Skip to main content
Article
The Sunflower Genome Provides Insights into Oil Metabolism, Flowering and Asterid Evolution
Nature
  • Hélène Badouin, Université de Toulouse
  • Jérôme Gouzy, Université de Toulouse
  • Christopher Grassa, Université de Toulouse
  • Florent Murat, INRA, France
  • S. Evan Staton, University of British Columbia
  • Ludovic Cottret, Université de Toulouse
  • Christine Lelandais-Brière, Institute of Plant Sciences Paris-Saclay
  • Gregory Owens, University of British Columbia
  • Sébastien Carrère, Université de Toulouse
  • Baptiste Mayjonade, Université de Toulouse
  • Ludovic Legrand, Université de Toulouse
  • Navdeep Gill, University of British Columbia
  • Nolan Kane, University of Colorado
  • John Bowers, University of Georgia
  • Sariel Hubner, University of British Columbia
  • Arnaud Bellec, INRA, France
  • Aurélie Bérard, INRA, France
  • Hélène Bergès, INRA, France
  • Nicolas Blanchet, Université de Toulouse
  • Marie-Claude Boniface, Université de Toulouse
  • Dominique Brunel, INRA, France
  • Olivier Catrice, Université de Toulouse
  • Nadia Chaidir, University of British Columbia
  • Clotilde Claudel, Biogemma
  • Cécile Donnadieu, INRA, France
  • Thomas Faraut, INRA, France
  • Ghislain Fievet, Université de Toulouse
  • Nicolas Helmstetter, INRA, France
  • Matthew King, University of British Columbia
  • Steven Knapp, University of California
  • Zhao Lai, Indiana University
  • Marie-Christine Le Paslier, INRA, France
  • Yannick Lippi, Université de Toulouse
  • Lolita Lorenzon, Université de Toulouse
  • Jennifer Mandel, University of Memphis
  • Gwenola Marage, Université de Toulouse
  • Gwenaëlle Marchand, Université de Toulouse
  • Elodie Marquand, INRA, France
  • Emmanuelle Bret-Mestries, Terres Inovia
  • Evan Morien, University of British Columbia
  • Savithri Nambeesan, University of Georgia
  • Thuy Nguyen, University of British Columbia
  • Prune Pegot-Espagnet, Université de Toulouse
  • Nicolas Pouilly, Université de Toulouse
  • Frances Raftis, University of British Columbia
  • Erika Sallet, Université de Toulouse
  • Thomas Schiex, Université de Toulouse
  • Justine Thomas, Université de Toulouse
  • Céline Vandecasteele, INRA, France
  • Didier Varès, Université de Toulouse
  • Felicity Vear, INRA, France
  • Sonia Vautrin, INRA, France
  • Martin Crespi, Institute of Plant Sciences Paris-Saclay
  • Brigitte Mangin, Université de Toulouse
  • John Burke, Department of Plant Biology
  • Jérôme Salse, INRA, France
  • Stéphane Muños, Université de Toulouse
  • Patrick Vincourt, Université de Toulouse
  • Loren Rieseberg, University of British Columbia
  • Nicolas Langlade, Université de Toulouse
Document Type
Article
Publication Date
5-22-2017
Disciplines
Abstract

The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought1. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives2,3, including numerous extremophile species4. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences5 and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade6 and a sunflower-specific whole-genome duplication around 29 million years ago7. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs8,9.

Comments

Open Access.

This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons licence, users will need to obtain permission from the licence holder to reproduce the material. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

Creative Commons License
Creative Commons Attribution 4.0 International
ORCID ID
http://orcid.org/0000-0003-3746-1866
DOI
10.1038/nature22380
Citation Information
Hélène Badouin, Jérôme Gouzy, Christopher Grassa, Florent Murat, et al.. "The Sunflower Genome Provides Insights into Oil Metabolism, Flowering and Asterid Evolution" Nature Vol. 546 (2017) p. 148 - 152 ISSN: 1476-4687
Available at: http://works.bepress.com/navdeep-gill/8/