather long interval will be followed by a large
demand and a short interval by a small demand. This means that
when a large demand figure is recorded the re-order and order-
up-to levels will increase; increasing the inventory level. Conse-
quently, there will be either adequate or abundant items in stock
regardless of how large or small the next demand figure is.
However, in the case of negative cross-correlation long intervals
are followed by small demand values and short intervals with
large. That means the stock control policy will not have enough
time to react to a large demand figure following a small one
causing expensive backorders. Hence service level deteriorates
while cost increases. This behavior is highly significant when
intermittency is high. Furthermore, this conclusion also holds
even when the mean and variance of demand is estimated
through a forecasting method.

Forecasting and stock control (and their relationship) are among
the most significant operational issues for many firms. Under-
standing the central tendency, variability, and the distribution of
demand are crucial to developing effective systems and most
researchers and practitioners are well aware of their importance.
When the demand is intermittent, the need to consider the
additional factor of many periods with zero demand makes the
problem even harder. Within this larger context the potential
effects of correlation in any of the forms described in this paper
are often not considered. So one may conclude, based on the
results provided here, that these effects should be considered and
systems should be modified to improve performance.

6. Conclusions and further research

Intermittent demand items such as spare parts have been
shown to have auto- or cross-correlation, with the latter indicat-
ing that demand sizes are correlated with demand intervals.
However, the effects of auto and cross-correlation in intermittent
demand items have not been sufficiently explored. This is, to the
best of our knowledge, the first study investigating such effects by
considering three different types of correlation; auto-correlated
demand sizes, auto-correlated intervals, and cross-correlated
demand sizes and intervals. Using theoretically generated com-
pound Poisson demand data the impact of correlation on fore-
casting, stock control, and the integration of these two was
simulated.

Using the Syntetos-Boylan Approximation to estimate demand
mean and variance, and Power Approximation to calculate the
re-order and order-up-to levels of a periodic replenishment policy,
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we show that correlation in intermittent demand does play a role
in forecast accuracy and stock control performance. Negative
autocorrelation levels lead to higher service levels than positive
autocorrelation, while cost does not significantly change. Our
results also show that high intermittency in demand intensifies
these changes in service level. Cross-correlation on the other hand,
produces results in the opposite direction of autocorrelation in size
or intervals; that is, positive (negative) cross-correlation leads to
higher (lower) service levels.

Our research for this paper highlights three major future
research directions. First, results for the forecasting experiment
indicate that the search for a good error measure for intermittent
demand forecasting should continue. Results using MASE and
RGMAE are not consistent in some cases. Even though both
measures show promise, more research is needed to find robust
error measures for intermittent demand forecasting. Secondly,
this study, due to its exploratory nature, utilizes simulation to
investigate the impact of correlation on forecasting and stock
control of intermittent demand items. The obvious next step now
is to take an analytical approach to develop closed form solutions
for stock control. Such a study would also bridge the theoretical
results with the experimental. Lastly, this experiment should be
replicated on other experimental settings as a validation and
confirmation of the results presented here. Effects of correlation
should also be tested on real data series due to its practical
implications.
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