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ABSTRACT

We infer mechanisms of galaxy formation for a broad family of semi-analytic models
(SAMs) constrained by the K-band luminosity function and HI mass function of local
galaxies using tools of Bayesian analysis. Even with a broad search in parameter space
the whole model family fails to match to constraining data. In the best fitting models,
the star formation and feedback parameters in low-mass haloes are tightly constrained
by the two data sets, and the analysis reveals several generic failures of models that
similarly apply to other existing SAMs. First, based on the assumption that baryon
accretion follows the dark matter accretion, large mass-loading factors are required
for haloes with circular velocities lower than 200 km/s, and most of the wind mass
must be expelled from the haloes. Second, assuming that the feedback is powered by
Type-II supernovae with a Chabrier IMF, the outflow requires more than 25% of the
available SN kinetic energy. Finally, the posterior predictive distributions for the star
formation history are dramatically inconsistent with observations for masses similar
to or smaller than the Milky-Way mass. The inferences suggest that the current model
family is still missing some key physical processes that regulate the gas accretion and
star formation in galaxies with masses below that of the Milky Way.

Key words: methods: numerical - methods: statistical - galaxies: evolution - galaxies:
formation - galaxies: luminosity function, mass function.

1 INTRODUCTION

The formation and evolution of galaxies is regulated by mass
accretion, star formation, and associated physical processes,
such as feedback from supernova (SN) explosions. Unravel-
ling this physical complexity is one of the great challenges in
modern astrophysics (see Mo, van den Bosch & White 2010,
for an overview). An important hurdle for any theoretical
model of galaxy formation is a natural explanation for the
differing shapes of the dark matter halo mass function and
the galaxy luminosity and stellar mass function. The mass
function of dark matter haloes, n(M), scales with halo mass
as n(M) ∝ M−2 at the low-mass end, in contrast to the ob-
served luminosity function of galaxies at low-z, Φ(L), which
has a shallow faint-end slope: Φ(L) ∝ L−1. This suggests
that star formation in low-mass haloes must be inefficient,
but the physical cause remains unexplained. Similarly, the
dependence of the baryonic mass fraction on halo mass re-
quires explanation. One might expect that each halo has a

⋆ E-mail: luyu@stanford.edu

baryonic mass fraction that is close to the universal value
of 17%. In reality, the total inventory of baryons in Milky
Way-sized haloes is only 5–10% of the halo mass, and the
baryon mass fraction decreases rapidly with decreasing halo
mass at the low-mass end (e.g. Yang, Mo & van den Bosch
2003; Papastergis et al. 2012). Therefore, some processes
must keep a large fraction of baryons outside of galaxies.

The process most often considered to suppress star
formation in low-mass haloes is SN feedback; the total
amount of energy released by supernovae can be larger
than the binding energy of the gas in low-mass haloes
(Dekel & Silk 1986; White & Zaritsky 1992). Therefore, it
is energetically possible to expel large amounts of baryonic
matter from low-mass haloes and, thereby, reduce the ef-
ficiency of star formation. Feedback may do this in mul-
tiple ways. For example, the feedback energy may heat
a fraction of the cold ISM in the disk, either causing it
to mix with hot halo gas or ejecting it directly without
mixing (Somerville & Primack 1999; Benson et al. 2003).
The feedback energy may also interact with the halo gas,
heat it, and then eject it from the halo (Croton et al.
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2006). Alternatively, galactic winds may be driven by ra-
diation pressure associated with massive stars and super-
nova explosions (e.g. Murray, Quataert & Thompson 2005).
The total amount of energy in radiation is two orders
of magnitude larger than the available kinetic energy
in supernova explosions, and so the energy budget can
be increased significantly. Some simulations of isolated
galaxies demonstrate that radiation pressure-driven (also
called momentum-driven) winds are effective at ejecting
cold gas from galaxies (e.g. Hopkins, Quataert & Murray
2011; Hopkins et al. 2013), but other simulations question
their efficiency (e.g. Krumholz & Thompson 2012). Further-
more, cosmological simulations that employ simplified ver-
sions of the momentum-driven model have not success-
fully reproduced the observed galaxy mass function (e.g.
Oppenheimer & Davé 2006; Puchwein et al. 2012), although
in the latest simulations the discrepancies are predomi-
nantly at high masses where supernova winds may not
be the dominant feedback mechanism (Davé et al. 2013).
In summary: 1) none of the feedback processes are un-
derstood in detail; and 2) the effect of feedback on the
star-formation efficiency is poorly determined; the effi-
ciency parameter adopted in the models ranges from a
few percent to about 100% (Bower, Benson & Crain 2012;
Mutch, Poole & Croton 2013), with a large range of uncer-
tainty.

Observationally, significant outflows are observed only
for starburst galaxies, and there is no clear evidence for
massive winds from normal spiral galaxies (e.g. Heckman
2003). The mass loading and velocity of galactic winds
are poorly constrained (Martin 2005; Weiner et al. 2009;
Chen et al. 2010). Martin (2006) estimated that mass out-
flow rates in the cold component of the wind is on the or-
der of 10% of the star formation rate (SFR) in the star-
burst, while other observations suggest that the rate may
be as high as or even higher than the SFR of the galaxy
(Martin, Kobulnicky & Heckman 2002).

The feedback processes described above assume that
baryons accrete into a halo at the cosmic baryon fraction
and that a large fraction of the cooled baryons are sub-
sequently ejected by feedback. Most semi-analytic models
(SAMs) have focused on gas ejection through winds and we
will follow suit here. Owing to the uncertainty in the phys-
ical details, we use the SAM developed by Lu et al. (2011)
that both incorporates sufficiently general parametrisations
of galaxy-formation mechanisms so that its results will ap-
ply to a large class of SAMs and uses advanced Markov-
Chain Monte Carlo (MCMC) techniques to effectively ex-
plore the high dimensional parameter space. Similar ap-
proaches have been adopted by Kampakoglou, Trotta & Silk
(2008), Henriques et al. (2009), Henriques et al. (2013), and
Mutch, Poole & Croton (2013). In addition, Gaussian pro-
cess model emulators have also been adopted to explore
the parameter space of SAMs by Bower et al. (2010) and
Gómez et al. (2012). More generally, since the Bayesian in-
ference approach places the model on a probabilistic footing,
comparisons between models, probabilities within models,
and the consistency of the models given the data (i.e. good-
ness of fit) can all be assessed quantitatively.

In Lu et al. (2012), we applied the Bayesian SAM to
make model inferences conditional on the observed K-band
luminosity function of local galaxies. We found that star for-

mation and supernova (SN) feedback are degenerate when
one only uses the luminosity function to constrain the model.
The model implied two modes for low-mass haloes: one
where the star formation efficiency is increasingly lower for
lower halo masses and one where the SN feedback is increas-
ingly effective in reheating the cold gas. The dominating low
star-formation mode hides a large fraction of baryonic mass
in the cold gas phase, thereby vastly over predicting the HI
mass function of galaxies. In this paper, we use both the K-
band luminosity function and the HI mass function of galax-
ies to constrain a model family based on Lu et al. (2012),
with additional feedback processes for ejecting baryons out
of haloes, to see if there are interesting regions in the ex-
tended parameter space that can explain both data sets si-
multaneously. We choose the K-band luminosity function
because it is less affected by dust extinction than are op-
tical bands. The cold gas component, although a relatively
small fraction of the total baryon gas (e.g. Zwaan et al. 2005;
Giovanelli et al. 2005; Keres, Yun & Young 2003; Bell et al.
2003b), depends crucially on gas cooling and accretion,
star formation, and feedback (Wang, Weinmann & Neistein
2012; Lu et al. 2012) and thereby complements the informa-
tion from the stellar component. We first use our SAM with
17 free parameters to obtain the posterior distribution from
the constraining data. Our philosophy in this paper is to
take a broad prior range for the parameters, a range that
is sometimes broader than a conventional interpretation of
observations and theory would allow, but one that is broad
enough to contain values assumed in published SAMs. We
find that using these very broad ranges for the priors of the
model parameters, our posterior distribution recovers many
parameter combinations of previously published SAMs, but
the model is still unable to match both of the constraining
data sets simultaneously. If we restrict our prior ranges to
those suggested by other observations (and theory) then the
mismatch with the constraining observation becomes much
worse, as we discuss later. We then analyse the posterior dis-
tribution of the key parameters that govern star formation
and feedback in an attempt to gain insight into the under-
lying physical processes and to investigate the shortcomings
of the model. Finally, we use the constrained posterior to
make predictions and compare them with existing data to
further test the models.

The paper is organised as follows. §2 describes the ex-
tended model based on Lu et al. (2011, 2012). We present
the data, its error model, and the definition of the likelihood
function for the Bayesian inference in §3. §4 presents the re-
sults of our model inference using the constrained posterior
distribution of model parameters (§4.1) and model predic-
tions (§4.2). Finally, we discuss our results in §5. Throughout
the paper, we assume a ΛCDM cosmology with ΩM,0 = 0.26,
ΩB,0 = 0.044, h = 0.71, n = 0.96, and σ8 = 0.79, which
are consistent with the WMAP5 data (Dunkley et al. 2009;
Komatsu et al. 2009).

2 THE SEMI-ANALYTIC MODEL

We adopt the SAM developed by Lu et al. (2011; see also Lu
et al. 2012), which includes star formation, supernova (SN)
feedback, galaxy mergers and AGN feedback. The processes
are parametrised with standard analytic functions so that
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the model encompasses a large range of previously used pre-
scriptions. We only describe the parametrisations relevant to
SN feedback and star formation in this section; see Lu et al.
(2011) for a comprehensive description of the other details.

Our model assumes that quiescent star formation occurs
in a high-density, exponentially-distributed cold-gas disk.
The characteristic radius for the exponential disk, rdisc, is
related to the virial radius and the spin parameter of the
host halo as follows: rdisc = λrvir/

√
2, where λ is the spin

parameter of the halo (Mo, Mao & White 1998). We choose
a single value λ = 0.035 for all haloes; this value is roughly
the average value measured in cosmological N-body simula-
tions (e.g. Macciò et al. 2007). The fiducial size of the disc
is then rdisc,0 = 0.035rvir/

√
2. Observationally, gas forms

stars when its surface density exceeds a threshold, ΣSF; the
observed threshold surface density is ∼ 10 M⊙ pc−2 (e.g.
Kennicutt 1998; Kennicutt et al. 2007; Bigiel et al. 2008).
For an exponential disk, the cold gas mass with a surface
density higher than the threshold surface density ΣSF is

msf = mcold

[

1−
(

1 + ln
mcold

2πfSFr2disc,0

)

2πfSFr
2
disc,0

mcold

]

, (1)

where mcold is the total cold gas mass in the galaxy, and fSF
is a model parameter defined as

fSF =
(

λ

0.035

)2

ΣSF. (2)

The model parameter fSF describes both the size of the disk
and the threshold surface density of the cold gas. Thus, the
parameters λ and ΣSF are intrinsically degenerate through
the combined parameter fSF. If fSF is significantly lower
than 10M⊙pc

−2, then either the cold gas disc is more com-
pact than the fiducial size, or the threshold surface density
is required to be lower than 10M⊙pc−2. We assign a gener-
ous prior for the parameter fSF to accommodate the broad
uncertainties in the implementation of star formation in the
model (see 1), and we test the sensitivity of our results on
the choice of the prior, which will be discussed in §4.1.

We assume that the star formation rate, φ, is propor-
tional to the mass of star forming gas and inversely pro-
portional to the dynamical time scale of the disk, τdisc =
rdisc/Vvir:

φ = ǫsf
msf

τdisc
, (3)

where ǫsf is an overall star formation efficiency factor. To
further generalise the dependence of the star formation rate
on halo properties, the model further assumes that ǫsf has
a broken power-law dependence on the circular velocity of
the host halo:

ǫsf =

{

αSF Vvir ≥ VSF;

αSF

(

Vvir

VSF

)βSF Vvir < VSF,
(4)

where αSF, βSF and VSF characterise the star formation ef-
ficiency. For haloes with a circular velocity higher than the
critical velocity scale, VSF, the star formation efficiency is a
constant, αSF; for haloes with a circular velocity lower than
VSF, the star formation efficiency follows a power-law func-
tion of halo circular velocity defined by αSF and βSF. The
pivot point VSF in the parametrisation is needed to avoid
unrealistically high star formation efficiencies in high Vvir

haloes when βSF is positive. However, we note that it in-
troduces an intrinsic degeneracy into the parametrisation.

For example, when βSF = 0, VSF does not have any impact
on the model. This effects our study, as we discuss in §4.1.
We note that allowing βSF to have nonzero values conflicts
with some observational results, which find that the star-
formation rate is largely determined by the available supply
of cold dense gas and not on the mass (or circular velocity)
of the host halo (Schmidt 1959; Kennicutt 1989).

Star formation in our SAM can both consume cold gas
by forming stars and affect the cold gas supply for subse-
quent star formation through feedback. In general, star for-
mation feedback can influence the cold gas in three different
ways: first, feedback can heat up the cold gas in the disk
so that it joins the hot halo; second, feedback can directly
eject cold gas out of the gravitational potential of the host
halo; and third, feedback can expel some of the hot halo gas
out the host halo. Our model attempts to capture all these
processes. In our previous studies (Lu et al. 2011), we did
not explore the dependence on cold-gas ejection owing to its
strong degeneracy with other mechanisms when the lumi-
nosity function or stellar mass function alone is used as a
constraint. The addition of the HI mass function breaks this
degeneracy, and we will see that cold-gas ejection is required
by the HI data. Our previous papers enforced conservation
of the mechanical energy produced by SN explosions for the
chosen stellar initial mass function (IMF) when modelling
the mass loading in galaxy winds. In this paper, we allow
the possibility of other energy sources, e.g. radiatively-driven
winds.

We parametrise the mass-loss rate of the cold gas to be
proportional to the star formation rate, φ, as

ṁout = αldφ , (5)

where the coefficient αld is the loading factor of the out-
flow. Because the quantity of energy or momentum pro-
duced during stellar evolution is finite, the mass-loading de-
pends on the initial wind velocity and the physics of the cou-
pling with the multiphase ISM. Two types of mass-loading
models have been extensively explored in the literature: 1)
an energy-driven wind that couples a fixed fraction of the
feedback energy with the wind, which motivates αld ∝ v−2

w

(e.g. Okamoto et al. 2010); and 2) a momentum-driven wind
that couples a fixed fraction of momentum (e.g. in a ra-
diation field) with the wind, which motivates αld ∝ v−1

w

(e.g. Oppenheimer & Davé 2006; Oppenheimer et al. 2010;
Hopkins et al. 2013). Attempts to observe vw and infer its
dependence on galaxy properties (e.g. Martin 1999) have
been inconclusive. Some theoretical models assume a con-
stant wind velocity (e.g. Croton et al. 2006), while others
assume a halo mass dependent velocity (e.g. Puchwein et al.
2012). To parametrise the various possibilities, we assume
the loading factor to be a power-law function of halo circu-
lar velocity, Vvir,

αld = αLD

(

Vvir

V0

)−βLD

, (6)

where the power index βLD and the normalisation αLD are
model parameters, and V0 is an arbitrary velocity scale that
we fix at 220 km/s.

In this model, a given value of βLD does not determine
a particular wind launching mechanism (energy driven or
momentum driven). For example, βLD = 0 implies indepen-
dence of Vvir, but this does not affect the αld-vw relation
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predicted by a particular wind driving mechanism, because
the vw − Vvir relation is undetermined. Only in the special
case when vw ∝ Vvir is the value of βLD related to the wind
driving mechanism: βLD = 2 for an energy-driven wind and
βLD = 1 for a momentum-driven wind. Because of all the
uncertainties, we assign a large prior range for βLD, allowing
βLD to take any value between 0 and 8 in our inference.

After the gas is removed from the galaxy, it can be
trapped within the potential well of the dark matter halo or
ejected from the halo into the intergalactic medium (IGM).
We assume that the fraction of removed gas that is ejected
from the halo is

fej =

[

1 +
(

Vvir

VEJ

)βEJ

]−1

, (7)

where VEJ and βEJ are free parameters. Thus, for a halo
with a circular velocity lower than VEJ, most of the outflow
gas is ejected from the halo, while for haloes with circular
velocities much larger than VEJ, the ejected fraction follows
a power-law function of the halo circular velocity. Our model
also includes an outflow of hot halo gas. The strength of the
effect is controlled by the parameter αSN, which describes
the fraction of the total kinetic energy released by SN Type
II that is needed to power all the feedback processes in the
model. The excess energy over the amount used for reheating
and ejecting the cold gas is used to power an outflow of hot
halo gas. The amount of halo gas mass expelled is written
as

∆mwind = ǫW

{

αSN
V 2
SN

V 2
esc

− αld

[

(

Vvir

Vesc

)2

+ fej

]}

φ∆t , (8)

where Vesc is the escape velocity of the halo. For a NFW
halo with a concentration c (Navarro, Frenk & White 1996),

Vesc = Vvir ×
√

2c
ln(1+c)− c

1+c

(Puchwein & Springel 2013).

The model assumes that the ejected gas can re-collapse
into the halo at later times as hot halo gas. As in
Springel et al. (2001) and De Lucia & Blaizot (2007), the
rate of re-infall of ejected gas is given by

ṁre−infall = fRI

(

Mej

τdyn

)

. (9)

Here, fRI is a free parameter, Mej is the total mass of gas
in the ‘ejected’ reservoir, including both ejected gas from
the cold gas disk and expelled gas from the hot halo, and
τdyn = rvir/Vvir is the dynamical time of the halo.

To convert the stellar mass to stellar light, we apply
the stellar population synthesis (SPS) model of (BC07, see
Bruzual 2007), which includes an improved treatment of
thermally-pulsing AGB stars. The SPS model is used to pre-
dict the K-band luminosity of a galaxy from its star forma-
tion history. To implement the SPS model, we use a Chabrier
IMF (Chabrier 2003), and create a look-up table for the lu-
minosities on a grid with 220 values of age evenly spaced
from 0 to 15 Gyr, and with Z = 0.0001, 0.0004, 0.004, 0.008,
0.02 and 0.05.

Finally, our SAM uses Monte-Carlo-generated
halo merger trees tuned to match the conditional
mass functions found in N-body simulations following
Parkinson, Cole & Helly (2008) with final masses in the
range from 109 h−1M⊙ to 1015 h−1M⊙ (see Lu et al. 2011,
for additional details). Since haloes and their merger trees

are randomly sampled from the halo mass function, a
model prediction based on a finite merger tree sample
suffers from sampling variance. We, therefore, choose the
number of halo merger trees in each mass bin such that
the standard deviation in the predictions, namely the
K-band luminosity function and the HI-mass function, are
at least 2 times smaller than the error in the observational
data in all the bins. Specifically, we use 1,000 merger
trees for haloes with present masses in the range 1011

-1012.5 h−1M⊙, 1,500 in 1012.5 - 1013.5 h−1M⊙, 400 in 109

- 1010 h−1M⊙, 400 in 1010 - 1011 h−1M⊙, and 100 in 1013.5

- 1015 h−1M⊙. The logarithmic halo masses are evenly
distributed in each range. Since massive haloes are rare
in the assumed cosmology, their contribution to scatter
in the stellar mass function is negligible. We choose a
mass resolution for the merger trees that varies with the
final halo mass. For haloes with final masses smaller than
1010 h−1M⊙, the mass resolution is 108.5 h−1M⊙; for haloes
with final mass between 1010 h−1M⊙ and 1012 h−1M⊙, the
mass resolution is 109.2 h−1M⊙; for haloes with final mass
between 1012 h−1M⊙ and 1014 h−1M⊙, the mass resolution
is 1010.2h−1M⊙; and for haloes with final masses larger than
1014 h−1M⊙, it is 10

11 h−1M⊙. All merger trees are sampled
at 100 redshifts equally spaced in log(1 + z) from z = 7 to
z = 0. To make predictions for the total galaxy population
we weight each predicted galaxy by the halo mass function
of Sheth, Mo & Tormen (2001). The merger tree set we
adopt allows us to run each model rapidly with sufficient
accuracy so that we can explore the parameter space
within a reasonable amount of time. After we obtained the
posterior, we checked our model predictions using a larger
number of trees and higher time and mass resolutions.
The deviations of the results from those obtained with the
smaller tree sample and lower resolutions described above
were found to be well within the 1-σ range of the posterior
predictive distributions, demonstrating that the number of
trees and mass resolution that we adopt are adequate for
our purposes.

3 DATA AND LIKELIHOOD

Our SAM inference is conditional on both the K-band lu-
minosity function and HI mass function of galaxies to con-
strain models. We use the K-band luminosity function from
Bell et al. (2003a); the details of the data and how it is used
to constrain the model can be found in Lu et al. (2012).
Different from the luminosity function, whose errors can be
safely approximated by Poisson errors, the HI mass func-
tion contains errors that are correlated across different bins.
Here, we give a detailed description for our use of the HI
mass function from Zwaan et al. (2005), derived from the
HIPASS HI Bright Galaxy Catalogue (hereafter HIPASS
BGC, see Koribalski et al. 2004), and show how we derive a
full covariance matrix for the likelihood function utilised in
our Bayesian analysis.

3.1 Uncertainties and covariance in the observed

HI mass function

A galaxy’s HI mass is estimated from its 21-cm flux density
and distance as
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Table 1. Model parameters

# Parameter Meaning Prior

1 logMCC( M⊙) cooling cut-off halo mass [1.5 , 4.5]

2 logαSF star formation efficiency power-law amplitude [-3, 0]

3 βSF star formation efficiency power-law index [-1, 12]

4 log VSF (km/s) star formation law turn-over halo circular velocity [1.5, 3.0]

5 log fSF star formation threshold gas surface density [0, 1.2]

6 logαSN SN feedback energy fraction [-3, 1]

7 logαLD SN feedback reheating power-law amplitude [-3, 2]

8 βLD SN feedback reheating power-law index [0, 14]

9 logVEJ SN feedback ejection pivot halo circular velocity [1.6,3.0]

10 βEJ SN feedback ejection power-law index [0,10]

11 ǫEJ SN feedback ejection escaping velocity factor [1, 5]

12 log ǫW fraction of surplus SN feedback energy used for powering wind [-3, 0]

13 log fRI fraction of re-infall ejected hot gas [-2, 0]

14 log fDF merging time-scale in dynamical friction time-scale [0, 2]

15 logαSB merger triggered star burst efficiency power-law amplitude [-2, 0]

16 βSB merger triggered star burst efficiency power-law index [0, 2]

17 arctan(αIN) K-band luminosity function faint-end incompleteness [0, 0.177]

MHI = 2.36 × 105d2FHI M⊙, (10)

where d is the distance of the source in Mpc, and FHI is the
integrated 21-cm flux density in units of Jansky per km/s.
The value of FHI is provided for each galaxy in the catalogue,
along with its uncertainty, σ(FHI). We use the Hubble dis-
tance,

d = vLG/H0, (11)

where H0 is the Hubble constant in units of km s−1 Mpc−1,
vLG is the recession velocity of the source, vsys, corrected to
the Local Group rest frame:

vLG = vsys + 300 sin l cos b, (12)

and l and b are the Galactic longitude and latitude of the
source, respectively. The observational error in vsys is pro-
vided in the source catalogue and is used in our analysis.

The detectability of a HI galaxy is affected by both its
peak flux density, Sp, and its linewidth, w20, defined to be
the wavelength difference between the two points where the
flux density is 20% of Sp. Following Koribalski et al. (2004),
we estimate the uncertainty in the peak flux density as

σ(Sp)
2 = rms2 + (0.05Sp)

2, (13)

where the rms = 13mJy. The uncertainty in w20 is esti-
mated as σ(w20) ≈ 3σ(vsys).

Using these values of vLG, FHI, Sp, and w20 and their
standard deviations, we randomly generate 1,000 replicas
containing 1,000 galaxies, each assuming independent Gaus-
sian distributions. For each of the replicas, we adopt the
same procedure used by Zwaan et al. (2005) to obtain the

HI mass function. Specifically, we apply the 2-dimensional,
step-wise maximum likelihood method (2DSWML) pro-
posed by Zwaan et al. (2003) to find the maximum likeli-
hood (ML) estimator of the mass function. These ensembles
yield the average mass function and the corresponding co-
variance matrix, Σobs. This covariance matrix includes both
HI-measurement variance and the sampling variance owing
to the finite survey volume. We will assume that both types
of variance are independent and use this covariance matrix
to specify the likelihood function in §3.3.

3.2 Corrections for molecular fraction and

incompleteness

Our SAM predicts a galaxy’s total cold mass, Mcold, which
includes atomic HI gas, molecular H2 gas, as well as heavier
elements. We make the following assumptions to predict the
HI mass function. To start, we write

Mcold =
MHI +MH2

β
, (14)

where β ≈ 0.74 is used to correct for the mass in helium (He)
and in the small fraction of heavier elements in a cosmic
gas. Given the molecular to atomic hydrogen mass ratio,
η = MH2/MHI, we have

MHI =
βMcold

1 + η
. (15)

The value of η depends on galaxy properties. Following
Obreschkow et al. (2009), we assume that η depends only
on the total mass of cold gas,
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log η = q + k log

(

Mcold

109h−2 M⊙

)

+ σ, (16)

where q = −0.51+0.03
−0.04 , k = −0.24+0.05

−0.05 , and σ = 0.30. The
HI mass derived from the observed 21-cm flux is only a frac-
tion of the total HI mass owing to self-absorption. Although
the details of self-absorption depend on inclination, the av-
erage correction expected for a sample of randomly oriented
galaxies is about 15% (Zwaan et al. 2003). This gives a re-
lation between the predicted, observed HI mass, Mp

HI, and
the real HI mass MHI:

Mp
HI = (1− fHI)MHI = β

1− fHI

1 + η
Mcold. (17)

We take the self-absorption correction factor, fHI, to be a
random number between 0 and 0.3.

The detection of HI galaxies is also limited by a mini-
mal velocity width wm, below which galaxy signals cannot
be reliably distinguished from radio-frequency interference.
Thus, galaxies with low inclinations and low HI mass, which
thereby have low velocity widths, are under sampled. In the
HIPASS BGC, this effect is specified in terms of the velocity
width at 50% of the peak flux,

w50 = (w2
0 sin

2 i+ w2
t )

1/2 + wi , (18)

where i is the inclination, w0 is the intrinsic velocity spread
owing to rotation, wt is the velocity width owing to turbu-
lence, and wi is the broadening owing to the instrument.
Following Zwaan et al. (2003), we set wt = 6 kms−1 and
wi = 2.3 kms−1. Galaxies included in the HIPASS BGC
have w50 > wm = 26.4 kms−1, so the minimal reliably de-
tected inclination is

im = arcsin

[

(wm − wi)
2 − w2

t

w2
0

]1/2

. (19)

The fraction of galaxies potentially missed at a given w0 is
then

ζ =

∫ im

0

sin idi = 1−cos im = 1−
[

1− (wm − wi)
2 − w2

t

w2
0

]1/2

.(20)

Zwaan et al. (2003) used the HI Tully-Fisher relation from
Lang et al. (2003) to infer w0 = 0.35M0.3

HI , ignoring the scat-
ter. This implies that ζ ≈ 10% for MHI = 2 × 107 M⊙ and
ζ ≈ 5% for MHI = 5× 107 M⊙. We include this effect in our
model predictions for the HI mass function as

Φp(Mp
HI) = Φ(Mp

HI)(1− ζ), (21)

with ζ given by equation (20).

3.3 The likelihood function

For the K-band luminosity function, we use the same like-
lihood function as described in Lu et al. (2012). For the HI
mass function, we construct a likelihood function that in-
dependently represents the HI-measurement error and the
sample variance. To start, we neglect the covariance be-
tween measurement error and sampling variance. Such co-
variance may be important for small sample sizes but is
unimportant for the current sample where the variance is
measurement-dominated (Papastergis, E. private communi-
cation). The uncertainties in the process leading to the HI

mass estimate for each galaxy (§3.1–§3.2) induces correla-
tions between the HI mass bins. Ideally, the error model
describing this covariance would be used to predict the ob-
served data. However, our galaxy formation model is not
capable of predicting all the necessary observables (e.g. w20

and Sp). Instead, we proceed by making two additional as-
sumptions: 1) the likelihood function is a multi-dimensional
normal distribution; and 2) the sampling is a pure Poisson
process. Then, the errors in the simulated data presented
in §3.1 can be modelled as follows. We define the equivalent
volume, Veq, implied by the HI measurement process includ-
ing all the selection effects described in §3.2. This equivalent
volume can be estimated from the data as Veq = Nobs/Φobs.
The Poisson variance in each modelled bin is then Φmod/Veq

and only affects the diagonal terms of the covariance matrix.
We, therefore, write the diagonal terms as

σ2
mod = σ2

mst +

(

Φmod

Veq

)

(22)

where σ2
mst is some unknown measurement variance. Under

the same assumptions, the diagonal elements of the simu-
lated covariance matrix from §3.1 are

σ2
obs = σ2

mst +

(

Φobs

Veq

)

(23)

We now use equations (22) and (23) to eliminate σ2
mst:

σ2
mod = σ2

obs +
Φmod −Φobs

Veq
. (24)

This replaces the variance in the diagonal terms of the sim-
ulated covariance matrix to obtain the predicted covariance
Σpred. Thus, the likelihood function is written as

L(Φobs|Θ) =
L0

(2π)I/2|det(Σpred)|1/2
×

exp
[

−1

2
(Φobs −Φmod)

T ·Σ−1
pred · (Φobs −Φmod)

]

(25)

where Θ denotes the model parameter vector, Φobs and
Φmod are, respectively, the vectors of the observed and pre-
dicted HI mass functions over the HI mass bins, and I is
the rank of the covariance matrix. We assume that the K-
band luminosity function and the HI mass function are sta-
tistically independent and, therefore, the total likelihood is
simply the product of the two:

L(D|Θ) = L(DK|Θ)× L(DHI|Θ) , (26)

where DK and DHI denote the observed data of the K-band
luminosity function and the HI mass function, respectively.

4 MODEL INFERENCES

4.1 Inference from the Posterior Distribution

We used a tempered version of the Differential Evolution al-
gorithm (ter Braak 2006) implemented in the Bayesian In-
ference Engine (BIE, see Weinberg 2013) to sample the pos-
terior density distribution with 256 chains. All simulations
run for more than 7000 iterations and the convergence is
monitored with the Gelman-Rubin R̂ test (Gelman & Rubin
1992). We declare convergence when R̂<∼ 1.2. All simulations
typically converge after 3000 iterations, and the converged
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Bayesian inference on star formation feedback 7

Figure 1. The Bayesian posterior predictions for the K-band
luminosity function and the HI mass function. The black solid
lines with error bars are the observational data. The orange and
yellow bands encompass the 66% and 95% credible ranges of the
predictions, respectively, while the red lines are the median values.

states are used to sample the posterior distribution. After
removing 12 outlier chains, we obtain ∼ 106 chain states. As
the auto-correlation length of the chains is typically ∼ 10,
there are about 105 independent chain states to sample the
posterior distribution.

Figure 1 shows the posterior predictions for the K-band
luminosity function and HI mass function of local galaxies.
We account for potential incompleteness in the faint end
of the K-band luminosity function by marginalising over
the incompleteness parameter αIN (see Lu et al. 2012, for
details). The orange and yellow bands in each panel en-
compass 66% and 95% of the posterior probability, respec-
tively, and the red line is the median. To quantify the good-
ness of fit, we use posterior predictive check (PPC, Rubin
1984; Gelman, Meng & Stern 1996; Gelman et al. 2003).
PPC compares the value of one or more discrepancy statis-
tics for the observed data to a reference distribution based on

the posterior (which is conditioned on the observed data).
The reference distribution is obtained by generating pre-
dicted data from the posterior distribution. If a model fits
the data well, the observed data should be likely under the
posterior predictive distribution, and the discrepancy statis-
tics of the observation should be likely under the distribu-
tion of the discrepancy statistics of the posterior models.
On the other hand, large discrepancies between the observed
data and the posterior predictive distribution indicate that
the model performs poorly. Following our previous paper
(Lu et al. 2012), we adopt the Bayesian p-value to quantify
the goodness of fit, with p defined as

p =
1

N

N
∑

i=1

Iχ2
i,mod

≥χ2
obs

, (27)

where χ2
i,mod and χ2

obs are the discrepancy statistics for the
model and the data. Iq is the indication function for the
condition q, with Iq = 1 if q is true and Iq = 0 otherwise.
In other words, the fraction of posterior model samples with
χ2
i,mod ≥ χ2

obs is an estimate of p. A small value of the p-
value reflects the implausibility of the data under the model
(and, hence, the lack of fit of the model to the data) and,
therefore, suggests problems with the model. For the data
and posterior distribution shown in Figure 1, the Bayesian
p-value from the PPC for the HI mass function is pHI =
0.25, which indicates an adequate fit, but for the K-band
luminosity function it is only pK = 0.011. This is much lower
than the value of pK = 0.66 obtained in Lu et al. (2012),
which used only the K-band luminosity function as the data
constraint. Hence, the model constrained using both the HI
mass function and the K-band luminosity function does not

fit the observational data well. In the remainder of this paper
we will explore the causes for this discrepancy and their
implication for models of galaxy formation generally.

Figure 2 shows marginalised posterior distributions for
10 parameters characterising star formation and feedback
and we now describe those with marginal distributions that
differ significantly from those in Lu et al. (2012). In the
upper-left panel of Figure 2, the vertical axis shows the
model parameter VEJ: the halo circular velocity below which
all outflowing mass reheated from the disk must be ejected
out of the host halo. The horizontal axis shows the parame-
ter MCC: the critical halo mass above which radiative cool-
ing of the halo gas is shut off to mimic radio-mode AGN feed-
back (Croton et al. 2006; Bower et al. 2006). The mass MCC

is well constrained, with a value about 1012.5M⊙. This result
also agrees with the value obtained by Lu et al. (2012) using
the K-band luminosity function alone as a data constraint,
and with other existing SAMs that implement “halo quench-
ing” (e.g. Cattaneo et al. 2006; Somerville et al. 2008). In-
cluding the HI mass function as an additional constraint
does not affect the inferred value of MCC significantly be-
cause MCC controls gas cooling and star formation in mas-
sive haloes while the HI mass function mainly constrains
low-mass haloes, which contain most of the HI gas.

The value of VEJ is also well constrained, with log VEJ ≈
2.3 (VEJ ≈ 200 km/s), suggesting that all haloes with circu-
lar velocities lower than this are required to have efficient
mass ejection to fit the data, and the same ejection process
can be inefficient in haloes with higher circular velocities.
There is also a non-negligible tail to even larger VEJ; models
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Figure 2. The marginalised posterior distributions of 10 model parameters. Panel 1: AGN feedback shuts off gas cooling for haloes with
Mvir > MCC and winds expel gas from haloes with circular velocities Vvir > VEJ. Panel 2: αSF parametrises the normalisation of star
formation efficiency, which is a constant for haloes with a circular velocity higher than parameter VSF, and a power-law function of Vvir

with βSF being the power law index of the relation. Panel 3: fSF is the cold gas surface density threshold for star formation and αSF is
as above. Panel 4: αLD parametrises the loading factor of the SN feedback and βLD is the power index of the power-law dependence of
the loading factor on the halo circular velocity. The blue lines denote the kinetic energy limit based on Type II SN for outflows in haloes
with a circular velocity of 220 km/s for two IMFs: Salpeter (solid) and Chabrier (dashed). The red lines show the extreme parameter
combination of the two mass-loading parameters for haloes with a circular velocity of 100 km/s. Models in regions to the right of the
limiting lines require more than 100% of the total available energy for the cold gas ejection. The magenta dotted line denotes models
with a loading factor equal to 4 for haloes with a circular velocity of 70 km/s. Panel 5: the joint marginalised posterior distribution in the
βLD-βSF plane. Panel 6: the joint marginalised posterior distribution in the βLD-VSF plane. Panel 7: αSN characterises the fraction of SN
energy that is required to power the ejection of hot halo gas. Panel 8: the joint marginalised posterior distribution in the βLD-log fDF
plane, where fDF is a coefficient characterising the satellite dynamical friction timescale. The greyscale (colour in on-line version) denotes

the confidence levels as shown by the colour bar at the top of the figure. Symbols with different colours in the various panels denote the
corresponding parameters adopted in some earlier SAMs, as indicated. They do not appear in every panel for all models because some
parameters are absent in the parametrisation of those models.
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Bayesian inference on star formation feedback 9

in this tail require efficient mass ejection at even higher halo
circular velocities. This result agrees with both the model of
Somerville et al. (2008) and a recent analysis of the Munich
model (Henriques et al. 2013): efficient gas ejection from ha-
los is required to match multiple data sets simultaneously.
Without the HI constraint, the observed K-band luminos-
ity function of galaxies can be reproduced by making the
star formation efficiency a strong function of circular veloc-
ity, resulting in a massive cold-gas component. However, this
makes the amplitude of the corresponding predicted HI mass
function an order of magnitude higher than that observed
(Lu et al. 2012; Wang, Weinmann & Neistein 2012). In our
model, the strong degeneracy between outflow and star for-
mation efficiency is broken by the constraint provided by
the HI mass function. Consequently, one requires efficient
gas ejection from halos to prevent a large reservoir of cold
gas and only requires the star formation efficiency to be a
weak function of halo circular velocity (see below). If we fix
VEJ = 0, we find that the model can no longer match the ob-
servational data; the best fitting model, i.e. in this case the
model with the maximum a posteriori (MAP) probability,
has a likelihood that is almost 9,000,000 times lower than
our fiducial MAP. This suggests that efficient gas ejection is
unavoidable in our model family.

4.1.1 Star formation

With the HI mass function as an additional constraint, the
posterior probability of the star formation parameters is now
constrained to a fairly narrow range (see Panel 2 of Figure 2).
The posterior of log(αSF) peaks sharply at −1.8, implying
that a galaxy converts about ≈ 1.6% of its cold gas into stars
in every dynamical time. This is consistent with the observed
efficiency in galaxies (Silk 1997; Elmegreen 1997). The pos-
terior for βSF is now peaked near zero, much lower than the
value of βSF ≈ 10 obtained in Lu et al. (2012) constrained
using the K-band luminosity function alone. This low value
for βSF means that the star-formation rate is largely deter-
mined by the available supply of cold dense gas and does
not depend on the mass (or circular velocity) of the host
halo. This is consistent with observed star-formation laws
(Schmidt 1959; Kennicutt 1989), in which the star forma-
tion rate depends only on gas properties. However, there
still remains a weaker mode - its posterior odds relative to
the main mode is 2.5 times smaller - where αSF ≈ 2% and
βSF ≈ 2.5. We will show that the parameter βSF is covariant
with feedback parameters in another panel of the figure.

In Lu et al. (2012), the star-formation efficiency pa-
rameter αSF was found to be strongly covariant with the
threshold of cold gas surface density for star formation,
fSF: a high star formation efficiency with a high thresh-
old value was equivalent to a low star formation efficiency
with a low threshold value. As expected, the addition of
the HI mass function breaks this degeneracy. Panel 3 of
Figure 2 shows the marginalised posterior probability dis-
tribution in the log fSF–logαSF plane. Remember that in
our parametrisation, fSF is equal to the surface gas density
threshold for star formation, ΣSF, under the assumption that
rdisc = rdisc,0, i.e. that the disc size is given by the model of
Mo, Mao & White (1998). The combined data sets require
that the threshold surface density for star formation is small;
we find ΣSF ≈ 1 M⊙pc

−2. This value is about one order of

magnitude lower than the observed threshold surface den-
sity (Kennicutt 1998; Bigiel et al. 2008; Leroy et al. 2008)
and is also right against the prior bound, so even lower val-
ues may be preferred by the model, although such low values
would be in even greater conflict with observations. In the
model, a high gas surface density threshold would result in
too much cold gas in low-mass haloes at large radii and too
little star formation to power enough outflows. This prob-
lem was highlighted by Mo et al. (2005), who found that the
standard threshold surface density for star formation would
lead to an HI mass function that was too high, even if each
low-mass halo only contained a cold gas disk at the threshold
surface density.

Our SAM requires both powerful, efficient feedback to
remove the gas from the halo and a threshold gas surface
density that is much lower than the observed star formation
threshold (and still fails to match the data). To explore ex-
plicitly the sensitivity to a higher surface density threshold,
we constrained the prior of fSF to range between 3M⊙ pc−2

and 30M⊙ pc−2. We find that this greatly reduces the good-
ness of fit and that the best fits are always obtained with
fSF at the lower boundary of the prior. The MAP using
this restricted prior has a likelihood that is smaller than
the MAP in the fiducial run by a factor of over 3,000,000.
If we further restrict fSF to match the observed value of
10 M⊙ pc−2, the likelihood decreases by a further factor of
over 60,000,000, and the p-value for the HI-mass function
becomes very small, pHI < 0.005, indicating an unaccept-
able fit. Thus, the current model family cannot explain the
observed HI mass function using the observed gas density
threshold for star formation.

4.1.2 Feedback

Panel 4 of Figure 2 shows the marginalised posterior
probability distribution of the two supernova gas ejec-
tion parameters: αLD and βLD. For comparison, we
also plot the combinations of these parameters used
in a number of existing SAMs. These models in-
clude Cole et al. (1994), Kauffmann & Charlot (1998),
Somerville & Primack (1999), Somerville et al. (2008),
De Lucia, Kauffmann & White (2004), Kang et al. (2005),
Menci et al. (2005), Cattaneo et al. (2006), and Guo et al.
(2011). The parameter choices are converted into our
parametrisation, where the amplitude of the mass-loading
factor is normalised at a halo circular velocity scale of 220
km/s. As expected, because of the similarity in our phe-
nomenological parametrisations, most of the other SAMs
are located in the high probability region of our inferred
posterior. These two parameters are covariant and populate
three main modes: βLD ≈ 0 that is equivalent to the Croton
model (Croton et al. 2006), βLD ≈ 2 that is similar to the
Somerville model (Somerville et al. 2008) and a number of
other models, and a large value of βLD ≈ 6 (e.g. Cole et al.
1994).

Because we parametrise the outflow loading factor
as a power-law function of halo circular velocity, αld =
αLD(Vvir/220km s−1)−βLD , a covariance represented by a
straight line in the logαLD–βLD plane corresponds to a
group of models that have a fixed loading factor for a specific
circular velocity. The magenta dotted line in Panel 4 of Fig-
ure 2 roughly captures the covariance of the two parameters
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and corresponds to a loading factor of 4 for haloes with a cir-
cular velocity of 70km/s or a mass of about 1.5×1011M⊙ at
the present time. The covariance suggests that these haloes
may be critical for fitting the K-band luminosity function
and the HI mass function of galaxies simultaneously.

Our fiducial model does not limit the total energy avail-
able for feedback but, of course, Nature does impose limits.
The total energy available for outflows powered by Type II
supernovae is

ESN,max = φηSNǫSN , (28)

where ǫSN ∼ 1051ergs = 5 × 107 M⊙km
2 s−2 is the total

energy output of a SN, and ηSN is the number of SNs ex-
pected from the formation of one solar mass of stars. As-
suming that Type II SN progenitors are stars with masses
8 M⊙ < m < 20 M⊙, then ηSN = 5.88 × 10−3 M⊙

−1 for a
Salpeter IMF (Salpeter 1955), and ηSN = 9.76× 10−3 M⊙

−1

for a Chabrier IMF (Chabrier 2003). The total energy con-
sumed by the outflow depends on the detailed processes and
the final state of the outflow material. If the outflow is ther-
malised and settles into an equilibrium state in the gravi-
tational potential of the host halo, the energy required is
5
4
mrhV

2
vir, where mrh is the mass of the reheated gas (e.g.

Kauffmann & Charlot 1998). Since only a fraction of the en-
ergy is expected to heat the gas:

ηSNǫSN ≥ 5

4
αLD

(

220km/s

Vvir

)βLD

V 2
vir. (29)

Thus, for haloes with Vvir = 220 km/s, the maximum nor-
malisation of the loading factor, αLD,max(Vvir = 220) =
4.13 × ηSN

5×10−3 , which is 4.8 for a Salpeter IMF and 8.0 for
a Chabrier IMF. These values are plotted in the lower-right
panel of Figure 2 as the blue solid line and the blue dashed
line, respectively.

If the outflow is ejected directly from the centre of
the host halo, the energy required to escape is 1

2
mejV

2
esc,

where Vesc is the escape velocity. For a NFW halo
(Navarro, Frenk & White 1996) with a concentration c =
10, the escape velocity from the centre is V 2

esc ≈ 13 × V 2
vir.

Thus, to eject the gas from such a halo, the lower limit on
the required energy is E = 13

2
mLDV

2
vir, where mLD is the

total gas mass loaded in the wind. The mass-loading fac-
tor in such haloes is, therefore, limited by the total energy
provided by SN explosions, and the solid red line and the
red dashed line in Panel 4 of Figure 2 show these limits for
a Salpeter and a Chabrier IMF, respectively. Models lying
above such a limiting line need more energy than is avail-
able from haloes with circular velocities equal to or below
100 km/s. The posterior contours for all the modes with
β < 4 are ∼ 0.3 − 0.6 dex to the left of but not far from
the energy limits for haloes with Vvir ≤ 100 km/s, indicat-
ing that a large fraction, i.e. 25–50%, of all the supernova
energy has to be put into the outflow in such galaxies.

The required high loading factor results from the need
to simultaneously match the shallow low-end slope of both
the K-band luminosity function and the HI mass function.
The total baryonic mass that can be accreted into a halo is
fbmvir, where fb is the universal baryon fraction. Suppose
a fraction fc of the gas can cool and collapse onto the cen-
tral galaxy. For low mass haloes with Vvir <∼ 150 km/s, fc is
expected to be close to unity because of the high cooling effi-
ciency (Thoul & Weinberg 1995; Lu & Mo 2007). If the ex-

pelled gas can fall back onto the galaxy and go through mul-
tiple cycles, the effective fc can be larger than 1. However,
to explain the shallow low-mass end of the HI mass function
and the faint end slope of the K-band luminosity function,
the cold gas and stellar mass has to be very low relative to
fbmvir. Indeed, the stellar mass to halo mass ratio for haloes
with masses ∼ 1011 M⊙ is only about 3× 10−3 (Yang et al.
2012; Papastergis et al. 2012; Behroozi, Wechsler & Conroy
2013), and the cold gas mass to stellar mass ratio is no more
than 10 (Kannappan 2004; Papastergis et al. 2012). Thus,
the gas associated with low-mass haloes either is never ac-
creted into the galaxy or has been expelled by galactic winds.
In the latter case, if we conservatively assume that the cold
gas mass is 10 times the stellar mass, then the total cold
baryonic mass in a 1011 M⊙ halo is ∼ 0.033 of the halo
mass. If we make the further conservative assumption that
for every unit of stellar mass formed at early times only
half of it remains in stars today owing to stellar mass loss,
the total mass that was ever involved in star formation is
∼ 0.006 of the final halo mass. Based on these conserva-
tive assumptions, one finds that the mass-loading factor is
(fb − 0.033)/0.006 = 23, which is close to the upper limit
obtained from the total kinetic energy expected from SN.

The posterior marginals (Fig. 2) imply that 25–50% of
the available SN energy, depending on the assumed IMF, is
required to power the wind. This required high efficiency of
energy loading poses a severe challenge for the standard SN
feedback scenario (e.g. Dekel & Silk 1986; White & Zaritsky
1992). Indeed, detailed hydrodynamical simulations by
Mac Low & Ferrara (1999) and Strickland & Stevens (2000)
demonstrated that supernova feedback is very inefficient in
expelling mass because the onset of Rayleigh-Taylor insta-
bilities severely limits the mass-loading efficiency of galac-
tic winds. There are a couple of possible solutions to this
dilemma. First, a top-heavy or bottom-light IMF would
yield a larger ηSN. Our data constraints are from the lo-
cal galaxy population, which by themselves do not distin-
guish different IMFs. Second, the UV photons from mas-
sive stars could effectively transfer radiation momenta to the
gas via dust opacity, thereby producing momentum driven
winds (Murray, Quataert & Thompson 2005). The total ra-
diation energy available is about 100 times as high as the
kinetic energy of supernova explosions, vitiating the me-
chanical energy limit. The viability of this mechanism is
uncertain: while some simulations show that it is effective
(e.g. Hopkins, Quataert & Murray 2011), others find that
the development of Rayleigh-Taylor type instabilities can
suppress the formation of outflows (Krumholz & Thompson
2012). Thus, although the required high efficiency may rule
out mechanisms based on SN energy-driven winds alone, the
viability including momentum-driven winds is still unclear.

The star formation feedback models implemented in
SAMs are crude. In our model, the outflow reduces the to-
tal cold gas mass of the galaxy and the remaining cold gas
is redistributed in an exponential profile at each time step.
This is similar to some cosmological hydrodynamical sim-
ulations (e.g. Davé et al. 2013) where the effective viscos-
ity of the disk gas, which could include actual gas viscosity
and/or gravitational torques, causes the cold gas from the
outer disk to move rapidly inwards to replenish the star
forming gas, and so star formation can continue near the
disk centre even if the total amount of gas in the disk is re-
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duced. However, since the gas viscosity in such simulations
is artificial and the resolution is still limited, it is unclear
whether the effect is physical or numerical. For example,
if the effective viscosity of the disk gas were unimportant,
much of the cold gas would stay in the outer region of the
disk without forming stars. Some simulations of individual
disks (Forbes, Krumholz & Burkert 2012) do find that star
formation feedback is localised to regions where the star for-
mation is active, producing a disk with a reduced cold gas
density only in the central part of the disk, leaving the cold
gas in the outskirts intact. Others confirm the cosmological
simulation results (e.g. Hirschmann et al. 2013). To explore
this in our SAM, we have considered a model in which star
formation feedback is assumed to only affect the gas within
the radius where star formation can happen, i.e. the cold
density is above the threshold surface density. Without a
lower limit on fSF, the posterior distribution is nearly un-
changed owing to the low surface density threshold for star
formation and the high outflow rate required by the shallow
low-mass end of the galaxy luminosity function. However, if
the value of fSF is forced to match the observed star forma-
tion threshold surface density of 10M⊙ pc−2 then the model
fails to fit the data (pHI < 0.005), consistent with the results
obtained by Mo et al. (2005).

As we remarked before, we find that there are three
major modes in the logαLD–βLD plane located at βLD ≈ 0,
2, and 6, as one can see in Panel 4 of Figure 2. The rel-
ative posterior odds in each mode are 4:1:2, respectively.
Hence, the β = 0 mode is favoured by the combined data
sets in terms of marginalised posterior probability. Since our
prior distribution is intentionally very broad, as we describe
in §2, and this will quantitatively affect these odds. That
said, the maximum likelihood is located in the βLD ≈ 6
mode, and the highest likelihood values in the βLD ≈ 2 and
0 modes are 30 and 1,400 times lower, indicating that those
two modes produce a worse fit to the data than the βLD ≈ 6
mode. The PPC p-values calculated for the K-band lumi-
nosity function predicted by each of the modes also indicate
that the βLD ≈ 6 mode produces a better, but still inade-
quate, fit to the data, pK = 0.016 for the βLD ≈ 6 mode,
and pK < 0.005 for the other two modes. In Figure 3, we
show the K-band luminosity function produced by the three
modes. The shaded blue region shows the posterior predic-
tions of models with βLD < 1.25, the magenta region shows
the posterior predictions of models with 1.25 < βLD < 4, and
the green region shows the posterior predictions of models
with βLD > 4. Note that the three modes produce indis-
tinguishable predictions for the HI mass function, as the
predictive distribution of the HI mass function produced
by the entire posterior shown in Figure 1 is narrow. The
predicted faint-end slope of the K-band luminosity func-
tion is steeper for a smaller value of βLD, and the current
data apparently favours the mode with the highest βLD. This
trend confirms recent hydro-dynamical simulation results of
Puchwein & Springel (2013) and Davé et al. (2013). More-
over, this demonstrates that discrimination between these
modes could be possible given improved data for the faint
end of the luminosity function.

Even though the βLD ≈ 0 mode has relatively lower
likelihood, it has the highest marginal posterior probability.
This implies that the modes with high values of βLD are
supported by proportionately smaller volumes in parameter

space relative to the βLD ≈ 0 mode. This could be inves-
tigated in detail using the distribution of marginal likeli-
hood, but the required resolution to compute the volume
in the high-dimensional parameter space is computationally
prohibitive. Nonetheless, relying on the posterior marginals
shown in Figure 2, we believe that the complex posterior re-
sults from the fine tuning necessary to simultaneously match
the K-band luminosity and HI mass function. Specifically,
Panel 5 indicates that βSF correlates with βLD. As βSF in-
creases, the increasingly smaller star formation efficiency in
low circular velocity haloes leaves more cold gas in the disk.
To simultaneously match the HI mass function, the model
thus needs to increase the feedback efficiency in lower circu-
lar velocity halos by increasing βLD.

In addition, sometimes a particular parametrisation can
also introduce specific features into the posterior. Panel 6 of
Fig. 2 shows an example; the parameter VSF is not con-
strained when βLD ≈ 0, but is strongly constrained when
βLD ≈ 6. When βLD ≈ 0, βSF is also about 0, meaning a
constant star formation efficiency. In this case, as described
in §2, VSF no longer has any effect on the model predictions,
because the parametrisation for the star formation efficiency
no longer has a transition scale that VSF describes. Thus, the
likelihood is the same no matter what value VSF takes when
βLD ≈ 0.

Moreover, the high βLD mode requires two unusual con-
ditions. First, as shown in Panel 7 of Fig. 2, for βLD ≈ 6,
the parameter αSN, which characterises the fraction of SN ki-
netic energy used to eject the hot halo gas, is always required
to be higher than one, implying that the required energy is
higher than the kinetic energy provided by SN Type II. The
reason is that βLD ≈ 6 leads to a rapid decrease of cold gas
ejection with increasing halo circular velocity, and a strong
outflow of hot halo gas in relatively massive halos is needed
by the mode to fit the data. This conclusion agrees with the
result of Mutch, Poole & Croton (2013) that one needs more
energy than that available from SN Type II to explain the
evolution of the galaxy stellar mass function from z ≈ 0.8
to 0. Second, the βLD ≈ 6 mode also requires a long time
scale, about 10 times as long as the fiducial dynamical fric-
tion timescale, for satellite galaxies to orbit in the host halo
before merging into central galaxies (see Panel 8 of Fig. 2).
This can be understood as follows. When βLD is large, the
effect of star formation feedback is increasingly weaker for
higher mass haloes. In this case, the merging timescale for
satellite galaxies is required to be long to prevent them from
merging into the halo centre and hence significantly increas-
ing the mass of the central galaxy. Since a longer merger
time also leads to a higher satellite fraction, observational
data of satellite fraction can tighten the constraint. We will
come back to this topic in a future paper.

4.2 Posterior Predictions

The model family generally requires efficient outflows from
low-mass galaxies for its best fit, but even that is not enough
to match both of the constraining observational data sets.
We now use the posterior distribution to predict the out-
flow rate and other observables to investigate the failure of
the model family. Since the marginalised posterior in the
αLD–βLD plane is multi-modal, we distinguish the modes
according to their value of βLD when making model predic-
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Figure 3. The predicted K-band luminosity function for the
three different modes present in the lower-right panel of Fig. 2
represented by different values of βLD. The red line is the median
prediction for the entire posterior.

tions. We marginalise the posterior probability to generate
predictions as described in Lu et al. (2012).

Figure 4 shows the posterior prediction for the cold
baryonic mass fraction (cold gas plus stars) of central galax-
ies normalised by the cosmic baryon fraction, fb, as a func-
tion of halo mass. The red line shows the median of the
whole posterior prediction, while the shaded regions with
different colours encompass the 95% credible ranges from
the modes with βLD ∼ 0, 2, and 6, as indicated in the fig-
ure. The black bars show the results of abundance matching
obtained by Papastergis et al. (2012) using the ALFALFA
and SDSS data.

The observed K-band luminosity function only deter-
mines absolute magnitudes up toK = MagK−5 log h = −20,
which only constrains the halo virial mass above ∼ 1011 M⊙

(indicated as the vertical line in Fig. 4). The 95% range of the
posterior prediction contains the abundance matching result
for haloes more massive than a few times 1011 M⊙, but all
three modes overpredict the cold baryon fraction for lower
mass haloes. Among the three modes, models with larger
βLD produce lower cold baryon mass fractions for low mass
haloes. The mode with βLD ≈ 0 vastly overpredicts the cold
baryon mass fraction in haloes with masses ≤ 1011.5 M⊙.

To explore the physical implications of feedback, we
predicted the average star formation rate (SFR) and out-
flow rate (OFR) in each mass bin for all central galaxies at
z = 0. Figure 5 shows the ratio OFR/SFR, which is com-
monly referred to as the mass-loading factor of the wind.
Again the red lines show the medians of the whole posterior
prediction, while the shaded regions with different colours
encompass the 95% credible range from the three modes de-
fined by their values of βLD. The predicted OFR/SFR ratio
generally decreases with stellar mass; it is approximately 10
for galaxies with stellar masses <∼ 108.5M⊙ and close to 1 for
Milky-Way mass galaxies. Observationally, there is no strong
evidence for the existence of such a strong stellar mass de-
pendence for outflows in normal disk galaxies at the present

Figure 4. The posterior predictive distribution of the cold baryon
(stars plus cold gas) mass fraction as a function of halo mass. The
shaded bands with different colours encompass the 95% credible
range of the prediction for the three modes represented by dif-
ferent values of βLD, while the red line is the predicted median
of the entire posterior predictive distribution. The black points
with error bars are from Papastergis et al. (2012). The vertical
yellow dashed line marks the lowest halo mass constrained by the
K-band luminosity function.

day (see Heckman 2003; Veilleux, Cecil & Bland-Hawthorn
2005; Rupke, Veilleux & Sanders 2002; Martin 2006). In
starburst galaxies, the mass outflow rates are roughly com-
parable to the star-formation rate, so that OFR/SFR ∼ 1,
and lower mass galaxies do not show stronger outflows.
Thus, the high OFR/SFR ratio predicted for the general
dwarf galaxy population does not have any observational
support, but then again there is no strong observational evi-
dence against it. Comparing the predictions for the different
posterior modes, we see that different choices of βLD pro-
duce very different trends of the loading factor with galaxy
stellar mass. The βLD ≈ 0 mode produces a constant mass-
loading factor, OFR/SFR ≈ 3 over a large stellar mass
range, while the other two modes predict a rapidly decreas-
ing OFR/SFR with increasing stellar mass. The roughly
constant OFR/SFR predicted by the βLD ∼ 0 mode is con-
sistent with the observational results of Martin (2006), but
this mode significantly overpredicts the cold baryon mass
fraction for low mass haloes. Clearly, as one needs a large
mass-loading factor to achieve better fits to the constrain-
ing data, observations of gas outflows in low-mass galaxies
and how they scale with galaxy mass can provide important
constraints on the feedback model family considered here.

Figure 6 shows the predicted cosmic star formation rate
density as a function of redshift using the posterior sam-
ples selected from the three modes of βLD. The grey shaded
region in the figure denotes a compilation of observational
estimates of the cosmic star formation rate density as a func-
tion of redshift from Behroozi, Wechsler & Conroy (2013).
Compared to the data, our model family predicts a differ-
ent shape. The cosmic star formation rate density in the
model reaches its maximum at higher redshifts (z ≈ 3.5),
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Figure 5. The predicted ratio of mass outflow rate to star for-
mation rate as a function of stellar mass for central galaxies at
z = 0. The colour bands and lines are as described in Fig. 4.

while data suggests it more sharply peaks around z ≈ 2, al-
though the observed drop at high redshifts could partly owe
to missing low mass galaxies (Lu et al. 2014). The model
also underpredicts the star formation rate density around
z = 2, as the median of the posterior predictive distribution
is only marginally enclosed by the lower bound of the obser-
vational data. The predictions from the βLD ≈ 0 mode are
systematically higher and might be more consistent with the
observations. The high βLD mode predicts a star formation
rate density that is too low to match the observational data
at z > 1. This stems from the powerful SN driven outflows
in low-mass haloes required to fit the local galaxy luminosity
function and HI mass function. Because the parametrisation
for feedback does not have an explicit redshift dependence,
such strong outflows work throughout all cosmic time in the
model. This feedback suppresses star formation at high red-
shift where such low-mass haloes dominate.

Figure 7 shows the star formation rate (SFR) as a func-
tion of redshift for haloes with masses of Mvir = 1012 M⊙

today (z = 0) for the three modes in βLD. The model pre-
dictions are compared with the recent results obtained by
Lu et al. (2014) and Behroozi, Wechsler & Conroy (2013)
using empirical models tuned to fit the observed stellar mass
functions at different redshifts. The empirical models predict
a peak near z ≈ 1 while our SAM family predicts a much
weaker peak at higher z. This is consistent with the under-
prediction of the SFR density at z ≈ 1 in Figure 6. The
βLD = 0 mode also overpredicts the SFR at z > 2, although
this mode better matches the observed cold gas fraction in
haloes with masses of 1012M⊙ (see Figure 4). Overall, the
predicted star formation histories for Milky Way sized galax-
ies by our SAM family are inconsistent with the results ob-
tained from the empirical models.

Weinmann et al. (2012) found that SAMs and numer-
ical simulations cannot generally reproduce the observed
number density evolution of low mass galaxies. For com-
parison, we predict the number densities of galaxies with
stellar masses in the range 9.27 ≤ logM∗/M⊙ ≤ 9.77 from

Figure 6. The posterior prediction of the co-moving star forma-
tion rate density versus redshift. Points with error bars are ob-
servational data. The grey band denotes observational estimates
compiled in Behroozi et al. 2013. The other colour bands and lines
are as described in Fig. 4.

Figure 7. The posterior prediction of the star-formation-rate his-
tory for haloes with present-day mass 1012M⊙. Points with error
bars show results obtained with two recent empirical models. The
colour bands and lines are as described in Fig. 4.

z = 0 to 6, and compare them with the observational data
compiled by Weinmann et al. (2012). Figure 8 shows that
the model family can accommodate the observational data
at z = 0, but vastly overpredicts the number density of low-
mass galaxies at higher redshift. This confirms the results
of Weinmann et al. (2012), and suggests that the current
model family cannot match the data even if a large param-
eter space is explored.

Figure 9 shows the prediction of the co-moving mass
density of cold gas as a function of redshift. The observa-
tional data at high redshifts, estimated using damped Ly-
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Figure 8. The posterior prediction for the evolution of the
number density of galaxies with stellar masses in the range
log(M∗/M⊙) = 9.27− 9.77 as a function of redshift. Points with
error bars show data compiled by Weinmann et al. (2012). The
colour bands and lines are as described in Fig. 4.

man alpha systems (Péroux et al. 2003; Prochaska & Wolfe
2009), suggests that the cold gas density at high redshifts
is higher than in the local universe. Our predicted increase
of the cold gas mass density with redshift in the range from
z = 0 to 2 is consistent with the observations. The model
also predicts a decrease of the cold gas density with increas-
ing redshift at z > 3. Unfortunately the current data is
still too uncertain to provide meaningful constraints on the
model.

In summary, the model family considered here, which
has physical prescriptions similar to most published SAMs,
in addition to not fitting one of the constraining data sets,
the observed K-band luminosity function, also fails to pre-
dict additional observations as follows:

(i) It requires very efficient feedback to eject gas from
low-mass haloes. The energy required is probably too high
if the outflows are driven by the kinetic energy of supernova
explosions alone, although this problem may be alleviated
by including radiation pressure.

(ii) It requires a density threshold for star formation that
is much lower than current observations suggest, owing to
the energy needed to eject cold gas from the disk.

(iii) The high mass-loading factor required by the present-
day distribution of low-mass galaxies predicts mass outflow
rates that might be too high to match observation.

(iv) The predicted star formation rate history of Milky-
Way-sized galaxies is inconsistent with that obtained from
empirical models.

(v) It overpredicts the number density of low-mass galax-
ies at high redshift.

These results together suggest that some important physics
may still be missing in the current SAMs.

Figure 9. The posterior prediction for the co-moving cold gas
mass density normalised by the critical density of the universe at
the present time. The blue dashed line shows the total mass in
haloes with mvir ≥ 5 × 109 h−1M⊙ times the universal baryon
fraction fb. Points with error bars are observational data from
Zwaan et al. (1997); Zwaan et al. (2005); Martin et al. (2010);
Rao & Briggs (1993); Rao, Turnshek & Nestor (2006); Lah et al.
(2007); Péroux et al. (2003) and Prochaska & Wolfe (2009). The
colour bands and lines are as described in Fig. 4.

5 DISCUSSION AND CONCLUSIONS

We use the observed low redshift K-band luminosity func-
tion and HI-gas mass function of galaxies as data con-
straints to explore star-formation and feedback in a semi-
analytic model of galaxy formation, which uses MCMC-
based Bayesian methodology. The combination of these two
data sets breaks the degeneracy in the parametrised phe-
nomenology based on using the K-band luminosity function
data constraint alone (Lu et al. 2012). Our model assumes
that baryons accrete into the assembling halo where they
cool, form stars, and the resulting feedback ejects some frac-
tion of the gas. Our model has many features in common
with most published SAMs and our results focus on con-
clusions generic to a large class of published models. We
marginalise over all the uncertainties in the model family
that are not constrained by the data sets.

Our broad parameter space covers and extends the
ranges of the important parameters for star formation and
feedback adopted in many existing SAMs. Our exhaustive
parameter-space search results in the robust identification
of several compact modes that best match the constraining
data. These modes are likelihood dominated, i.e. the exis-
tence of these modes does not depend sensitively on the prior
distribution as long as the modes are supported. The anal-
yses presented in this paper focus on the behaviour of the
model constrained to those modes, namely on the physical
implications of the constrained parameters and the predic-
tions of these modes. These conclusions are not expected to
depend sensitively on the prior. However, the choice of the
prior distribution is generally important in complex high di-
mensional problems, especially when the likelihood is not
sufficiently informative. In such cases, strong prior belief
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easily sways weak observational constraints. Conversely, a
thorough investigation of the poorly constrained model mo-
tivates the acquisition of data that robustly discriminates
between competing hypotheses of interest.

Overall, our model fails to reproduce the joint data sets
and, therefore, more work will be required to understand
the nature of the failure and to propose a remedy before at-
tempting a quantitative Bayesian analysis. To assess the fit,
we use the posterior predictive check (PPC) method with a
residual sum of squares for each bin, for both the K-band
luminosity function and the HI-gas mass function, as a dis-
crepancy statistic. In this method, the discrepancy with the
data is compared with the distribution predicted from the
posterior distribution. We find that the data is in the tail
of the distribution defined by the posterior, suggesting the
implausibility of the data given the model.

The primary cause for the failure is that to simultane-
ously produce the observed stellar component and the ob-
served cold gas fraction at the low mass end requires the
SN feedback to be extremely efficient in expelling gas. This
requires a high mass-loading factor that consumes much of
the available energy budget. The low p-value we found by ex-
haustively exploring the parameter space has its roots in the
over simplicity of the phenomenological model and suggests
that key physical processes are missing or misrepresented.

In addition, we find that the mass-loading factor must
depend strongly on halo circular velocity to obtain the shal-
low faint-end slope of the luminosity function. The model re-
quires that winds from haloes with circular velocities lower
than ∼ 200km s−1 are ejected from the halo, completely.
However, in many mass-loading models the mass-loading
factor is a weak function of the halo circular velocity. Recent
simulations concur: Davé et al. (2013) show that a steeper
relation between mass-loading and halo circular velocity
tends to produce a shallower stellar and HI mass function at
the low-mass end. This also suggests that accurate observa-
tional data for the faint-end slope of the galaxy luminosity
function are crucial to constrain feedback models.

The inferred requirement for efficient feedback is con-
sistent with the recent results of Mutch, Poole & Croton
(2013) and Henriques et al. (2013) who also found that a
high efficiency of SN feedback is needed to fit the stellar mass
and/or luminosity functions of galaxies at multiple redshifts.
However, the high efficiency implied by the posterior distri-
bution obtained here is not supported by hydro-dynamical
simulations (e.g. Mac Low & Ferrara 1999), which showed
that the feedback efficiency of SN kinetic energy is usually
quite low. Thus, either some other important energy sources
are missing or the way feedback works is not correctly mod-
elled in the current model family. For example, radiation
pressure associated with star formation and SN explosions
may provide a viable solution to the energy problem found
here (e.g. Stinson et al. 2013).

Finally, the model predicts the star formation history
over all time, although it is only constrained by data at z =
0. The observed star formation histories of Milky Way-sized
haloes and the observed redshift evolution in the number
density of low-mass galaxies at high z are inconsistent with
our posterior predictions. This suggests that star formation
and feedback may have a more complex redshift dependence
than assumed here.

In summary, our analysis shows that we require a high

wind mass loading factor and mass ejection rate of galac-
tic winds to match the observed luminosity and cold gas
mass functions. This result applies to many if not all ejective
feedback scenarios that depend on winds, largely indepen-
dent of the mechanistic details. This is a direct consequence
of a short radiative cooling time scale in low-mass haloes
combined with the small fraction of baryons in stars and
cold gas relative to the cosmic baryon fraction. Moreover,
the predicted high mass-loading factor and mass-loss rates
are not observed, suggesting that a feedback-generated wind
may not be the agent suppressing star formation and cold
gas accretion in low-mass haloes, at least at low-z.

Alternatively, this suggests exploring mechanisms that
prevent the gas accretion in the first place. For ex-
ample, the intergalactic medium (IGM) may be pre-
heated by some processes so that low mass haloes can
accrete baryonic matter only at a reduced rate, ei-
ther by properly including the effects of already con-
sidered processes like supernova winds or by additional
processes like gravitational pancaking or Blazar heat-
ing (e.g. Mo & Mao 2002; Mo et al. 2005; Lu & Mo
2007; Anderson & Bregman 2010; Zhu, Feng & Fang 2011;
Pfrommer, Chang & Broderick 2012). This may also intro-
duce a characteristic time before and after which the star
formation and feedback proceed differently, as seems to be
required to match the star formation history and number
density evolution of low mass galaxies (see Lu et al. 2014).
We will investigate the effects of preheating on galaxy for-
mation in a future paper.
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Croton, Romeel Davé, Andrey Kravtsov, Emmanouil Pa-
pastergis, Joel Primack, Rachel Somerville, Frank van den
Bosch and Risa Wechsler for useful discussion.

REFERENCES

Anderson M. E., Bregman J. N., 2010, ApJ, 714, 320
Behroozi P. S., Wechsler R. H., Conroy C., 2013, ApJ, 770,
57

Bell E. F., McIntosh D. H., Katz N., Weinberg M. D.,
2003a, ApJ, 585, L117

Bell E. F., McIntosh D. H., Katz N., Weinberg M. D.,
2003b, ApJS, 149, 289

Benson A. J., Bower R. G., Frenk C. S., Lacey C. G., Baugh
C. M., Cole S., 2003, ApJ, 599, 38

Bigiel F., Leroy A., Walter F., Brinks E., De Blok W. J. G.,
Madore B., Thornley M. D., 2008, AJ, 136, 2846

Bower R. G., Benson A. J., Crain R. A., 2012, MNRAS,
422, 2816

Bower R. G., Benson A. J., Malbon R., Helly J. C., Frenk

c© 0000 RAS, MNRAS 000, 000–000



16

C. S., Baugh C. M., Cole S., Lacey C. G., 2006, MNRAS,
370, 645

Bower R. G., Vernon I., Goldstein M., Benson A. J., Lacey
C. G., Baugh C. M., Cole S., Frenk C. S., 2010, MNRAS,
407, 2017

Bruzual G., 2007, in Astronomical Society of the Pa-
cific Conference Series, Vol. 374, From Stars to Galaxies:
Building the Pieces to Build Up the Universe, A. Val-
lenari, R. Tantalo, L. Portinari, & A. Moretti, ed., pp.
303–+

Cattaneo A., Dekel A., Devriendt J., Guiderdoni B.,
Blaizot J., 2006, MNRAS, 370, 1651

Chabrier G., 2003, PASP, 115, 763
Chen Y.-M., Tremonti C. A., Heckman T. M., Kauffmann
G., Weiner B. J., Brinchmann J., Wang J., 2010, AJ, 140,
445

Cole S., Aragón-Salamanca A., Frenk C. S., Navarro J. F.,
Zepf S. E., 1994, MNRAS, 271, 781

Croton D. J. et al., 2006, MNRAS, 365, 11
Davé R., Katz N., Oppenheimer B. D., Kollmeier J. A.,
Weinberg D. H., 2013, MNRAS, 434, 2645

De Lucia G., Blaizot J., 2007, MNRAS, 375, 2
De Lucia G., Kauffmann G., White S. D. M., 2004, MN-
RAS, 349, 1101

Dekel A., Silk J., 1986, ApJ, 303, 39
Dunkley J. et al., 2009, ApJS, 180, 306
Elmegreen B. G., 1997, ApJ, 486, 944
Forbes J., Krumholz M., Burkert A., 2012, ApJ, 754, 48
Gelman A., Carlin J. B., Stern H. S., Rubin D. B., 2003,
Bayesian Data Analysis, 2nd edn., Texts in Statistical Sci-
ence. CRC Press, Boca Raton, FL

Gelman A., Meng X.-L., Stern H., 1996, Statistica Sinica,
6, 733

Gelman A., Rubin D., 1992, Statistical Science, 7, 457
Giovanelli R. et al., 2005, AJ, 130, 2598
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